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a b s t r a c t

There are emerging demonstrations that micro- or nano-craters engineered on polymer surfaces can
enable enhanced adhesion. In the past, we have developed a framework for quantifying the suction
forces produced by isolated macroscopic craters neglecting surface effects. In this paper, we take surface
tension into consideration because it plays a significant role in miniature craters on soft polymers. We
have derived linear and nonlinear elastic solutions for the elasto-capillary distortion in miniature hemi-
spherical craterswhen they are demolded from the template. By implementing a user-element subroutine
in finite elementmodeling (FEM) software ABAQUS, we have also simulated the demolding, compression,
and unloading processes of the craters subjected to surface tension under large deformation. With the
simulated volume changes of the crater, pressure drop and suction force can be deduced. We find that
surface tension induced crater contraction has a negative effect on the generation of suction forces. We
discover that reinforcing the crater surface by a thin and stiff shell can help sustain the crater shape after
demolding. The effects of shell thickness and stiffness are quantitatively investigated through FEM and
optimal parametric combinations are identified.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Removable dry adhesives are designed to form a temporary
bond without any liquid glue and ideally can be removed without
damaging the adherend or leaving any residue on the adherend.
Removable adhesives are used for wound care dressings, athletic
tapes, surface protection films, note papers, and many other appli-
cations. Some removable adhesives are designed to be used multi-
ple times. Removable adhesives generally have low adhesion and
hence cannot support much load. Those capable of strong bonding
can further enable reusable wall-mounted hangers, wall-climbing
robots [1–3],wafermanipulators formicro-fabrication [4,5] aswell
as reliable but releasable tissue adhesives [6–10]. So far, gecko in-
spired micro-fibrils are probably the best examples of engineered
removable dry adhesiveswhich are strong for bonding but are easy
to peel off when release is required [11–17].

In addition to extruding fibrils, removable dry adhesives can
also be engineered by concavity. Suction is an attractive mech-
anism for attachment because it can combine high strength and
quick release. In fact, macroscopic suction cups have been used
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ubiquitously as reversible adhesives in bothnature and civilization.
In nature, cephalopods such as octopus can manipulate items
and reversibly anchor to rocks for prolonged time through neg-
ative pressure generated by mm-sized suction cups distributed
over their arms [18–21]. Commercially, cm-sized suction cup
hooks and electrocardiogram (ECG) electrodes are widely avail-
able. In robotics research, Kim et al. installed 60-mm-diameter
suction pads on the tracked wheels of a wall-climbing robot which
achieved an excellent climbing performance on a rough wall [2].
Analytical modeling and experimental evaluation of thin-walled
suction cups have been conducted [22,23]. In addition, reusable
adhesives have also been fabricated by combining concave shapes
with fibrillary structures [9,24,25].

A simple alternative to such reusable adhesives are cratered
surfaces where micro- or nano-scale dimples are engineered on
polymer sheets [4,5,26,27]. For example, in 2014, Chang et al.
created an array of submicron-surface craters on UV resin and
measured adhesive shear strength on silicon wafer to be as high
as 750 kPa [4]. In 2015, Choi et al. created an array of 1-µm-
diameter craters on the surface of a multilayer polydimethylsilox-
ane (PDMS) and measured the adhesive shear strength to be 1.6
kPa, which exceeds the adhesive strength of the same PDMS with
both flat surfaces and surface pillars [28]. Also in 2015, Akerboom
et al. fabricated close-packed nano-dimples on 10:1 PDMS and
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Fig. 1. Schematics for the deformation process of an isolated hemi-spherical crater with reinforcing shell. (a) Crater on the mold whose volume is defined by the molding
template, Vt ; (b) State 0: after demolding, the crater volume contracts to V0 merely due to surface tension. (c) State 1: preload ϵ0 is applied on the specimen to squeeze the
crater to volume V1; (d) State 2: crater volume recovers to V2 after unloading.

found that the pull-off force is enhanced compared with flat PDMS
control and that the pull-off force depends on the preload [29].
Most recently, Baik et al. fabricated microscale craters with dome-
shaped protuberances inspired by octopus suction cups and their
suction forcemeasured under both dry andwet conditions turn out
to be much larger than their pillared counterparts [30]. Pressure-
sensitive adhesives are especially useful for applications where
adhesion should only be activatedwhenever needed. Activeminia-
ture craters are proposed by Lee et al. in 2017 [5]. By coating a
thermoresponsive polymer layer over a PDMS full of µm-sized
craters, temperature-induced volume change of the craters can ac-
tivate and deactivate suction and adhesion, without any externally
applied forces [5].

