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Layered systems of 2D crystals and heterostructures are widely
explored for new physics and devices. In many cases, monolayer
or few-layer 2D crystals are transferred to a target substrate
including other 2D crystals, and nanometer-scale blisters form
spontaneously between the 2D crystal and its substrate. Such
nanoblisters are often recognized as an indicator of good adhesion,
but there is no consensus on the contents inside the blisters. While
gas-filled blisters have been modeled and measured by bulge tests,
applying such models to spontaneously formed nanoblisters yielded
unrealistically low adhesion energy values between the 2D crystal
and its substrate. Typically, gas-filled blisters are fully deflated
within hours or days. In contrast, we found that the height of the
spontaneously formed nanoblisters dropped only by 20–30% after
3 mo, indicating that probably liquid instead of gas is trapped in
them. We therefore developed a simple scaling law and a rigorous
theoretical model for liquid-filled nanoblisters, which predicts that
the interfacial work of adhesion is related to the fourth power of
the aspect ratio of the nanoblister and depends on the surface ten-
sion of the liquid. Our model was verified by molecular dynamics
simulations, and the adhesion energy values obtained for the mea-
sured nanoblisters are in good agreement with those reported in
the literature. This model can be applied to estimate the pressure
inside the nanoblisters and the work of adhesion for a variety of 2D
interfaces, which provides important implications for the fabrication
and deformability of 2D heterostructures and devices.

2D materials | heterostructures | nanoblisters | adhesion |
membrane theory

Two-dimensional (2D) crystals are atomically thin, layered
materials with strong bonding in the crystal plane and weak

bonding via van der Waals (vdW) interactions between the layers
(1, 2). Discovery of 2D crystals has fueled extensive fundamental
and applied research due to their remarkable electronic, me-
chanical, optical, and magnetic properties. Rapidly emerging
experimental and modeling results indicate that mechanical
strains can strongly perturb the band structure of 2D crystals (3–
5). In the nanoscale regime, the vdW interactions between the
monolayer 2D crystal and its substrate can have strong influences
on the mechanical behavior of 2D materials (6–8). Consequently,
the performance of 2D-crystal–based devices relies heavily on
the vdW interfaces. In reality, however, the vdW attraction be-
tween the 2D crystal and its substrate may cause adsorbed am-
bient molecules to lump together in the interface, resulting in
micro- or nanoblisters which often degrade device performance
(9, 10). Interfacial blisters are also frequently seen in vdW het-
erostructures (i.e., stacks of 2D crystals), causing significant
charge inhomogeneity and limiting the carrier mobilities of a
device (1, 2). Alternatively, due to the strong electromechanical
coupling, nanoblisters have been applied for strain engineering
of 2D materials (5, 11). Moreover, interface-confined chemistry
was explored within 2D material blisters leveraging their high
internal pressure (12–19). To either control or avoid blisters for

the 2D materials, it is imperative to understand the formation
mechanism for these nanoblisters and reveal the key parameters.
Many studies have been carried out recently to explore various

aspects of nanoblisters, including the effects of heat (10), blister
content (12), humidity dependence (20), and their shape char-
acteristics (13). Although there is no consensus on whether the
blisters are filled with air, liquid, or solid (21, 22), adhesion is one
of the well-accepted governing parameters for the formation of
blisters. In fact, interfacial blisters have been used as indicators
of good adhesion between the constituents of vdW hetero-
structures (1), since blisters are energetically favorable only when
the adhesion between layers is relatively high. Mechanics models
have been developed and widely used to relate gas-filled blister
profiles to interfacial adhesion (12, 20, 23–25). However, the
subtle nature of the content inside the blisters may render the
assumption of a gas content inappropriate. Direct application of
this ad hoc model has led to unrealistically small adhesion values
for graphene interfaces compared with well-established adhesion
measurements (20).
In this work, we tracked the height of graphene blisters on

SiO2 over the course of 3 mo. Extremely slow deflation of the
blisters was observed, indicating that they are likely filled with
liquid instead of gas content. We therefore developed a scaling
law and a more rigorous analytical model based on the elastic
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membrane theory for liquid-filled nanoblisters. Compared with
gas-filled blisters assuming ideal gas law for the content, the
liquid blister theory assumes that the liquid inside the blister is
nearly incompressible. However, the shape characteristics of the
blister may vary depending on how the liquid interacts with the
membrane and the substrate. Our analytical model is then
compared with molecular dynamics (MD) simulations to provide
a verification from the atomistic level. Like the gas blister theory,
our liquid blister theory can also be utilized to quantitatively
characterize the adhesion properties for the 2D materials based
on the measured blister profiles. Alternatively, the blister shape,
strain, and pressure characteristics can be controlled by tuning
adhesion properties and trapped contents, which provides a vi-
able guideline for the design of 2D material blisters for various
applications.

Results
Shape Characteristics of Blisters. In this work, our experiments
focus on the characteristics of nanoblisters that form at the
graphene–SiO2 and 2D MoS2–SiO2 interfaces, as graphene and
MoS2 are two of the most prevalent 2D materials so far. Addi-
tionally, we find blisters that form when chemical-vapor–
deposited MoS2 is transferred to Al2O3. After mechanically
exfoliating highly ordered pyrolytic graphite (HOPG) onto sili-
con wafer with native SiO2 (26), we identified single-layer
graphene (SLG) areas that show a remarkably large number of
blisters (Fig. 1A). The same procedure was also used to exfoliate
2D MoS2 flakes from its bulk crystal onto SiO2 (SI Appendix, Fig.
S1B). For both samples, monolayer regions were identified using
Raman spectroscopy (SI Appendix, Fig. S1) (27). Blisters trapped
by SLG and few-layer graphene (FLG) in the optical micrograph

appear as light-blue, circular regions, and are scattered throughout
the flake (Fig. 1A, Inset). Using tapping-mode atomic force mi-
croscopy (AFM) (Fig. 1B), we can obtain the height profiles of the
blisters. We denote the center height of the blister by h and its
radius by a, such that the aspect ratio is given as h/a. The height
and radius of the blisters are calculated by curve-fitting the as-
sumed deflection profile for a pressurized membrane,

wðrÞ= h
�
1−

r2

a2

�
, [1]

to the measured data (Fig. 1C). Further information on the
experimental procedure for creating and characterizing blisters
is provided in SI Appendix, section 1. To use the aspect ratio of a
blister as a characterization method, the in-plane shape of the
blister should be approximately circular such that the aspect ratio
is reasonably consistent (see SI Appendix, section 1 for more
information on the characterization of the nanoblister elliptic-
ity). The shape of the blister may become distorted due to its
local environment, causing the aspect ratio to become aniso-
tropic. For example, in Fig. 1B blisters near the edges of gra-
phene are elongated in the direction parallel to the edge leading
to an elliptical instead of circular shape. Blisters with an elliptical
shape can also be found along step edges in the FLG areas.
Focusing on approximately circular blisters, the measured

height vs. radius in Fig. 1D suggests that the aspect ratios of each
type of the blisters are independent of the volume of the blister,
with an average aspect ratio (h/a) of 0.049 ± 0.003 for the gra-
phene–SiO2 blisters, 0.046 ± 0.004 for the MoS2–SiO2 blisters,
and 0.083 ± 0.016 for the MoS2–Al2O3 blisters. A constant as-
pect ratio for a given 2D crystal–substrate pair has also been
observed for other blisters reported in the literature (13, 20),
indicating that the blister aspect ratio is a key dimensionless
parameter for the material system.

