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Stretchable electronics have found wide applications in bio-mimetic and bio-integrated
electronics attributing to their softness, stretchability, and conformability. Although con-
ventional electronic materials are intrinsically stiff and brittle, silicon and metal mem-
branes can be patterned into in-plane serpentine ribbons for enhanced stretchability and
compliance. While freestanding thin serpentine ribbons may easily buckle out-of-plane,
thick serpentine ribbons may remain unbuckled upon stretching. Curved beam (CB)
theory has been applied to analytically solve the strain field and the stiffness of freestand-
ing, nonbuckling serpentine ribbons. While being able to fully capture the strain and stiff-
ness of narrow serpentines, the theory cannot provide accurate solutions to serpentine
ribbons whose widths are comparable to the arc radius. Here we report elasticity solu-
tions to accurately capture nonbuckling, wide serpentine ribbons. We have demonstrated
that weak boundary conditions are sufficient for solving Airy stress functions except when
the serpentine’s total curve length approaches the ribbon width. Slightly modified weak
boundary conditions are proposed to resolve this difficulty. Final elasticity solutions are
fully validated by finite element models (FEM) and are compared with results obtained
by the curved beam theory. When the serpentine ribbons are embedded in polymer matri-
ces, their stretchability may be compromised due to the fact that the matrix can constrain
the in-plane rotation of the serpentine. Comparison between the analytical solutions for
freestanding serpentines and the FEM solutions for matrix-embedded serpentines reveals
that matrix constraint remains trivial until the matrix modulus approaches that of the ser-
pentine ribbon. [DOI: 10.1115/1.4035118]
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1 Introduction

Since its emergence in the mid-2000’s, stretchable electronics
[1,2] has found many exciting applications including bio-mimetic
electronics such as electronic skin [3] and hemispherical elec-
tronic eye camera [4], bio-integrated electronics represented by
epidermal electronics [5] and bioresorbable soft brain sensors [6],
as well as stretchable energy sources exemplified by organic solar
cells [7] and rechargeable batteries [8]. Although many electronic
materials are intrinsically stiff and even brittle, they can still be
included in stretchable electronics thanks to various strain-
relieving structural designs. For example, the mechanics of
wrinkled or buckled stiff membranes or ribbons on compliant
substrates [9—11] has enabled stretchable gold conductors [12], sil-
icon transistors [13], organic solar cells [7], lead zirconate titanate
(PZT) generators [14], as well as graphene strain gauges [15].

As buckled structures cannot be easily encapsulated or inte-
grated with bio-tissues, a more popular design in recent years is to
pattern stiff membranes into in-plane meandering ribbons which
are often called serpentines [16-20]. Serpentine structures can
effectively convert in-plane and out-of-plane bending to signifi-
cant end-to-end extension without inducing large strains in the
material. In stretchable electronics, serpentine designs were ini-
tially implemented for stretchable metallic interconnects
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[16-18,20], sometimes between isolated rigid device islands
[19,21]. Later, graphene [22], zinc oxide (ZnO) [23], indium tin
oxide (ITO) [24], and conductive elastomer [25]-based serpen-
tines have emerged. Eliminating the device islands and patterning
gold and silicon into filamentary serpentine network has enabled
epidermal electronics [5], whose stretchability and softness are
well matched with human skin. Fractal serpentine design lever-
ages ordered unraveling of self-similar serpentine designs to con-
currently achieve high areal coverage and large stretchability
[26,27]. While substrate-bonded thin film serpentines are often
found in stretchable electronics, freestanding thick serpentine rib-
bons are often used in expandable or deployable structures. For
example, conventional or smart cardiovascular stents with metal
serpentine skeletons [28] can remain small radius during insertion
through blood vessels and expand for angioplasty once in place.
As another example, ultra-narrow, accordion-like freestanding
polyimide serpentines were designed to form a spider-web-like
highly expandable micro-sensor network that can cover giant
aerospace structures [29]. It is well known that when stretched,
thin serpentines can easily buckle out-of-plane as out-of-plane
bending consumes less energy than in-plane bending. However,
when the serpentine is thick enough (i.e., when thickness is larger
than ribbon width), in-plane bending becomes more energetically
favorable than out-of-plane bending. As a result, thick serpentines
can be stretched without buckling.