Commonly used fabrication method for miniature craters is
molding. Themolding templates are created using eithermicroma-
chining [28] or colloidal lithography [4,29]. Such methods worked
well for UV resin [4] whose modulus is in the GPa range and 10:1
PDMS [29] whose modulus is in the MPa range. However, when
researchers tried to mold 40:1 PDMS (shear modulus µ = 52
kPa) withµm-sized craters, they found that after peeling off PDMS
from the template, i.e. demolding, the craters in PDMS appeared
to be much smaller than the domes on the molding template.
After coating stiffer PDMS layers on the template before molding
40:1 PDMS, the craters were able to preserve the template shape
very well after demolding [28]. We attribute the self-collapse of
miniature craters on soft polymers after demolding to the so-called
elasto-capillary phenomena [26,27].

To elaborate on how the elasto-capillary phenomena can affect
the miniature craters, let us consider a crater of radius r in a poly-
mer whose shear modulus is µ and surface energy density is γ . If
constant surface energy density is assumed, surface tension would
equal to surface energy density γ [31]. Since the total surface
energy scales as γ r2 while the volumetric strain energy scales as
µr3, we can define a dimensionless elasto-capillary number

η = γ /(µr) (1)

to represent the ratio of surface energy to strain energy. When
the polymer is very stiff (µ is large) and/or the crater is very
big (r is large), η would approach zero, which means the surface
energywould be negligible comparedwith the elastic strain energy
and therefore the crater cannot be deformed by surface tension.
However, when the polymer is ultra-soft (µ is small) and when
the crater is in micro- or nano-scale (r is small), η can be so
large that the effects of surface tension is no longer negligible.
In this case, the crater will try to reduce the surface energy (or
surface area) through mechanical deformation. Experimentally,
such elasto-capillary phenomena have beenwidely reportedwhen
η is near 1 [26,27,32,33]. Specific to craters, let us consider the
experiments carried out by Choi et al. [28] where they tried to
mold µm-sized craters out of 40:1 PDMS whose µ = 52 kPa,
γ = 20 mN/m [34,35], and r ∼ 0.5 µm. Plugging into Eq. (1),
we find η = 0.769, which suggests that due to surface tension,
the crater may shrink significantly to reduce its surface area after

demolding. Adding a stiff reinforcing shell to the crater proved to
be an effective way to sustain the crater shape [28]. However, a
quantitative characterization of the effects of surface tension and
reinforcing shell on the suction force generated by those craters is
still missing.

Following a framework developed for isolated macroscopic
craters neglecting surface effects [36], here we analyze isolated
hemi-spherical craters with reinforcing shells subjected to surface
tension. The process of suction generation is illustrated using a
quarter of the crater in Fig. 1. When the specimen is just cured and
still on the molding template (Fig. 1(a)), the volume of the crater is
denoted by Vt (Fig. 1(a)). After demolding, the crater contracts due
to surface tension (Stage 0). At the end of Stage 0, the air inside
the crater is the same as the ambient air so it is characterized
by pressure P0, volume V0, and number of molecules N0 (State 0,
Fig. 1(b)). The suction effect is then realized in the following two
stages:

1. Stage 1: the specimen is compressed by a nominal strain
of ϵ0, named the preload, against a flat plate (not shown
in Fig. 1(c)), such that air is squeezed out of the crater.
At the end of this stage, the remaining air in the carter is
characterized by the triplet (P1, V1,N1) (State 1, Fig. 1(c)).

2. Stage 2: the specimen is unloaded and the crater springs
back. This action results in a pressure drop inside the crater
which produces the suction force. At the end of this stage,
the air in the crater is characterized by the triplet (P2, V2,N2)
(State 2, Fig. 1(d)). Accordingly, the pressure drop is

− 1P = P1 − P2

and the suction force is

F = −1PA2 (2)

where A2 is the projected area of the crater at State 2.
Key assumptions adopted in this paper are:

1. The air flows freely out of the crater upon loading (Stage 1),
so that P1 = P0.

2. No air exchange takes place upon unloading (Stage 2), so
that N2 = N1.

3. The entire process is isothermal and the air is an ideal gas,
so that P1V1 = P2V2.

As a result, the pressure drop can be related to the crater volumes
as

− 1P =

(
1 −

V1

V2

)
P0. (3)