Evidence of Confined Liquid. The mechanical behavior of the blister
is not only dictated by the 2D crystal–substrate interaction, but
also by the interactions between the trapped content and the 2D
crystal/substrate. However, so far there is no consensus or direct
measurement of the blister content. While several previous studies
applied the gas models to analyze those blisters (12, 20, 23, 28, 29),
Geim and coworkers (13, 21) strongly advocated that the blisters
are filled with hydrocarbons and liquid water. Emerging obser-
vations in literature imply that the blister content is likely to be
water because those blisters are found to be highly dependent on
temperature (especially beyond 100 °C) and humidity (10, 20). For
example, Cao et al. (22) noted that the number density and size of
blisters at the graphene–HOPG interface were reduced when ex-
foliation was carried out in a low-humidity environment compared
with exfoliation in ambient conditions. In another case, Pizzoc-
chero et al. (10) demonstrated that blister-free interfaces for
heterostructures are possible only when the 2D crystal is trans-
ferred at 110 °C, and suggested adsorbed water is the most likely
candidate for the contents of the interfacial blisters.
Here we monitor the time-dependent behavior of a selected

number of blisters from Fig. 1A. As noted in previous studies,
graphene–SiO2 interfacial blisters pressurized with gas typically
deflate within 10 h for H2-filled blisters, and 7 d for N2-filled
blisters (30–32). Since graphene is impermeable to even the
smallest gas molecules (33), it was concluded that the majority of
the gas content inside the blister escaped through the graphene–
SiO2 interface. Over a period of 92 d, we performed AFM scans
over the same sample using consistent scanning parameters and
cantilever tips. Our data show that the blisters in the SLG re-
gions exhibit deflation at different rates, with some showing little
overall change in their height (Fig. 2), which is drastically dif-
ferent from the time-dependent behaviors of gas blisters. Hence

A B

C D

Fig. 1. Interfacial blisters between 2D crystals and their supporting sub-
strates. (A) Tapping-mode AFM reveals the complex distribution of HOPG-
SiO2 blisters. (Inset) Bright-field optical micrograph where the orange
dashed region corresponds with the large AFM image. (White scale bar:
10 μm.) The red, blue, and black dots indicate where Raman measurements
were taken for SI Appendix, Fig. S2A. The color bar represents 0–17 nm. (B) A
closer look at two monolayer regions from the red dashed region of Fig. 1A.
Blisters close to the edges of the graphene are distorted from the typical
circular shape. The color bar represents 0–13 nm. (C) By extracting the height
profile of each blister, the height and radius is calculated by curve fitting a
parabolic function. (D) Blisters for a specific interface show a consistent as-
pect ratio that is independent of volume.
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our experiment offers evidence against the possibility of gas in-
side the blisters. We therefore suggest that the content inside the
blisters is mostly liquid water, likely mixed with a certain amount
of hydrocarbon contaminants. Following such hypothesis, in the
following we present a liquid-filled blister model and adopt water
as the most likely representative liquid for quantitative analysis.

Modeling. Although 2D crystals are atomically thin membranes,
continuum mechanics has proven to be applicable when bending
is negligible (34–36). We therefore employ an elastic membrane
model to establish a direct relation between the aspect ratio of
the blister and the material properties of the 2D membrane and
substrate. Unlike gas-filled blisters considered in previous works
(23, 29), where the ideal gas law was used to relate the pressure
to the blister volume, we assume that the liquid inside the blister
is nearly incompressible, but the aspect ratio (h=a) may vary
depending on how the liquid interacts with the membrane and
the substrate. We begin by using a simple scaling approach for
determining the properties of axisymmetric blisters. The mem-
brane over a liquid-filled blister of radius a and height h at its
center is subject to a stretching strain «∝ h2=a2 from elementary
geometry. With an in-plane elastic stiffness E2D, the stretching
energy in the membrane scales as Ue ∝E2D«

2a2 ∝E2Dh4=a2. The
bending energy of the membrane is negligible due to the thinness
of the 2D membrane and relatively small aspect ratios. The ad-
hesion energy required to form the blister is simply the energy
change per unit area, Δγ, multiplied by the blister area, which
scales as Ui ∝Δγa2. If the volume of liquid (V ∝ a2h) remains a
constant in the blister, the elastic energy decreases and the in-
terfacial energy increases with increasing a. The competition
leads to an equilibrium blister radius that minimizes the total
free energy (Ue +Ui), with h=a∝ ðΔγ=E2DÞ1=4. The scaling re-
lation for the aspect ratio (h=a) is identical to that for gas-filled
blisters (23, 29). However, the change of interfacial energy is
different. For a gas-filled blister, Δγ is simply taken as the ad-
hesion energy between the membrane and the substrate (Δγ =Γ).
For a liquid-filled blister, considering the interfaces between the
liquid, the membrane, and the substrate, the change of the in-
terfacial energy can be written as

Δγ = γml + γsl − γms, [2]

where γml, γsl, and γms are the energy densities (per unit area) for
the membrane–liquid interface, substrate–liquid interface, and
the membrane–substrate interface, respectively. For blisters
filled with liquid water, the Young–Dupré equations (37, 38)
further lead to

Δγ =Γ− γwðcos θs + cos θmÞ. [3]