The mechanics of serpentines has been under active investiga-
tions in recent years. On the one hand, quite a few analysis have
been conducted to study the buckling and post-buckling behaviors
of freestanding serpentine ribbons of basic shapes [17,30-32] as
well as self-similar ones [27,33,34]. On the other hand, mechanics
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of polymer-embedded or polymer-bonded serpentines are mostly
studied through combined experimental and finite element model-
ing (FEM) means [16,20,24,35-39]. We have obtained closed-
form linear elasticity solutions for freestanding, nonbuckling
serpentine structures through curved beam (CB) theory [40],
which is well validated by experiments and FEM on narrow, fila-
mentary serpentine ribbons.

Although narrow serpentines are known to be more stretchable
than wide ones, serpentine width can be limited by practical fac-
tors. For example, the lower bound of serpentines width is set by
the resolution of the patterning technology, which can be hun-
dreds of microns for some popular low-cost manufacturing meth-
ods such as screen printing [41] or mechanical cutting [42]. In
applications such as stretchable photovoltaics and epidermal elec-
trodes, large areal coverage is critical and therefore wider serpen-
tines may improve device functionality. However, when
comparing the strain field of wide serpentines obtained by CB
theory and by FEM, we found significant deviations. This can be
attributed to the essential assumption in CB theory that cross-
sectional planes remain planar after deformation. As a result, in
this paper, we apply elasticity theory to derive analytical solutions
for nonbuckling serpentines of all widths. The strain and stiffness
results are fully validated by FEM.

2 Analytical Modeling

The problem we intend to study is a periodic serpentine ribbon
subjected to uniaxial stretch. A 3D schematic of the unit cell is
depicted in Fig. 1(a), where the curved section is named the arc,
and the linear section is named the arm. The out-of-plane thick-
ness is ¢, and the in-plane geometry of the serpentine ribbon can
be fully defined by four independent parameters: the arc radius R,
the ribbon width w, the arm length /, and the arc opening angle o.
After nondimensionalization, three independent dimensionless
geometric parameters will be used in this study: w/R, I/R, and o.
These parameters are essentially the three degrees of freedom in
the 3D serpentine design space as illustrated in Fig. 1(). Different
serpentine geometries can be defined by different combinations of
the three parameters, which can be represented as points in the
first and the fifth quadrants of this 3D design space. A uniaxial
tensile displacement u in the direction of periodicity is applied at
each end of this unit cell as indicated in Fig. 1(a). As we limit our-
selves to ribbons that do not buckle out-of-plane under applied
displacement u, plane strain condition can be assumed such that
we only need to solve a 2D elasticity problem. If we define
applied strain to be the strain induced by g in the linear counter-
part of the serpentine ribbon, the applied strain can be
expresses as

2110

Eapp :T (D

where S represents the initial length of the linear counterpart, i.e.,
the initial end-to to-end distance of the serpentine unit cell

S=4 (R cos(o) — %sin(a)) 2)

Attributing to the symmetric and anti-symmetric features of the
serpentine structure as well as the load and boundary conditions,
the unit cell can be further reduced to a quarter cell as illustrated
in Fig. 1(b). Specifically, the right end of the quarter cell is set to
be symmetric boundary condition. A displacement of ug/2 is
applied at the middle point of the left end, whose reaction force is
denoted by P. In the follows, we will derive P, stress and strain
fields as functions of uy and serpentine geometry using elasticity
theory and will compare the elasticity results with our previous
CB solutions [40].

In the context of stretchable electronics, we are particularly
interested in two mechanical behaviors of serpentines: the
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stretchability and the effective stiffness. Stretchability is defined
as the critical applied strain beyond which the serpentine ribbon
ruptures and is denoted by &, Therefore, if the failure criterion
IS €max = &>, Where emax and & represent the maximum tensile
strain in the serpentine ribbon and the critical strain-to-rupture or
strain-to-yield of the material, respectively, the normalized maxi-
mum tensile strain in the serpentine, &max /sapp, will govern the
stretchability through

&
cr cr
app Emax / 3app

Effective stiffness is defined as the ratio of the reaction force P to
the end-to-end displacement. With Young’s modulus £ and
Poisson’s ratio v, the stiffness of a plane strain (¢ assumed to be 1)
linear ribbon of length S and width w is given by Ew/S, where
E = E/(1 —1?) is the plane strain modulus. Therefore, the effec-
tive stiffness of a serpentine ribbon normalized by that of its linear
counterpart is given by PS/(2Ewug). When o approaches —m/2,
i.e., when the serpentine degenerates to a linear ribbon, both
&max/ €app and PS/(2Ewuy) should approach one.