Therefore, the suction force becomes

F =

(
1 −

V1

V2

)
P0A2. (4)

In this paper, we will quantitatively characterize the effects of
surface tension and reinforcing shell on crater performance. Linear
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Fig. 2. Effective boundary value problems for Stage 0. (a) A spherical cavity of radius
Rt inside a matrix of shear modulus µm . (b) A reinforcing shell of thickness t and
modulus µs is added. Both the matrix and the reinforcing shell are assumed to be
incompressible Neo-Hookean materials.

and nonlinear elastic formulation for Stage 0 and nonlinear elastic
finite element modeling (FEM) of all three stages are described in
Section 2. Analytical and FEM results are presented in Section 3.
Concluding remarks are offered in Section 4.

2. Methods

2.1. Linear elasticity solutions for Stage 0

Given the axisymmetry of the specimen, this problem can be
analyzed as a 2-D problem. By neglecting the interfacial shear
stress between the specimen and the flat plate and by overlooking
the surface tension effects at the rim of the crater, the hemi-
spherical crater can be mirrored to a spherical cavity embedded
in a polymer matrix (Fig. 2(a)). The matrix dimension is assumed
to be much larger than the cavity size such that the matrix can be
treated as infinitely large. The initial radius of the crater is Rt (as
defined by the molding template shown in Fig. 1(a)) and the shear
modulus of the polymermatrix isµm. Surface tension can be inter-
preted as a normal traction applied on the surface of the spherical
cavity [37–39]:

tn = γ κ (5)

where κ is the sum of the two principal curvatures, which equals
to 2/Rt initially.

We first solve the problem using linear elasticity in a polar
coordinates defined in Fig. 2(a) by adopting Lur’e solution [40]. The
displacement and stress fields can be expressed as

Ur = Fr +
G
r2

+ P2 (cosφ)

×

[
12Aνr3 + 2Br + 2C 5−4ν

r2
− 3 D

r4

]
Uφ =

dP2 (cosφ)

dφ
×

[
(7 − 4ν) A r3 + Br + 2C

1 − 2ν
r2

+
D
r4

] (6)

σrr

2µm
=

[
2B −

2C
r3

(10 − 2ν) +
12D
r5

]
P2 (cosφ)

+
F (1 + ν)

1 − 2ν
−

2G
r3

σrφ

2µm
=

[
B +

2C
r3

(1 + ν) − 4
D
r5

]
dP2 (cosφ)

dφ

(7)

where Ur and Uφ are the displacements of cavity surface in
the radial and hoop directions, respectively, and σrr and σrφ
are the normal and shear stresses, respectively. P2 (cosφ) =

1/2
(
3 cos2 φ − 1

)
is the Legendre Polynomial of order two and ν

is the Poisson’s ratio of the polymer matrix. Coefficients A through
G are to be determined by boundary conditions. The boundary
conditions of Fig. 2(a) can be expressed as: in the far field, ϵ∞

rr =

0; at r = Rt , σrr = 2γ /Rt , σrφ = 0. Hence the only nonzero

coefficient is found to be G = −R2
t γ /(2µm), which gives the radial

displacement of the crater surface Ur = −Rtη/2, where η =

γ /(µmRt) is the dimensionless elasto-capillary number. Therefore,
at the end of Stage 0 (i.e. demolding), the hemi-spherical craterwill
deform to another hemi-sphere with a new radius of

R0 = Rt

(
1 −

η

2

)
. (8)

Eq. (8) shows that the change of crater radius 1R = R0 − Rt is
linearly proportional to the elasto-capillary number η.

Lur’e formulism, i.e. Eqs. (6)–(7), can also be applied to solve
a spherical cavity with a reinforcing shell subjected to surface
tension, as depicted in Fig. 2(b). The thickness and shear modulus
of the shell is t and µs, respectively. In this case, the boundary
conditions become: in the far field, ϵ∞

rr = 0; at r = Rt , σ
s
rr =

2γ /Rt , σ
s
rφ = 0, where superscript ‘‘s’’ stands for shell. In addition,

stresses and displacements should be continuous across the shell–
matrix interface, i.e., at r = Rt + t, σ s

rr = σm
rr ; σ s

rφ = σm
rφ;U s

r =

Um
r ;U s

φ = Um
φ , where superscript ‘‘m’’ indicates thematrix. Assume

both the shell and thematrix are incompressiblematerials, i.e., ν =

0.5, solving this boundary value problemgives the following radius
of crater after demolding:

R0 = Rt

{
1 −

η(1 + β)3

2
[
(1 − α) + α(1 + β)3

]}
(9)

where α = µs/µm is the normalized shell modulus and β = t/Rt is
the normalized shell thickness. It is obvious that Eq. (9) will decay
to Eq. (8) when α = 1or β = 0, i.e., when there is effectively no
shell. The conclusion that 1R is proportional to η is also true for
Eq. (9).