In Eq. 3, Γ is the work of adhesion (or adhesion energy) of the
membrane–substrate interface, γw is the surface tension of water
(∼0.072 J/m2) (38, 39), and θs and θm are the water contact
angles of the substrate and the membrane, respectively. Thus,
the scaling analysis predicts the aspect ratio for a liquid-filled
blister as

h
a
=
�
ϕ
Γ− γwðcos θm + cos θsÞ

E2D

�1=4

, [4]

where the dimensionless coefficient ϕ has to be determined by a
detailed analysis (SI Appendix, section 2).
Clearly, by Eq. 4, the aspect ratio of a water-filled blister de-

pends on the elastic property of the membrane, the adhesion of
the membrane to the substrate, and the hydrophobicity of the
membrane and the substrate. In addition, it should also depend
on the shear interactions between the membrane and the sub-
strate in the bonded region surrounding the blister. In previous
studies of graphene blisters (8, 23, 25, 29), the edge of the blister
is often assumed to be fully clamped onto the substrate due to
adhesion and strong shear interactions that prevent sliding along
the interface. However, a recent study (31) found that the shear
interactions can be fairly weak between graphene and its sub-
strate so that sliding may occur at the edge of the blister. As a
result, the elastic deformation of the membrane depends on the
shear interactions with the substrate, which means the coefficient
in Eq. 4 depends on the shear interactions as well. By a simple
membrane analysis (SI Appendix, section 2), we found that
ϕ= 24ð1− νÞ=5ð7− νÞ for the limiting case with no sliding at the
edge, that is, the strong shear limit for the membrane–substrate
interface; ν is the Poisson’s ratio of the membrane material.
Alternatively, ϕ= 6=5 is predicted for the weak shear limit when
the membrane–substrate interface is essentially frictionless. In
this case, the elastic energy in the membrane is reduced by
sliding. Compared with the strong shear limit, the weak shear
limit predicts a larger aspect ratio for the blister, about 20%
higher for graphene (ν= 0.165) in particular.
To further examine the effect of a finite interfacial shear stress

on the aspect ratio of the blisters, we performed a more rigorous
analysis for the liquid-filled blisters following Hencky’s approach
(31, 40). Assuming a finite interfacial shear stress (τ) between the
membrane and the substrate, an annular sliding zone (a< r< ρa)
develops outside the edge of a circular blister where ρ is a di-
mensionless coefficient. The blister radius (a) and the extent of the
sliding zone (ρa) are both determined by minimizing the total free
energy under the condition of a constant liquid volume. For a
given liquid volume (V), we define a length scale as Lw =V 1=3.
The normalized blister radius (�a= a=Lw) can be obtained as a
function of three dimensionless parameters: τ= τLw=E2D,Δγ=
E2D, and ν. The aspect ratio (h=a) can also be derived (SI Ap-
pendix, Eq. S30). It is found that, for a membrane–substrate in-
terface with τ> 0.1 or τ< 10−4, the aspect ratio of the blister
agrees closely with the predictions by Eq. 4 for the strong shear or
the weak shear limit, respectively, especially under small de-
flection (SI Appendix, Fig. S8). In reality, for most 2D membranes,
including graphene on SiO2, the interfacial shear stress is fairly
small as summarized in SI Appendix, Table S1. The weak shear
limit can be used as a good approximation as long as the liquid
volume in the blister or the aspect ratio is relatively small
(a< 300 nm or h=a< 0.1). Moreover, considering the finite lateral
size of the membrane (SI Appendix, Fig. S9), the Hencky’s analysis
is slightly modified to account for the boundary conditions (more
details in SI Appendix, section 2), with which we find that the finite
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Fig. 2. Height measurements of SLG nanoblisters measured over a period of
92 d. All blisters show signs of gradual deflation, which indicates that the
contents of the blister can escape through the SLG–SiO2 interface, but at a
much slower rate than trapped gas molecules.
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size effect is typically negligible as long as the blister is not located
close to the edge of a membrane (allowing ρ> 4).

MD Simulations. As a verification for our analytical model, MD
simulations were conducted to simulate water-filled blisters
trapped between a monolayer graphene membrane and a rigid
substrate (see SI Appendix, section 3 for details). As predicted by
Eq. 4, the aspect ratio of the blister depends on the graphene-to-
substrate adhesion energy (Γ) and the two water contact angles
(θs and θm). For the MD simulations, we set θm to be 60° and θs
to be 40° by selecting proper parameters for the interaction
potentials between water and graphene and between water and
the substrate. The interaction parameters between graphene and
the substrate are varied to simulate graphene blisters with dif-
ferent aspect ratios as a result of different adhesion energy Γ. It
is noted that it may not be possible to fully capture the me-
chanics, wetting, and surface chemistry by using the empirical
force fields in the present study. Fig. 3 plots the MD results in
comparison with the analytical predictions, along with three
snapshots for the trapped water molecules (n = 2,700). When the
adhesion energy is relatively large (Γ > 0.2 J/m2), the water
molecules take the shape of a spherical cap as assumed in the
continuum model. In this case, the aspect ratio h=a increases
with increasing adhesion energy, in close agreement with the
analytical prediction assuming a frictionless interface. As
expected, the results are bounded by the strong shear limit
[ϕ= 24ð1− νÞ=5ð7− νÞ] and the weak shear limit (ϕ= 6=5) for an
infinitely large membrane. The weak shear limit overestimates
the aspect ratio in MD due to the periodic boundary conditions
employed in the MD simulations, and the strong shear limit
underestimates the aspect ratio due to the assumption of no
sliding. Interestingly, for the case of a lower adhesion energy
(Γ < 0.2 J/m2), the top of the blister is nearly flat, and the water
molecules form a distinct bilayer structure instead of a spherical
cap. As a result, the continuum assumption breaks down, and the
aspect ratio becomes nearly independent of the adhesion energy
for the same number of water molecules (n = 2,700). It is found

that the breakdown of the continuum model depends on the
adhesion energy (Γ) and the number of water molecules (n). As
shown in SI Appendix, Fig. S13, for Γ = 0.242 J/m2 the continuum
model remains applicable for n > 1,600. However, for Γ = 0.1 J/m2,
our MD simulations predict a bilayer water structure for n up to
4,500. Hence, for n < 4,500 as limited by the computational cost of
MD simulations, we could not simulate a graphene blister in the
continuum regime for Γ = 0.1 J/m2. Nevertheless, the analytical
prediction based on the continuum model is confirmed by the MD
simulations for the cases when the adhesion energy and the number
of water molecules combine to yield a blister in the shape of a
spherical cap, such as Γ > 0.2 J/m2 and n = 2,700 in Fig. 3.

Discussion and Conclusions
Having verified our theoretical analysis with MD simulations, we
now apply the model to experimentally measured aspect ratio
data to extract the adhesion energy for a variety of 2D material
interfaces, as well as elaborate on the implications of the data for
2D material systems.