The goal of this paper is to use elasticity to derive &max /&app and
PS/(2Ewug) as functions of the three dimensionless geometric
parameters w/R, [/R, and «. Airy stress function is a classical
approach to tackle 2D elasticity problem. For derivation, we
decompose the original boundary value problem (BVP) shown in
Fig. 1(c¢) into three sub-BVPs, as illustrated in Figs. 2(a)-2(c).
Figures 2(a) and 2(b) depict two sub-BVPs for the arc, where M,
in Fig. 2(a) is the moment that balances P in the arc section. M; in
Fig. 2(c) is the moment that balances P in the arm section, and M
in Fig. 2(b) is the reaction moment. Hence, we obtain

400
2:90 ’/, ~
o b Ly 13 IR
0.4 = \\W,
506 5
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2, @
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w/R

Fig. 1 (a) Three-dimensional schematic of the unit cell of a
freestanding periodic serpentine ribbon with geometric param-
eters and boundary conditions labeled. (b) Simplified plane
strain boundary value problem (BVP) of a nhonbuckling serpen-
tine ribbon. (¢) The three-dimensional design space for
serpentine shapes defined by three dimensionless geometric
parameters.
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M, = Pécos(cx) (C))

a+b

M, =P (1 4+ sin(a)) Q)

where a and b represent the inner and outer radii of the arc

w

: (©)

W
=R——,b=R
a 3 +

The resultant moment M at the fixed end of the arc is therefore
given by

M =M +M, N

The original BVP is now decomposed into three sub-BVPs with
simple geometry and well-defined boundary conditions and it is
hence possible to find corresponding Airy stress functions for
each of them. Polar coordinate system is adopted to solve the
stress/strain field in the arc whereas Cartesian coordinate system
is used for the arm, as illustrated in Figs. 2(a)-2(c). Three Airy

b b
3.0 = O,J opodr = P,J

a a
b

. b
4. 0= 3 + oc,J ogpdr = Psin(fac),‘[

a

where c is an offset that will be discussed later.
For Fig. 2(b)

b b
3.0:O,J Gﬂedi'IO,J
7T b

4. 0=
2

b
+ o, [ apodr = O,J

a a

For Fig. 2(c)

b—a b—a

4, x= E,J ) Oudy = Psin(—oc),J
b—a
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b—a
2
b—a
2
oydy = —P cos(a),J

Oydy = —P cos(ot),J

bea
2

stress functions can be constructed for the sub-BVPs defined in
Figs. 2(a), 2(b), and 2(c), respectively

0, = (# + A, rin(r) + As 1‘3)005(9) + Auln(r) + Asr?
+A6r2ln(r) ®)
@, =By In(r) + By 1> + B3 1 In(r) )

@3 =C1 ¥+ C1 xy+C3y’ + Caxy’ (10)
where As, Bs, and Cs are constants to be determined by boundary
conditions.

The stress field for each of the sub-BVPs can then be derived
by taking derivatives of the corresponding stress function in polar
or Cartesian coordinate and can be expressed in terms of geomet-
rical parameters, applied force P, spatial variables (r, 0) or (x,y),
and the unknown constants. The unknown constants can be deter-
mined by implementing weak force boundary conditions:

For Fig. 2(a)

l.r=a, g, =0,y=0

2.r=b,0,=0,=0

l.r=a, g, =0,=0

2.r=b,0, =0,y=0

b
b
orodr =0, J opordr = (% + c)P sin(—oar) (11)
b a+b
apdr = Pcos(oc),[ agerdr = - + ¢ |Psin(—a)
b Ji
o0dr = O,J Gegrdr = — EP cos(2) (12)
b l
orpdr =0, [ opordr = sz cos(a)
1Oy = Oxy =0
1Oy = 0y =0

b (13)