2.2. Nonlinear elasticity solutions for Stage 0

According to Eq. (8), if η is 2, R0 should be zero, indicating that
the crater would disappear due to large surface tension. Such large
deformation violates the small deformation assumption in linear
elasticity. In fact, the spherical symmetry of the two cavities in
Fig. 2 dictates that the solution for this problem should be inde-
pendent of φ, whichmeans that the spherical cavity will deform to
another spherical shape. Under such premise, nonlinear elasticity
solutions may be deduced. First, consider a spherical cavity with
initial inner radius Rt (Fig. 2(a)) and an arbitrary radius R (R ≥ Rt)

in the reference configuration. When subjected to surface tension
(i.e., Stage 0), it deforms to another cavity with inner radius R0
and the radius R deforms to r (r ≥ R0) in the current configuration.
Hence the hoop stretch is defined as λφ (R) = r/R. The incom-
pressibility of the polymer requires a constant volume of the shell
confined by Rt and R, i.e.,

R3
− R3

t = r3 − R3
0. (10)

Due to spherical symmetry, the material is under a triaxial stress
state

(
σrr , σφφ, σφφ

)
. If incompressibility is considered, superpos-

ing a hydrostatic stress (−σrr , −σrr , −σrr) on the material will
not change the state of deformation. Therefore, the stress state
of thematerial becomes

(
0, σφφ − σrr , σφφ − σrr

)
. The constitutive

law for incompressible Neo-Hookean materials in this equibiaxial
stress state can be rewritten as

σφφ − σrr = µm
(
λ2

φ − λ−4
φ

)
. (11)

The nontrivial equilibrium equation of this problem is

dσrr (r)
dr

+ 2
σrr − σφφ

r
= 0. (12)
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Plugging Eq. (11) into Eq. (12), and integrating Eq. (12) from r = R0
to r = ∞ yields

σrr |r=∞ − σrr |r=R0 = µm

[
5
2

− 2
Rt

R0
−

1
2

(
Rt

R0

)4
]

. (13)

The right hand side is a well-established function group to charac-
terize the large deformation of hyperelastic materials [41], while
the left hand side is only associated with boundary conditions in
current configuration. Substituting σrr |r=∞ = 0, σrr |r=R0 = 2γ /R0
gives an equation relating R0 to Rt :

γ

µmRt
= 1 −

5
4

(
R0

Rt

)
+

1
4

(
Rt

R0

)3

. (14)

Numerically solving Eq. (14) can yield R0 as a function of Rt .
When a reinforcing shell is considered (Fig. 2(b)), this problem

can be solved by adding the continuity conditions at the shell–
matrix interface in current configuration, i.e. at r = r0: σ s

rr =

σm
rr ; σ s

rφ = σm
rφ; λs

φ = λm
φ . After derivation (see Appendix A), the

analytical relation between R0 and Rt is given by

γ

µmRt
= α −

5
4
R0

Rt
+

α

4

(
Rt

R0

)3

+ (1 − α)

[
(1 + β) R0

r0
+

1
4
R0

Rt

(
(1 + β) Rt

r0

)4
]

(15)

where α = µs/µm and β = t/Rt are as defined before. Similarly,
Eq. (15) will decay to Eq. (14) when α = 1or β = 0 if we note
that r0 = R0 when β = 0. Theoretical results for both linear and
nonlinear elasticity will be presented in Section 3.