Adhesion Energy for 2D Material Interfaces. The family of 2D ma-
terials has grown appreciably in recent years (1, 2). The emer-
gence of each new material brings demands for exploring its vdW
interactions with various types of substrates and 2D materials, as
many exciting applications of these materials come from stacking
them into multilayers and heterostructures. Because of the sig-
nificance of vdW interactions, many experimental studies have
been carried out to measure the adhesion energy of 2D material
interfaces, e.g., pressurized blister (8), buckling-based metrology
(41–43), and double-cantilever method (44, 45), as summarized
in recent review papers (3, 46). However, it is tedious or im-
possible to determine the adhesion energy for every pair of 2D
material interfaces. Based on the present work, we propose that
adhesion energy of a 2D material interface can be readily esti-
mated by measuring the aspect ratio of spontaneously formed
nanoblisters (if present). To calculate the adhesion energy, Eq. 4
is rewritten as

Γ=
E2Dh4

ϕa4
+ γwðcos θm + cos θsÞ, [5]

which suggests that once the relevant material properties are
available, the adhesion energy can be determined by just
measuring the aspect ratio of a blister. We take ϕ= 1.2 by the
weak interface model due to the typically weak interfacial shear
resistance for most of 2D material interfaces (SI Appendix, Table
S1). Note that the strong interface model gives a smaller prefac-
tor (ϕ= 0.6), thus overestimating the adhesion energy. Assuming
water is trapped in the blisters, in Fig. 4, we calculated the gra-
phene–SiO2, MoS2–SiO2, and MoS2–Al2O3 work of adhesion by
using our measurements in Fig. 1. Our values are in reasonable
agreement with values determined in similar systems via alterna-
tive methods (0.1–0.4 J/m2 for graphene–SiO2 and 0.04 J/m2 for
MoS2–SiO2) (32, 47, 48). We attribute our slightly lower adhe-
sion values to: (i) previously neglected, but significant, interfacial
sliding; (ii) the slight amount of contaminants which can influ-
ence the surface tension and contact angle terms for water in Eq.
3; and (iii) the rough substrate surface (197 ± 19 pm in our
sample) which is believed to cause scattering in adhesion mea-
surements with SiO2 (8). For our Al2O3 substrate, the surface
roughness was measured to be 251 ± 10 pm. Notably, nanoblis-
ters found in our samples often exhibit some degree of ellipticity
(SI Appendix, Fig. S2). Therefore, only approximately circular
blisters with minor-to-major axis ratios larger than 0.85 are used
for the adhesion energy calculations. The resulting uncertainty
in adhesion energy is calculated to be at most 1, 1, and 5 mJ/m2
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Fig. 3. Modeling and MD simulations of water-filled blisters. MD simulation
results (circular markers) best agree with our simplified model assuming a
frictionless, sliding interface (modified weak shear). The deviations, especially
under small height or aspect ratio, are attributed to the size limitation of MD,
which can induce discrete behaviors. (Inset) The figure demonstrates how the
shape of the blister changes for different values of the work of adhesion.
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for graphene–SiO2, MoS2–SiO2, and MoS2–Al2O3 interfaces,
respectively.
We further provide a survey of the relevant parameters from

several studies of water-filled blisters in the literature (13, 20, 49).
The material properties used in adhesion energy calculations are
summarized in SI Appendix, section 4. By substituting these values
into Eq. 5, we are able to estimate the interfacial adhesion ener-
gies for a variety of interfaces (Fig. 4, also summarized in Table 1).
If the affinity between the 2D crystal and its substrate is smaller
than the affinity of the 2D crystal to the entrapped liquid, then the
energetically favorable configuration should be the one that
maximizes the contact between the 2D crystal and the liquid. To
achieve this configuration, the liquid would spread out and form a
layered, ice-like structure with almost zero h/a. Our model can
hence predict an upper limit for the adhesion energy of these 2D
material interfaces as Γ≤   γwðcos θm + cos θsÞ (noted as the yellow
region in Table 1). This simple relation also quantitatively offers a
criterion for the interesting observation of room-temperature ice
formation in a 2D nanochannel (50–56). This formula can also
help explain the so-called self-cleaning mechanism (formation of
blisters) which is typically observed at atomically smooth, hydro-
phobic 2D heterostructure interfaces such as graphene–V2O5 (9).
Knowing the adhesion values of various vdW interfaces of 2D

crystals is very beneficial to the fabrication of 2D crystal-based
devices. The fabrication typically involves either exfoliation of
2D layers from bulk crystal or transfer of synthesized 2D crystals
from a donor substrate to a target substrate. Such processes rely
on the competing adhesion energies between the 2D crystal and
its “stamp,” and the various surfaces that it contacts. For ex-
ample, Brennan et al. (43) reported the adhesion of MoS2 to
polydimethylsiloxane is 18 ± 2 mJ/m2, which is relatively weak
compared with the adhesion between MoS2 and SiO2, or MoS2
and graphene, as estimated in Fig. 4. As a result, delivering 2D
MoS2 to those substrates from an elastomeric stamp is
mechanically viable (57–60). Therefore, the adhesion energy
values obtained by our blister metrology (Fig. 4) can help guide
and optimize the transfer of 2D materials.

Implications for Applications of 2D Material Blisters.We conclude by
highlighting some of the implications of our work for the

applications of 2D material blisters. In addition to adhesion
energy, our liquid-filled blister model can also predict the con-
finement pressure, Δp, inside the blisters and the strain distri-
bution in the 2D membrane. The confinement pressure was
previously estimated by capturing pressure-sensitive molecules
trapped inside the blister, studying molecular structural and
conformational changes, and observing the specific chemistry
inside the blister (17, 19). Our model offers a direct relation
between the confinement pressure and the geometry of the
blisters (SI Appendix, section 2), namely

Δp=
1
a

�
ηE2D

h3

a3

�
, [6]

where η ’ 3.1 for a graphene blister with a strong shear interface
and η ’ 1.6 for a weak shear interface. Note that unlike the
adhesion energy, which only depends on the aspect ratio of
the blister, the confinement pressure given in Eq. 6 depends
on the size of the blister and has to be estimated with both the
height and radius known. For a particular 2D material and in-
terface, the aspect ratio (h/a) is a constant and the confining
pressure is inversely proportional to the blister radius. For the
water-filled nanoblisters confined between MoS2 and Al2O3 in
our experiment (e.g., h = 4 nm, a = 50 nm), we estimate the
confinement pressure to be around 7 MPa. Note that the strain
distribution in the blisters can also be estimated based on our
analysis (Eqs. S4 and S5 in SI Appendix, section 2).
Furthermore, in applications of 2D material blisters it is vital

that the blister shape and confinement conditions can be con-
trolled. Eq. 3 provides a direct guidance to the aspect ratio of the
blisters. For a given interface with fixed adhesion, trapping dif-
ferent types of liquids with different surface energies and contact
angles can tune the blister shape and membrane strain. In fact, a
recent study by Neek-Amal and coworkers (12) demostrated the
dependence of the shape of graphene nanoblisters on trapped
substance. Our proposed strategies are also consistent with our
MD simulations in Fig. 3.