1
) Ou(y +¢)dy = EPcos(oc)

b—a
7
Ou(y+c)dy =0

—2=a
]
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Those weak boundary conditions would fail when o approaches
—m/2 and in the meanwhile, / approaches 0. When the arm length
[ is 0, the serpentine comprises only the arc. Independently, when
the arc opening angle o approaches —m/2, the serpentine
approaches a straight beam almost without an arc. Therefore, the
configuration of & — —n/2 and [ — 0 describes a nearly straight
ribbon with very small total length. In this scenario, the total curve
length of the serpentine approaches 0, which may be even smaller
than the ribbon width. Under this situation, the Saint-Venant’s
principle no longer holds. Violation of the Saint-Venant’s princi-
ple implies the weak boundary condition is no longer applicable.
One way to resolve this issue is to apply point-wise boundary con-
dition to solve the stress functions, which may lead to excessively
complicated solution. Another approach is to make minimum
modification to the solution based on weak boundary conditions,
which will result in relatively succinct solution. We therefore take
the second approach and assume that the reaction force P is not
applied right at the median line of the ribbon, but with an offset of
¢, as illustrated in Figs. 2(d) and 2(e). ¢ can be solved semi-
analytically as discussed later. After obtaining the stress functions,
the stress field can be solved accordingly and is offered in Egs.
(A1)—(A3) in the Appendix. Applying the plane strain constitutive
law, strain field can also be obtained. Both stress and strain solu-
tions contain the unknown reaction force, P, which has to be
solved as a function of the applied displacement. And the dis-
placement field can be solved by the geometric equations, with
the following boundary and continuity conditions:

1 Uarm|y=0,y=—d = 0

Z'Varm\xzo,y:—d =0

(14)
3. Parmli—0. y——d =
Fig. 2 Boundary conditions for three decomposed sub-BVPs: Parmla0, = d)m‘,.: atb +d0="144
(a) and (b) are two sub-BVPs for the arc and (c) is for the arm. 2 ' 2
(d) Definition of the c offset. (e) Definition of the d offset. (f)
lllustration of the local and global coordinate systems.
(a) (b)
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Fig. 3 The normalized offsets when o = —n/2: (a) ¢o/w and (b) dy/w analytically solved
as functions of w/R. Difference in emax/¢app With and without the offsets for (¢) narrow ser-
pentines (w/R = 0.2) and (d) wide serpentines (w/R =1).
021004-4 / Vol. 84, FEBRUARY 2017 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 11/21/2016 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



where u and v are the displacements and ¢ stands for the rotation.
The continuity condition is in a weak form that only the point
defined by x = 0, y = —d has continuous displacement and rota-
tion. The d offset in the arm is illustrated in Fig. 2(e), which will
be solved semi-analytically later. The final displacement solution
is offered in Egs. (A4) and (A5) in the Appendix.

So far, the stress, strain, and displacement are all derived in the
local polar or local Cartesian coordinates. To obtain results in the
global Cartesian coordinate, one more step of coordinate transfor-
mation has to be implemented. The global coordinates {ey, e, }
along with the local coordinates {e,, e,} are illustrated in Fig. 2(f)
and the transformation angle for arc and arm are

¢, =—0 and ¢, = —(n+a) (15)
respectively.

Through coordinate transformation, the displacement results
can be expressed in the global Cartesian coordinate as u’ (dis-
placement in ey direction) and V' (displacement in ey direction).
The applied displacement is finally linked to the applied force P
through

Up

—_ 7 /
Uapp = D) - + Varm\x:é,y:()

16)

/
Varc \t':¥+d,0:§+u

Given applied strain defined in Eq. (2), we want to solve for the
maximum strain in the serpentine, which dictates the stretchability
of the serpentine. As previous study on nonbuckling serpentines
[40] suggests that the maximum strain always occurs at the inner
crest of the arc, we can find the maximum strain as

_arclr=a,0=0
Emax = >0

A7)

Elasticity
(@)w/r=1,UrR=0a=0

(C)W/R =1,l/R=0,a =50°

‘e‘“/f:app
. E“e'l

y_ N
=
t, -

-

Fig. 4 Comparison of strain field obtained by elasticity theory
(left frames) and FEM (right frames) for serpentines with geo-
metric parameters (a) w/R=1,1/R=0,a=0, (b) w/R=1,
I/R=0,2=-50deg,and (c) w/R=1,1 /R=0,2= 50deg