2.3. Finite element modeling

We performed FEM using a commercial package
ABAQUS/standard 6.13. To simulate curvature-dependent surface
tension, we implemented a four-noded isoparametric quadrilat-
eral user-element subroutine (UEL) [42] in all following FEM jobs.
Considering the axisymmetry of the problem, in 2-D space, a
quarter of a small spherical cavity with radius Rtwas built on the
surface of a large polymer matrix with lateral size L0 (L0 > 10Rt )
(Fig. 3(a)). The left and bottom surfaces are modeled as symmetric
planes. In accordance with theoretical analysis, we used nearly
incompressible Neo-Hookean material, i.e., ν = 0.499, throughout
the simulation. To model large deformation in FEM, nonlinear ge-
ometry (NLGEOM) is always on. We first simulated hemi-spherical
cavity without reinforcing shell. Detailed procedures for Stages 0
through 2 are described as follows:

Stage 0 (demolding): Apply uniform normal traction κγ to the
inner surface of the crater to simulate the demolding process. The
hemi-spherical crater deforms from initial radius Rt to R0. The
volume of the crater at the end of Stage 0 is V0 = 2/3πR3

0. This
step is realized merely by applying the UEL.

Stage 1 (loading): Apply a compressive load of ϵ0 = 0.5 on the
top surface of the specimen. During compression, traction on the
crater due to surface tension is still activated but varies at each
incremental step with the updated local curvature. This step is
completed by applying the UEL and a compressive load of ϵ0 = 0.5.
At the end of this stage, the crater deforms to a shallow dome of
volume V1 which can be calculated via exported nodal coordinates
of the inner surface of the crater.

Stage 2 (unloading): Remove the remote compressive load ϵ0
and apply a positive normal tractionwith the amplitude of−1P =

P1 − P2 in addition to κγ to the surface of the crater. The pressure
drop −1P has to be calculated by combining the ideal gas relation
and Eq. (15) (see Appendix A). This step is finished by deactivating

ϵ0 and simultaneously applying UEL and −1P . At the end of Stage
2, the crater volume V2 can be obtained.

In fact, Stage 2 FEM is not necessary because −1P can be
obtained analytically (see Appendix A) once V1 is obtained by
Stage 1 FEM. Therefore, Stage 2 FEM serves as a validation for the
nonlinear elasticity theory.

Boundary conditions for those three stages are illustrated in
Fig. 3(b)–(d). The contours plot the magnitude of normalized dis-
placementwith constant η = 1 in all stages. The shape of the crater
before demolding is highlighted by the red dashed curve in Fig. 3(b)
and (d). After demolding, the profile of the crater is given in Fig. 3(b)
and is also drawn as the black dashed curve in Fig. 3(d). Fig. 3(c)
shows that after ϵ0 = 0.5 is applied, the crater is compressed
to a very shallow dome and the arrows inside the cavity indicate
the nonuniform normal traction (i.e. surface tension) arising from
nonuniform local curvature.

Such three-stage FEM procedure can also be applied to quantify
the effects of a reinforcing shell by simply modifying the geometry
and material properties of the elements near the cavity. Effects of
stiffness and thickness of the reinforcing shell will be discussed in
Section 3.

3. Results

3.1. Crater volume at the end of Stage 0

Regarding the demolding process (Stage 0), linear elasticity
analysis in Section 2.1 concludes that when there is no reinforcing
shell, the change of the crater radius (1R) is linearly proportional
to the elasto-capillary number (η). When a reinforcing shell is
introduced, crater contraction can be suppressed and the radius
after demolding is given by Eq. (9). To reveal the effects of shell
stiffness (α) and thickness (β), we consolidate the surface tension
effect by normalizing 1R/Rt by −η/2 and plot the linear elasticity
results in Fig. 4(a) and (b) where the red horizontal lines represent
unreinforced craters. It is manifest that for a given η, increasing α

andβ will both impede the radius shrinkage due to surface tension.
Specifically, α = 30 and β = 1 are obtained from a reported
experiment where µm = 52 kPa, µs = 1.6 MPa, and t = Rt =

0.5 µm [28]. Fig. 4(a) suggests that when α = 30 (green curve),
a small value of β , say β = 0.1, will significantly resist the crater
from shrinking. When β = 1 (green curve), Fig. 4(b) indicates that
such a thick shell will only need α = 10 to effectively protect the
cavity from collapsing.

In contrary to linear elasticity solutions, radius change pre-
dicted by nonlinear analysis in Section 2.2 is no longer proportional
to η. Analytical and FEM results of radius change as a function of
η, α and β are presented in Fig. 4(c) and (d). While our nonlinear
analysis fully agrees with the FEM results, the linear theory is
only valid up to about η = 0.5. When η is beyond 0.5, the
linear theory would greatly overestimate the radius change. For
example, the linear theory predicts that the unreinforced crater
should disappear when η = 2 whereas the nonlinear analysis only
yields 1R/Rt = −0.47. For craters of r ∼ 0.5 µm on the surface
of 40:1 PDMS [28], η = 0.769, which should be modeled by the
nonlinear theory. When α = 30 and β = 1 (green curves in
Fig. 4(c) and (d)), the radius shrinkage is almost negligible even at
very large η.