Materials and Methods
The monolayer graphene and MoS2 samples were mechanically exfoliated
from their respective bulk crystals onto a 300-nm SiO2/Si substrate. The

Fig. 4. Work of adhesion values for various 2D material interfaces esti-
mated according to blister profiles, including many interfaces found in 2D
heterostructures. Solid markers indicate our own experiments while open
markers are for blisters reported in the literature.

Table 1. Estimation of adhesion energy via blister profiles

Interface type Materials (ref)
Adhesion energy

(mJ/m2)

2D crystal vdW heterostructures MoS2–MoS2 (13) 174 ± 18
G–MoS2 (20) 140 ± 26

MoS2–hBN (13) 136 ± 11
hBN–hBN (13) 129 ± 4
G–hBN (13, 49) 126 ± 20
G–HOPG (22) 86 ± 16

2D crystal on a substrate G-Ice (20) 124 ± 30
G–CaF2 (28) 104
MoS2–Al2O3* 101 ± 15

G–SiO2* 93 ± 1
MoS2–SiO2* 82 ± 1

Graphene interfaces without
blisters

G–V2O5 (9) ≤108

G–sapphire (50) ≤107
G–Mica (51–54) ≤102

G–Si (55) ≤72
G–SiC (56) ≤57

*Data from Fig. 1D; Other data are from water-filled 2D materials blisters
except data from ref. 13, which suggested hydrocarbon and water blister
contents.
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MoS2–Al2O3 sample fabrication and characterization details are in a previous
work (60). Further detail is provided in SI Appendix, section 1.
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The purpose of this supporting information is to provide detailed experimental data, derivation of 

the equations discussed in the manuscript, details of molecular dynamics (MD) simulations, and 

materials properties we adopted. In Section 1 we present the nanoblisters observed in MoS2 

samples, the Raman evidence for the monolayer graphene and MoS2, and our analysis of blister 

ellipticity. In Section 2 we describe the approximate membrane analysis and solve Hencky’s 

problem for comparison. In Section 3 we present detailed MD simulations for water blisters 

trapped between a monolayer graphene and a rigid substrate. In Section 4 we summarize the 

moduli, water contact angles, interfacial shear/friction properties of various 2D materials and 

substrate materials, by which we created the adhesion chart (Fig. 4) in the manuscript. 
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Section 1: Experimental methods and analysis. 

Sample preparation and characterization. SPI-1 grade HOPG was purchased from SPI Supplies, 

and the synthetic MoS2 crystal was purchased from 2D Semiconductors, Inc. The same exfoliation 

procedure is used for both crystals. Blue polyethylene cleanroom tape (CRT) was used to peel 

large and thick flake off the bulk crystal. The exfoliated flakes were then brought into contact with 

another piece of the CRT and exfoliated three more times. The flakes were then stored for a 

minimum of 3 hours in ambient conditions to allow ambient moisture and other contents to adsorb 

on the surface of the exposed flakes. The 300 nm SiO2/Si substrate wafer (SQI Inc., Item No. 

20040830) was first prepared by cutting a 1 cm × 1 cm chip from the wafer. The chip was then 

washed with acetone, isopropyl alcohol, and deionized water, while sonicating for 3 minutes 

during each step. To maximize the area of monolayer regions that were transferred to SiO2 (33), 

the SiO2 chip was exposed to O2 plasma using a Nordson MARCH Plasma CS170IF Etching 

System for 2 minutes at 150 W to remove any organic residue. Immediately after O2 plasma 

exposure, the exfoliated HOPG flakes on CRT were placed onto the surface of the SiO2 chip. Then 

the SiO2 chip was placed on a hot plate and was heated at 100°C for two minutes. The sample was 

removed from the hot plate and cooled to room temperature, after which the CRT was removed. 

Topographic AFM images for graphene-SiO2, MoS2-SiO2 and MoS2-Al2O3 samples are offered in 

Fig. 1B, Fig. S1A, and Fig. S1B, respectively. Monolayer regions on the SiO2 chip were identified 

using a WITec alpha300 Raman spectrometer using a laser wavelength of 532 nm. In Fig. 1A, the 

three areas where Raman measurements were taken is marked with colored dots. Fig. S1C shows 

the Raman spectra for each region. The 2D/G peak ratio was 3.9 for regions 1 and 3 and 3.1 for 

region 2, which indicates that all three regions are monolayer graphene (1). For the MoS2 on SiO2 

sample (Fig. S1D), the 𝐸2𝑔
1  and 𝐴1𝑔 modes were located at 385.4 cm-1 and 404.1 cm-1, respectively. 

The wavenumber difference between the modes, 18.7 cm-1, is indicative of the monolayer 

thickness of the flake (2). 

The MoS2 on Al2O3 sample in this work is at a different location on the same sample as 

used in a previous work, where the fabrication and characterization details can be found (3). Briefly, 

CVD-grown MoS2 was transferred onto ALD-grown, 5.3 nm thick Al2O3 using a 

polydimethylsiloxane (PDMS) stamp.  
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Figure S1. Characterization of MoS2 blisters. Topographic AFM images for the (A) MoS2-SiO2 and 

(B) MoS2-Al2O3 samples. (C) Raman spectroscopy for all SLG regions, and (D) for the monolayer 

MoS2 on SiO2 flake. 

 

Analysis of graphene-SiO2 blister distributions. Interestingly, the blisters tend to have a periodic 

distribution throughout the graphene-SiO2 interface. Fig. S2A and S2B show the distributions of 

the blister pitch measured as the center-to-center distance between adjacent blisters. The average 

pitch for single-layer graphene (SLG) is 1548 ± 430 nm, while the average pitch for few-layer 

graphene (FLG) is 1661 ± 354 nm.  