Journal of Applied Mechanics

Therefore, emax/€app can be written as a function f(w/R, /R, o, v)
and, PS/(2Ewuy) as a function of g(w/R,l/R, o, v). Offsets ¢ and
d are just functions of the geometric parameters (w,R, [, «). If
we define c¢o=cw, R, [ -0, « — —=n/2) and dy=d
(w, R, | -0, o« — —1/2), ¢o and dy can be solved by setting
émax/éapp = 1 and PS/(2Ewug) = 1 when [ — 0 and o — —7/2.
Figures 3(a) and 3(b) plot ¢o/w and do/w as functions of w/R,
respectively. It is obvious that ¢o/w increases with increasing
w/R while dy/w decreases with increasing w/R. As we pointed
out before, when o grows from —n/2, the effect of weak boundary
conditions on the stress field decays; thus, ¢ and d should vary
with a. Simply assuming 4th order dependence, we propose the
full solutions to be

4 4
200 200
c = C‘o(?) OCSO7 d = d()(;) O(SO
0 o>0 >0
(18)

where the 4th power was assumed such that ¢ and d can decay
drastically as o departs from —7/2.

To explain the importance of the two offsets, Figs. 3(c) and
3(d) plot the difference in &y, / &app With and without considering
them, for narrow serpentines (w/R = 0.2) and wide serpentines
(w/R = 1), respectively. Both figures indicate that the effect of ¢
and d becomes more significant as o approaches —n/2, where the
weak boundary conditions break down, and is negligible when o
is big. Comparing Fig. 3(c) with Fig. 3(d), it is obvious that
including the offsets is more important for wider serpentines.

Finally, we can obtain elasticity solutions for &max/éapp =

fW/R,I/R, 0, v) and PS/(2Ewuo) = g(w/R,1/R,a, v) using

MATHEMATICA, and the code is supplied in (See Supplemental
results which are available under “Supplemental Materials” tab
for this paper on the ASME Digital Collection.)

3 Results and Discussion

3.1 Strain in Serpentine Ribbons. As the elasticity solutions
are difficult to express analytically, we will use contour plots and
graphs to illustrate the strain results. Figure 4 compares the ¢
distribution solved by elasticity (left frames) with those solved by
FEM (right frames) for various serpentine shapes. It is obvious
that the results agree well with each other except when the serpen-
tine is short and wide (e.g., Fig. 3(b)), which is due to the intro-
duction of the offsets. In all cases, the maximum strains always
occur at the inner crest of the arc and are very similar when com-
paring the elasticity and FEM solutions.

To compare FEM, CB, and elasticity solutions altogether, Figs.
5(a)-5(d) plot the normalized maximum strain &max/éspp as dots
for FEM results, dashed curves for CB solutions, and solid curves
for elasticity solutions. Insets in each plot depict representative
serpentine shapes pertinent to that plot with the x variable labeled
beneath the shape. Figure 5(a) plots émax /sapP as a function of
w/R with varying /R (represented by curve colors) but fixed o
(x =0, i.e., arcs are half circles). The black curve represents the
elasticity solution for serpentine ribbons with o = 0 and //R = 0,
which is identical to the elasticity solution to this shape in our pre-
vious paper on CB solutions [40]. FEM, CB, and elasticity results
all indicate that epyx/ &4pp increases monotonically with increasing
w/R, which is expected because the inner crest of the arc of wider
serpentines should experience stronger bending-induced tensile
strain when the serpentine is stretched end to end. It is also con-
sistent among the three results that serpentines with longer arms
(larger I/R) have lower maximum strains, which is because the
rigid body rotation of the long arm can help accommodate the
applied displacement. Comparing the three different types of solu-
tions, Fig. 5(a) suggests that CB theory is only valid when w/R is
small, which is attributed to the failure of the CB assumption
when the ribbon gets too wide. We also notice that the deviation
between CB and FEM can be delayed when //R is large, i.e.,
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serpentines with longer total curve length. In contrast, elasticity
solution always perfectly predicts FEM results, for large and small
w/R. Figure 5(b) plots the same results as Fig. 5(a) with //R being
the x-axis and w/R in different colors. It is more obvious here that
Emax/ &app decays monotonically with increasing / /R, which means
serpentines with longer arms can yield higher stretchability. We
can also conclude from Fig. 5(b) that CB theory is more applica-
ble to serpentines with longer arms where arm rotation instead of
arc bending is the main stretching mechanism.