3.2. Crater volume at the end of Stage 1

Section 3.1 quantified the effect of surface tension for unrein-
forced and reinforced craters during Stage 0. To generate suction
force, the crater must be compressed to squeeze out the air, which
is represented by Stage 1. Intuitively, larger volume loss during
compression is preferred because more air can be driven out.
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Fig. 3. (a) FEM mesh of an axisymmetric crater model with a magnified view of the refined mesh near the crater. (b)–(d) Contour plots of normalized total displacement
with η = 1 at (b) State 0 where initial crater boundary is marked as red dashed curve; (c) State 1 with a preload of ϵ0 = 0.5; (d) State 2 where initial and State 0 crater shapes
are represented by red and black dashed curves, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Change of crater radius during Stage 0. (a)–(b) Linear elasticity results for different α and β . α = 1 or β = 0 indicates unreinforced craters. Note that radius change
is proportional to η. (c)–(d) Comparison among linear and nonlinear analytical results and FEM results for different α, β , and η. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

However, will the reinforcing shell, though plays an important role
in protecting the crater shape, also resist the deformation during
compression?

During Stage 1, compressive load ϵ0 is applied remotely. We
first examined the effects of surface tension on unreinforced
craters (α = 1 or β = 0). FEM results of V1/Vt as a function of

ϵ0 are plotted for four different η = 0, 0.5, 1, 2 in Fig. 5(a). Note
that when ϵ0 = 0, V1 is the same as the crater volume at the end
of Stage 0, i.e., V1|ϵ0=0 = V0. The red markers plot the results for
η = 0. V1 decreases as ϵ0 increases and it goes to zero when ϵ0
reaches 0.5, at which point the crater surface fully touches the flat
plate and air inside the crater has been completely squeezed out.
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Fig. 5. Volume of the compressed crater V1 normalized by Vt = 2πR3
t /3 as a function of preload ϵ0: (a) Unreinforced crater with β = 0, η = 0, 0.5, 1, 2; (b) Reinforced

crater with η = 1, β = 1, α = 1, 2, 10, 30; (c) Reinforced crater with η = 1, α = 30, β = 0, 0.025, 0.05, 0.1, 0.2, 0.5. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The red dashed curve is obtained from an analytical solution based
on Eshelby formulism [36], which is only valid for small strains.
When surface tension is taken into account, the starting values
of V1 are significantly smaller than Vt due to the volume loss at
Stage 0. V1 also decays slower than no surface tension case and
almost reaches the same values at ϵ0 = 0.5 for three different
η = 0.5, 1, 2, i.e., V1/Vt |ϵ0=0.5 ∼ 0.08. The reason it is more
difficult for V1 to vanish under nonzero η is that surface tension
penalizes large curvature near the rim of the crater.

Effects of reinforcing shell are illustrated by fixing η = 1 and
varying α and β . The stiffness effect is presented in Fig. 5(b) with
η = 1, β = 1 and α = 1, 2, 10, 30. It clearly shows that α = 10
(blue) and 30 (green) not only protect the crater shape during Stage
0, but also resist crater compression during Stage 1. Such a limited
volume change during compression is not favorable for suction
generation. In comparison, smaller α affords larger volume change
during Stage 1. However, small α also yields small V0, which leads
to a tradeoff. The thickness effect is illustrated in Fig. 5(c) with η =

1, α = 30 and β = 0, 0.025, 0.05, 0.1, 0.2, 0.5. Encouragingly, we
find that thin shells with β = 0.025, 0.05, 0.1 can protect the
crater shape during demolding (i.e. large V0) without imposing too
much constraints during compression (i.e. small V1), which have a
potential in generating high pressure drop according to Eq. (3) (see
movie in Supplementary Information).