 Another interesting characteristic of the graphene-SiO2 blisters in Fig. 1A lies in their 

varying degrees of ellipticity. Elliptical blisters were noted in the main text and speculated to form 

A B 

C D 
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as a result of the blister’s proximity to the graphene boundary. To characterize this phenomenon, 

we define the blister ellipticity as the ratio 𝛼 = 𝑎𝑠/𝑎𝑙, where 𝑎𝑠 and 𝑎𝑙 are the radii along the semi-

minor and semi-major ellipse axes, respectively. Additionally, we define 𝜌 = 𝑑/𝑎𝑠, where 𝑑 is the 

shortest distance from the center of the blister to the graphene boundary. The two dimensionless 

parameters are plotted in Fig. S2C. Linear regression analysis does not provide an adequate 

description of the relationship between 𝜌 and 𝛼 (𝑅2 = 0.42), but the overall trend supports our 

conclusion that circular blisters are more likely to be found far away from graphene boundaries. 

Close to the boundary, elliptical blisters tend to form with the major axis parallel to the boundary. 

Since circular blisters with 𝛼 = 1 are rarely found, we adopted a cutoff criterion for a blister with 

𝛼 ≥ 0.85 in order to be considered as approximately circular so that it is eligible for the adhesion 

energy calculation.   

   

` 

A B 

C 
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Figure S2. Analysis of blister pitch distributions and ellipticity. Histogram pitch distributions for (A) SLG-

SiO2 and (B) FLG-SiO2. The inset for both figures demonstrates how the pitch is calculated. (C) 

Dimensionless distance from graphene edge to blister center as a function of the blister ellipticity ratio.  

 

Blister profile measurements. The AFM topography images for graphene-SiO2 and MoS2-SiO2 

blisters were captured using an Asylum Research MFP3D AFM in tapping mode with MikroMasch 

HQ:NSC15/Al BS cantilever tips under ambient conditions. The topography image for MoS2-

Al2O3 was captured using a Bruker (formerly Veeco) Dimension Icon AFM using etched silicon 

cantilevers (Bruker TESP). AFM image files were processed using Gwyddion software. The height 

profile of each blister was extracted from the AFM height sensor image by identifying the tallest 

point of each blister; then the height profile of the blister was measured through this point along a 

vertical line relative to the AFM image for all blisters for consistency. For adhesion energy 

calculations, a second-order polynomial of the form 𝑤(𝑟) = 𝐶1𝑟2 + 𝐶2𝑟 + 𝐶3 was fitted to the 

blister height profile using Excel. Given the form of the blister deflection profile (Eq. 1 in main 

text), h and a were obtained as ℎ = 𝐶3 and 𝑎 =  − (
ℎ

𝐶1
)

1/2

 after centering the blister profile about 

the 𝑟 = 0 axisymmetric axis. 

In the time-lapse calculations, the height profile of the blisters became less parabolic after 

the initial AFM scan thus requiring the calculations of h and a using a more general method. For 

the height measurement, ℎ = ℎ𝑚𝑎𝑥 −
ℎ𝑙𝑒𝑓𝑡

𝑚𝑖𝑛−ℎ𝑟𝑖𝑔ℎ𝑡
𝑚𝑖𝑛

2
, where ℎ𝑚𝑎𝑥  is the maximum vertical height, 

and ℎ𝑙𝑒𝑓𝑡
𝑚𝑖𝑛 and ℎ𝑟𝑖𝑔ℎ𝑡

𝑚𝑖𝑛  are the minimum height values on either side of the blister profile. For the 

radius measurement, 𝑎 =
𝑎𝑙𝑒𝑓𝑡

𝑚𝑖𝑛−𝑎𝑟𝑖𝑔ℎ𝑡
𝑚𝑖𝑛

2
, where 𝑎𝑙𝑒𝑓𝑡

𝑚𝑖𝑛 and 𝑎𝑟𝑖𝑔ℎ𝑡
𝑚𝑖𝑛  are the horizontal positions of  ℎ𝑙𝑒𝑓𝑡

𝑚𝑖𝑛 

and ℎ𝑟𝑖𝑔ℎ𝑡
𝑚𝑖𝑛 , respectively. 

 

Section 2: Analytical modelling of liquid-filled nanoblisters. 

By a scaling analysis as presented in the main text, the height-to-radius aspect ratio of a liquid-

filled nanoblister is predicted as:  

 
ℎ

𝑎
= (𝜙

𝛤−𝛾𝑤(𝑐𝑜𝑠 𝜃𝑚+𝑐𝑜𝑠 𝜃𝑠) 

𝐸2𝐷
)

1

4
, (1) 

where the dimensionless coefficient 𝜙 has to be determined by a detailed analysis. Previous studies 

on graphene gas blisters (4) predicted a similar scaling (but with 𝛾𝑤 = 0) by assuming the ideal 



 6 / 33 
 

gas law for the pressure inside the blister, where the coefficient 𝜙 was found to be a function of 

Poisson’s ratio of the membrane material. The edge of the blister is often assumed to be fully 

clamped onto the substrate due to adhesion and strong shear interactions that prevent sliding along 

the interface. However, a recent study (5) found that the shear interactions can be fairly weak 

between graphene and its substrate so that sliding may occur at the edge of the blister. As a result, 

the elastic deformation of the membrane depends on the shear interactions, and, in turn, the 

coefficient 𝜙 depends on the shear interactions as well. Here, we first consider two limiting cases 

by a simple membrane analysis, one for blisters with fully clamped edge (strong shear limit) and 

the other for blisters with frictionless sliding interface (weak shear limit). This is followed by a 

more rigorous analysis by Hencky’s approach (6, 7), with the shear interactions represented by a 

finite interfacial shear stress between the membrane and the substrate. The effects of the finite 

membrane size and outer boundary conditions are discussed.  

 

A simple membrane analysis for strong and weak shear limits. As in previous studies (4, 8, 9), 

in this simple membrane analysis, the deflection profile of the membrane for is assumed to be: 

 𝑤(𝑟) = ℎ (1 −
𝑟2

𝑎2) , (2) 

where the height ℎ is relatively small compared to the blister radius a. For a liquid-filled blister, 

the liquid within the blister is assumed to be incompressible so that the blister volume, 𝑉 =

𝜋𝑎2ℎ/2, remains a constant. The area of the bulged surface 𝐴′ = 𝜋(𝑎2 + ℎ2) ≈ 𝜋𝑎2 for small ℎ/a 

ratio. For a given liquid volume, the aspect ratio (ℎ/a ) of the blister is determined by the 

competition between the elastic strain energy of the membrane and the interfacial energy.  