Figures 5(c) and 5(d) plot émax/ &app as a function of arc angle o
for narrow serpentines (w/R =0.2) and wide serpentines
(w/R = 1), respectively. It is important to note that the effect of a
is not monotonic. As o decreases, i.e., when serpentine shape goes
from tortuous to straight, &max/&wpp first increases and then
decreases till it reaches 1 at o = —n/2. If we draw green dashed
lines at emﬂx/sﬂpp = 1 in Figs. 5(c) and 5(d), it is striking that a sig-
nificant portion of each curve is above 1, which indicates that ser-
pentines in those shapes can lead to strain concentration instead of
strain relieving and that the stretchability of those serpentines can
be lower than their linear counterparts. Comparing Fig. 5(c) with
Fig. 5(d), the effect of strain concentration is more significant in
wider serpentines. Therefore, mechanics modeling is crucial to
serpentine design and extra caution is required when designing
less tortuous or wide serpentines as they may be even less

(a) o
a=0
1.5
e FEM I/R=0 [/R=2
— Elasticity //R=1 I/rR=3
- CB

(c) , w/R = 0.2
/R=0 o FEM
UR=1 Elasticity
UR=2 . .. CB
g 2 I/R=3
3%
s (-85%) (-60°) (70°)
UOE 1N R — — = ]
0 S~
90 -60 -30a (,,)0 30 60
(e)
-40 3.0
IIR=0

stretchable than straight ribbons. Although all three types of solu-
tions support the abovementioned generic conclusions, there is
some significant deviation between CB and FEM solutions, espe-
cially for wide and short serpentines, as represented by the black
dashed curve and black dots in Fig. 5(d). In comparison, elasticity
solutions represented by solid curves are much closer to FEM
results for all serpentine shapes.

More results of abnormal serpentines are offered in Figs. 5(e)
and 5(f). Figure 5(e) plots the elasticity solution of the arc angle at
peak strain o, as the left axis and the value of peak strain
(émax/€app),, as the right axis versus w/R for different //R. For the
given ranges of serpentine shapes (0.2 < w/R < 1,0 <[/R < 3),
(émax/€app), can be as high as 2.9 at w/R=1, I/R=0,
o = —77deg. In addition to the peak strain, it is also helpful to
have curves that separate stretchable and nonstretchable serpen-
tines. We use o to denote the critical arc angle below which
max/€app gets beyond 1, i.e., the intersections between the curves
and the green dashed lines in Figs. 5(c) and 5(d). Using the elas-
ticity solution, Fig. 5(f) plots o, as a function of w/R for different
I/R, and representative serpentine shapes are drawn as insets
labeled with their shape parameters (w/R, /R, o). For serpentines
with given arm length, e.g., /[/R =1, then as long as their

(w/R, o) combination falls above the red curve, the émax/éapp Of
(b) ‘o
1.5
WIR=0.2 w/R=0.5 o FEM
w/R=0.4 w/R=1.0 Elasticity
w/R=0.6 - CB

4 w/R=1
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3 . . UR=2---CB
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&2t & :
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Fig. 5 Normalized maximum strain obtained by elasticity theory (solid curve), CB
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Fig. 6 Normalized effective stiffness of serpentines

PS/(2Ewuy) plotted for (a) narrow serpentines (w/R = 0.2) and
(b) wide serpentines (w/R=1)

this serpentine is predicted to be less than 1, and hence more
stretchable than straight ribbons. Therefore, this plot can be used
as a handy tool to determine whether certain serpentine shape
would enhance stretchability.

3.2 Effective Stiffness of Serpentine Ribbons. Other than
stretchability, effective stiffness is also an important property of
serpentine ribbons since it reflects how “soft” the structure is.
Figures 6(a) and 6(b) plot the effective stiffness of serpentine rib-
bons normalized by that of a straight ribbon in semi-log scales for
narrow serpentines (w/R = 0.2) and wide serpentines (w/R = 1),
respectively. It is obvious that the elasticity solution finds good
agreement with FEM results for both narrow and wide serpentines
while the CB solution works very well for narrow serpentines but
shows slight deviation for wide serpentines. Both figures suggest
that the normalized effective stiffness are always smaller than 1,
which indicates that serpentines are always “softer” than their lin-
ear counterparts, even if they are not always more stretchable. All
three dimensionless geometric parameters have monotonic effect
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Fig. 7 (a) Boundary conditions for plane strain freestanding
and polymer embedded serpentines. (b) ¢max/¢app as a function
of the matrix modulus Enatix: dots are FEM results of embed-
ded serpentines whereas solid and dashed lines are elasticity
and CB solutions, respectively, of freestanding serpentines.
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on the effective stiffness, i.e., serpentine ribbons are softer when
they have smaller w/R, larger //R, and larger o. In fact, the reduc-
tion of effective stiffness can be orders of magnitude, which ena-
bles the creation of tissue-like electronics out of inorganic
semiconductors and conductors whose intrinsic stiffness is several
orders higher than that of bio-tissues.