3.3. Pressure drop and suction force at the end of Stage 2

When unloaded, crater springs back. At equilibrium, aside from
the surface tension induced normal traction, the crater is also sub-
jected to a negative pressure, −1P . Therefore, ambient pressure is
taken into account by introducing a new dimensionless parameter,
δ = µm/P0. Following the FEM procedure for Stage 2 described
in Section 2.3, we can obtain V2 after unloading. Plugging V1 and
V2 in Eqs. (3) and (4), we would be able to obtain the pressure
drop and the suction force, respectively. We can first investigate
surface tension effect for unreinforced craters. Results are plotted
in Fig. 6(a) with δ = 1, α = 1 and η = 0, 0.5, 1, 2. All scenarios
show that pressure drop monotonically increases with ϵ0. When
η = 0, vacuum is achieved at Stage 2 when ϵ0 = 0.5, hence

−1P/P0 = 1. When η increases, the pressure drop reduces, which
clearly states that surface tension has a negative effect on pressure
drop. The reason is two folds. Eq. (3) suggests that large pressure
drop comes from large V2 and small V1. According to our three-
stage analysis, we know that large V2 relies on large V0. Surface
tension shrinks V0 hence limits V2. The second effect is on V1. As
mentioned in Fig. 5(a), surface tension resists compression, hence
preventing the specimen from achieving small V1.

By fixing η = 1, we can examine the effect of the stiffness of the
polymer matrix on suction generation. The pressure drop for three
different δ = 0.5, 1, 10, i.e., µm ∼50 kPa, 100 kPa, 1 MPa which
are close to the moduli of commonly used PDMS, are plotted in
Fig. 6(b). The difference between the three specimens is very small
because a narrow range of δ is studied here. Thereafter, we can
study the effect of reinforcing shell by simply fixing δ = 1. Fig. 6(c)
and (d) plot the pressure drop and the suction force for η = 1, δ =

1, α = 30 and β = 0, 0.025, 0.05, 0.1, 0.2, 0.5. The suction force
FS is normalized by Ft = P0At , whereAt = πR2

t is the projected area
of the hemi-spherical domeof themolding template. Both pressure
drop and suction force show non-monotonic dependence on β at
ϵ0 = 0.5. They first increase as β increases and then drop after β

goes beyond a certain value. This agrees with the prediction we
made in Fig. 5(c) that β = 0.025, 0.05, 0.1 should yield better
suction because they may sustain large V0 after demolding and
are capable of reaching small V1 after compression. An interesting
observation when comparing Fig. 6(c) and 6d is that large pressure
drop does not necessarily lead to large suction force because A2
also contributes to Fs. For example, the red curve (β = 0) has large
pressure drop at ϵ0 = 0.5 in Fig. 6(c) but the generated suction
force is low in Fig. 6(d). This is because the A2 is small due to the
volume loss during Stage 0.

To offer a comprehensive understanding of the effects of α

and β , more FEM simulations within the parameter space α ∈

(0, 100) and β ∈ (0, 0.5) are conducted with fixed η = 1
and δ = 1. Contour plots of pressure drop and suction force for
different combinations of α and β are shown in Fig. 6(e) and (f),
respectively. Both −1P and Fs show non-monotonic dependence
on α and β . Both figures suggest that large α and large β , i.e., thick
and stiff shells, are not preferred. This is because although they
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Fig. 6. (a)–(c) Normalized pressure drop as a function of ϵ0 with (a) β = 0, δ = 1, η = 0, 0.5, 1, 2; (b)η = 1, β = 1, δ = 0.5, 1, 10; (c) η = 1, δ = 1, α = 30, β =

0, 0.025, 0.05, 0.1, 0.2, 0.5. (d)Normalized suction forces correspond to (c). (e)–(f) Contour plots of (e) normalized pressure drop and (f) normalized suction force as functions
of α and β with η = 1, δ = 1, ϵ0 = 0.5.

can help sustain crater shape during demolding, they also greatly
resist crater compression during compression. Small α and small
β does cannot offer large Fs either because they are not effective
in protecting the crater shape during demolding. Therefore the
optimal choice of α and β for large Fs lies in the domain α ∈

(20, 50) and β ∈ (0.025, 0.15) as shown in Fig. 6(f). To quantify
the suction enhancement by the reinforcing shell, we can compare
the suction force generated by an optimally reinforced specimen
(e.g. α = 50, β = 0.05) and an unreinforced specimen (α = 1).
According to Fig. 6(f), the amplification factor can be determined
to be 0.80/0.31=2.58. When α is large and β is small, some results
are unattainable due to surface instabilities of the crater [36].