To calculate the elastic strain energy of the membrane, we assume a cubic radial 

displacement that is kinematically admissible: 

 𝑢(𝑟) = 𝑢0
𝑟

𝑎
(1 −

𝑟2

𝑎2
) + 𝑢𝑠

𝑟

𝑎
 , (3) 

where 𝑢0 is to be determined and 𝑢𝑠 accounts for the in-plane sliding at the edge of the blister (r 

= a). For the strong shear limit, 𝑢𝑠 = 0. For the weak shear limit, 𝑢𝑠  is to be determined by 

considering elastic deformation of the membrane outside the edge of the blister. Note that the cubic 

radial displacement function yields a better approximation than a quadratic function used in a 

previous study (4), as shown recently in comparison with MD simulations (8, 9). A more accurate 
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solution is presented later in the SI by assuming a seven-term polynomial for the displacements, 

where the first two terms are linear and cubic for the radial displacement.  

With Eqs. (2) and (3), the radial and circumferential strain components are obtained as: 

 𝜀𝑟 =
𝑑𝑢

𝑑𝑟
+

1

2
(

𝑑𝑤

𝑑𝑟
)

2

=
𝑢𝑠

𝑎
+

𝑢0

𝑎
(1 −

3𝑟2

𝑎2 ) +
2ℎ2𝑟2

𝑎4 , (4) 

 𝜀𝜃 =
𝑢

𝑟
=

𝑢𝑠

𝑎
+

𝑢0

𝑎
(1 −

𝑟2

𝑎2) (5) 

Note that the circumferential strain (𝜀𝜃) is in general not zero at the edge (𝑟 = 𝑎), unless 

the sliding displacement 𝑢𝑠 is zero (e.g., at the strong shear limit). We can now derive the elastic 

strain energy, consisting of two parts, one due to stretching and the other due to bending. The 

elastic stretching energy per unit area of the membrane is 

 𝑈𝑠(𝑟) =
𝐸2𝐷

2(1−𝜈2)
(𝜀𝑟

2 + 2𝜈𝜀𝑟𝜀𝜃 + 𝜀𝜃
2),  (6) 

where 𝐸2𝐷 is 2D Young’s modulus of the membrane material and 𝜈 is Poisson’s ratio. The elastic 

bending energy per unit area is 

 𝑈𝑏(𝑟) =
𝐷

2
[(

𝑑2𝑤

𝑑𝑟2 )
2

+
1

𝑟2 (
𝑑𝑤

𝑑𝑟
)

2

+
2𝜈

𝑟

𝑑𝑤

𝑑𝑟

𝑑2𝑤

𝑑𝑟2 ], (7) 

where 𝐷 is bending stiffness of the membrane. For graphene and other 2D membrane materials, 

the bending stiffness is very small so that the bending energy is negligible for typical blisters as 

considered in the present study.  

We first consider the strong shear limit with 𝑢𝑠 = 0. In this case, the membrane outside 

the blister edge is not deformed. The free energy for the blister is then obtained as a function of 

two kinematic parameters: 

 𝐹(𝑎, 𝑢0) = 2𝜋 ∫ 𝑈𝑠(𝑟)
𝑎

0
𝑟𝑑𝑟 + 𝜋𝑎2𝛥𝛾, (8) 

where 𝛥𝛾 = 𝛾𝑚𝑙 + 𝛾𝑠𝑙 − 𝛾𝑚𝑠 is the change of interface energy for the formation of a liquid-filled 

blister with 𝛾𝑚𝑙, 𝛾𝑠𝑙, and 𝛾𝑚𝑠 being the interfacial energy densities respectively for three interfaces 

involved: membrane-liquid interface, substrate-liquid interface, and membrane-substrate interface. 

For blisters filled with liquid water, the interfacial energies can be obtained from the water contact 

angles as 𝛥𝛾 = Γ − 𝛾𝑤(cos 𝜃𝑠 + cos 𝜃𝑚) , where Γ  is adhesion energy of the membrane to the 

substrate, 𝛾𝑤 is surface tension of water, 𝜃𝑠 and 𝜃𝑚 are the water contact angles of the substrate 

and the membrane, respectively. We note that, unlike gas-pressurized blisters, the height of the 
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blister, ℎ (=
2𝑉

𝜋𝑎2), is not an independent variable in Eq. (8) due to the assumption of incompressible 

liquid with a constant volume.   

For a fixed radius, the mechanical equilibrium requires that  

 (
𝜕𝐹

𝜕𝑢0
)

𝑎
= 0, (9) 

which leads to 𝑢0 =
(3−𝜈)ℎ2

4𝑎
. Then, with the liquid volume fixed inside the blister, the free energy 

is obtained as a function of the blister radius: 

  𝐹(𝑎) =
2(7−𝜈)𝐸2𝐷𝑉4

3𝜋3(1−𝜈)𝑎10 + 𝜋𝑎2𝛥𝛾. (10) 

The first term on the right-hand side of Eq. (10) is the elastic strain energy in the membrane, which 

decreases with increasing blister radius 𝑎. The second term stems from the change of interface 

energy, which increases with increasing blister radius for 𝛥𝛾 > 0. The competition of the two leads 

to an equilibrium blister radius that minimizes the free energy, namely 

  (
𝜕𝐹

𝜕𝑎
)

𝑉
= 0, (11) 

which gives rise to Eq. (1) with 𝜙 =
24(1−𝜈)

5(7−𝜈)
 for the strong shear limit. Specifically, for graphene 

(𝜈 = 0.165), we have 𝜙 = 0.6 for the strong shear limit. 

Next consider the weak shear limit, where the membrane in the annular region outside of 

the blister edge (r > a) slides inward as the liquid pressure pushes up the membrane to form a 

blister. With zero shear stress at the frictionless interface between the membrane and the substrate, 

the stress and displacement in the annular region can be obtained as the classical Lamé problem in 

linear elasticity. The radial and circumferential components of the membrane stress are (10): 

 𝑁𝑟 =
𝐶1

𝑟2
+ 𝐶2, (12a) 

 𝑁𝜃 = −
𝐶1

𝑟2
+ 𝐶2, (12b) 

where 𝑁𝑟 = 𝜎𝑟𝑡 and 𝑁𝜃 = 𝜎𝜃𝑡; 𝜎𝑟 and 𝜎𝜃 are, respectively, radial and circumferential stresses; 𝑡 

is the membrane thickness. Correspondingly, the radial displacement is  

 𝑢 =
1

𝐸2𝐷
[−

(1+𝜈)𝐶1

𝑟
+ 𝐶2(1 − 𝜈)𝑟]. (13) 

For an infinitely large membrane, both the stress and the displacement approach zero as 𝑟 → ∞, 

which requires 𝐶2 = 0.  At the edge of the blister (𝑟 = 𝑎), the radial stress and displacement are 
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continuous. By comparing Eq. (13) with Eq. (3), we obtain 𝐶1 =  −
𝐸2𝐷𝑎𝑢𝑠

1 + 𝑣
 for the displacement 

continuity. For the radial stress, we have by Hooke’s law 

 𝑁𝑟 =
𝐸2𝐷

1−𝜈2
(𝜀𝑟 + 𝜈𝜀𝜃), (14) 

where the strain components on the right-hand side are given by Eqs. (4) and (5) at 𝑟 = 𝑎, and the 

radial stress on the left-hand side is given by Eq. (12a) at 𝑟 = 𝑎.  The stress continuity then leads 

to 𝑢𝑠 = 𝑢0 − ℎ2/𝑎, where 𝑢0 is yet to be determined for this case. 