3.3 Nonbuckling Serpentine Ribbons Embedded in
Polymer Matrix. So far, we have presented the stretchability and
effective stiffness of freestanding nonbuckling serpentine ribbons.
When serpentine ribbons are embedded in a polymer matrix and
then stretched [16,36], we expect that the strain would exceed that
in freestanding serpentines due to the constraint from the polymer
matrix. We performed 2D plane strain FEM of a unit cell to reveal
the strain in embedded serpentines when g is applied at each end
to pull the polymer matrix, as illustrated in Fig. 7(a). Adopting the
same definition of &,y in Eq. (2), Fig. 7(b) plots the FEM solution
Of &max /€app as a function of the Young’s modulus of the polymer
matrix Enayix in dots, with the serpentine Young’s modulus fixed
to be Egp = 130 GPa, a representative modulus for inorganic
electronic materials. For comparison, we also plot the CB solu-
tions as dashed lines and elasticity solutions as solid lines for free-
standing nonbuckling serpentines in Fig. 7(b), which are flat
because they are independent of Epuix. It is interesting to dis-
cover that when E,,4ix < 100 MPa, the FEM results of embedded
serpentines fall right on the elasticity solutions of freestanding ser-
pentines, which suggests that the soft polymer matrix has negligi-
ble effects on the deformation of polymer-embedded stiff,
nonbuckling serpentine ribbons. Fortunately, the Young’s moduli
of many popular stretchable polymers such as 10:1 Sylgard 184
PDMS (polydimethylsiloxane) and Ecoflex are well below
100 MPa and therefore our analytical solutions to the freestanding
serpentines are still applicable when the serpentines are embedded
in such stretchable polymers. When the polymer becomes very
stiff, e.g., polyimide has a Young’s modulus of 2.5 GPa, Fig. 7(b)
suggests that the elasticity solutions are still close to the FEM
results for wide serpentines (w/R > 0.8) whereas significant devi-
ation exists in narrower serpentines. This can be attributed to the
high effective stiffness of wide serpentines as shown in Fig. 6(b).

4 Conclusions

We have derived full-field elasticity solutions to freestanding,
nonbuckling serpentine ribbons defined by three independent,
dimensionless geometric parameters. We have demonstrated that
weak boundary conditions are sufficient for solving Airy stress
functions except when the serpentine’s total curve length
approaches the ribbon width. Slightly modified weak boundary
conditions have been proposed to resolve this difficulty. Our elas-
ticity solutions to the maximum strain and effective stiffness are
compared with FEM results and previously derived CB theory. The
elasticity solution finds good agreement with FEM results for all
serpentine shapes whereas the CB theory is only applicable to nar-
row serpentines. An important conclusion is that serpentines are
not always more stretchable than their linear counterparts but they
are always softer, easily by orders of magnitude. We have also
studied the effect of polymer matrix on serpentine deformation and
found out that our elasticity solution for freestanding nonbuckling
serpentines are also applicable to serpentines with large effective
stiffness embedded in soft polymer matrix such as elastomers.
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Appendix

Stress fields in the arc

o 6 A o

G) = — .
2BP(Icos(B) — (a+ b+ 2¢)sin(B)) ((1 + (’5)2>1n( )~ (1 + (;—;)2>1n(b) _ ((’Z>2 N (_)2) - m(r)))
_ 2
o0 = AP<©2 ) 1) ((b>2 - 1>sin(e>
where
@b . .

B =

(orewerm(®) " (v 2m(E) (-2

A=

Stress fields in the arm

P(6(1 —2x)ycos(p)) + ( (a—b) — 12cy) sin(B))
Oxy = —
(a—b)’
gy, =0 (A3)
3P<(a —b)? - 4y2) cos(B)
Oxy = 3
2(a —b)
Strain fields can be obtained from the stress fields by using linear elastic constitutive law.
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where E = E/(1 —1?) is the plane strain modulus and v =
v/(1 — v) is the plane strain Poisson’s ratio.
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