4. Conclusions

Suction forces generated by macroscopic craters depend on
crater geometry, material properties, and applied preload. As
craters miniaturize, surface tension can play a significant role
especiallywhen themicro- or even nano-craters are engineered on
soft materials. In this paper, we have obtained analytical solutions
for the demolding process. By implementing a user-element sub-
routine, we have developed a three-stage FEM process to quantify
the effects of surface tension on suction forces. We found that
overall, surface tension is detrimental to suction forces because
it shrinks crater volume after demolding and resists full closure
of crater during compression. We propose that a stiff reinforcing
shell can be added to prevent the crater from contraction during
demolding. However, the reinforcing shell cannot be too stiff or

too thick because it will then prevent crater from collapsing during
compression. Extensive simulations for various combinations of
shell thickness and stiffness have revealed the optimal paramet-
ric choices. We also noticed that large pressure drop does not
necessarily lead to large suction force because suction force is
also dependent on the projected area after unloading. This is why
adding the reinforcing shell can enhance the suction force against
surface tension.
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Appendix A

A.1. Nonlinear elasticity solutions for Stage 0 with reinforcing shell

When a reinforcing shell is considered (Fig. 2(b)), let us assume
the shell–matrix interface is at r = r0 at the end of Stage 0, which
is referred as the current configuration. The continuity conditions
at the shell–matrix interface are at r = r0: σ s

rr = σm
rr ; σ s

rφ =

σm
rφ; λs

φ = λm
φ . For the matrix, solving Eq. (12) gives

σm
rr |r=∞ − σm

rr |r=r0 = µm

[
5
2

− 2
Rt + t
r0

−
1
2

(
Rt + t
r0

)4
]

. (A.1)
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For the reinforcing shell, similarly we have

σ s
rr |r=r0 − σ s

rr |r=R0 = µs

{
2
(
Rt + t
r0

−
Rt

R0

)
+

1
2

[(
Rt + t
r0

)4

−

(
Rt

R0

)4
]}

. (A.2)

Adding Eqs. (A.1) and (A.2) yields

σm
rr |r=∞ − σ s

rr |r=R0

= µm

[
5
2

− 2
Rt + t
r0

−
1
2

(
Rt + t
r0

)4
]

+ µs

{
2
(
Rt + t
r0

−
Rt

R0

)

+
1
2

[(
Rt + t
r0

)4

−

(
Rt

R0

)4
]}

. (A.3)

Note that the left hand side of Eq. (A.3) is only associated with
the boundary conditions of this problem which are σm

rr |r=∞ = 0
and σ s

rr |r=R0 = 2γ /R0. Rearranging Eq. (A.3) leads to Eq. (15).
Volume incompressibility of the reinforcing shell requires

(Rt + t)3 − R3
t = r30 − R3

0. (A.4)

Numerically solving Eqs. (A.3) and (A.4), we can get r0 and R0.

A.2. Pressure drop −1P analyzed by nonlinear elasticity

If we consider the following two facts: (1) spherical symme-
try of the problem; (2) no instability happens during loading or
unloading, the hemi-spherical crater should spring back to a new
hemi-spherical craterwith radius R2 after unloading, i.e., at the end
of Stage 2. Let us assume at the end of Stage 2, the shell–matrix
interface is at r = r2 in current configuration. It can be readily
found that

σm
rr |r=∞ − σ s

rr |r=R2

= µm

[
5
2

− 2
Rt + t
r2

−
1
2

(
Rt + t
r2

)4
]

+ µs

{
2
(
Rt + t
r2

−
Rt

R2

)

+
1
2

[(
Rt + t
r2

)4

−

(
Rt

R2

)4
]}

. (A.5)

Also, volume incompressibility of the reinforcing shell also re-
quires

(Rt + t)3 − R3
t = r32 − R3

2. (A.6)

The boundary condition at State 2 (Fig. 1(d)) now becomes:

σm
rr |r=∞ = 0

σ s
rr |r=R2 =

2γ
R2

+ (−1P)
(A.7)

where −1P = P1 − P2 = P0 − P2.
Invoke the ideal gas relation that P1V1 = P2V2 and V2 =

2/3πR3
2, the boundary conditions can be rewritten as

σm
rr |r=∞ = 0

σ s
rr |r=R2 =

2γ
R2

+ P0

(
1 −

3V1

2πR3
2

)
(A.8)

where V1 has to be obtained by Stage 1 FEM.

Numerically solving Eqs. (A.5) and (A.6), we can get r2 and R2.
This nonlinear elasticity method is verified by FEM. R2 obtained by
this derivation is found to be identicalwith that computed by Stage
2 FEM as described in Section 2.3. Therefore, results presented in
Fig. 6 are based on nonlinear elasticity method.

Note that setting µs = µm or t = 0 in Eqs. (A.3) and (A.5) will
lead to unreinforced craters.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.eml.2017.07.004.
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