By Eq. (6) we compute the elastic stretching energy per unit area of the membrane. For the 

region within the blister edge (r < a), the strain components are given by Eqs. (4) and (5). For the 

annular region outside the blister edge (r > a), the strain components can be obtained as: 𝜀𝑟 =
𝑑𝑢

𝑑𝑟
=

−
𝑎𝑢𝑠

𝑟2  and 𝜀𝜃 =
𝑢

𝑟
=

𝑎𝑢𝑠

𝑟2 . Then, the free energy for the blister at the weak shear limit is  

 𝐹(𝑎, 𝑢0) = 2𝜋 ∫ 𝑈𝑆(𝑟)
𝑎

0
𝑟𝑑𝑟 + 2𝜋 ∫ 𝑈𝑆(𝑟)

∞

𝑎
𝑟𝑑𝑟 + 𝜋𝑎2𝛥𝛾. (15) 

Following the same process in Eq. (9), we obtain 𝑢0 =
(3−𝜈)ℎ2

4𝑎
 and the free energy function 

 𝐹(𝑎) =
8𝐸2𝐷𝑉4

3𝜋3𝑎10 + 𝜋𝑎2𝛥𝛾. (16) 

Minimization of the free energy with respect to 𝑎 gives rise to Eq. (1) again, with 𝜙 =
6

5
 for the 

weak shear limit. Compared to the strong shear limit, the weak shear limit predicts a larger height-

to-radius ratio for the blister, about 20% higher for graphene in particular. 

To compare with MD simulations (Section 3), where the graphene/substrate interface is 

frictionless and periodic boundary conditions are applied with a finite-sized graphene membrane, 

the analysis for the weak shear limit is modified so that the radial displacement in Eq. (13) is zero 

at 𝑟 = 𝐿𝑚, for the square-shaped membrane with half side length of 𝐿𝑚 in MD simulations. As a 

result, 𝐶2 =
(1+𝜈)𝐶1

(1−𝜈)𝐿𝑚
2  and 𝑢 =

(1+𝜈)𝐶1

𝐸2𝐷𝐿𝑚
[−

𝐿𝑚

𝑟
+

𝑟

𝐿𝑚
] for 𝑟 > 𝑎. The displacement continuity at 𝑟 = 𝑎 

then requires that 𝐶1 = −
𝐸2𝐷𝑎𝑢𝑠

(1+𝜈)
[1 − (

𝑎

𝐿𝑚
)

2

]
−1

. Following the same process in Eq. (14-16), we 

obtain 𝑢𝑠 = 𝑢0 − ℎ2/𝑎 and 𝑢0 =
(3−𝜈)ℎ2

4𝑎
, which then leads to Eq. (1) for the height-to-radius ratio 

with 𝜙 =
6𝐿𝑚

2 (1−𝜈)

5𝐿𝑚
2 (1−𝜈)+3𝑎2(1+𝜈)

 . Note that, in this case, 𝜙 depends on the ratio 𝐿𝑚/𝑎. For a constant 
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liquid volume (𝑉 = 𝜋𝑎2ℎ/2), the coefficient 𝜙 can be determined by solving a nonlinear algebraic 

equation as: 

  𝜙 +
3(1+𝜈)

5(1−𝜈)
(

2V

𝜋𝐿𝑚
3 )

2

3
(

𝐸2𝐷

∆𝛾
)

1

6
𝜙

5

6 =
6

5
 (17) 

Apparently in this case, the height-to-radius ratio of the blister depends on the size of the 

membrane through the ratio 𝐿𝑚
3 /𝑉 . As shown in Fig. S3, as 𝐿𝑚

3 /𝑉 → ∞ , the coefficient 𝜙 

approaches the weak shear limit (𝜙 =
6

5
 ) . However, since the size of membrane is limited in MD 

simulations, Eq. (17) predicts a smaller value for 𝜙, and hence a smaller height-to-radius ratio for 

the blister by Eq. (1). Fig. S3 plots the radius of the blister as a function of the membrane size, 

both normalized by 𝑉1/3. Clearly, the blister radius decreases with increasing adhesion energy 

(∆𝛾 = Γ − 𝛾𝑤(cos 𝜃𝑠 + cos 𝜃𝑚)). Meanwhile, the radius increases slightly with decreasing 𝐿𝑚. In 

any case, the radius should be no greater than the half side length of the membrane, i.e., 𝑎 ≤ 𝐿𝑚. 

In the extreme case when 𝑎 = 𝐿𝑚, the edge of the blister is fixed with no sliding, and the solution 

reduces to the strong shear limit with 𝜙 ≈ 0.6  for the case of a graphene monolayer as the 

membrane. 



 11 / 33 
 

 

Figure S3. Effect of the finite membrane size in MD simulations on the blister radius a and the coefficient 

𝜙 in the height-to-radius ratio equation (Eq. (1)). 

 

Figure S4. Side view of the equilibrium of stress resultants for a membrane blister. 

In addition, as illustrated in Fig. S4, the force equilibrium leads to: 

 𝑞 ≃ −
2

𝑎
(𝑁𝑟

𝑑𝑤

𝑑𝑟
)

𝑟=𝑎
, (18) 
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where the radial stress can be calculated by Eq. (14) using the strain components in Eqs. (4) and 

(5). With Eqs. (2) and (3), we obtain the average pressure inside the blister in the following form: 

 𝑞 = 𝜂
𝐸2𝐷ℎ3

𝑎4
, (19) 

where 𝜂 is 
2

1−𝜈
 and 1 for strong and weak shear limit and 𝜂 is 

𝐿𝑚
2 (1−𝜈)+𝑎2(1+𝜈)

𝐿𝑚
2 (1−𝜈)

 for modified weak 

shear limit in MD simulations. Therefore, the liquid pressure inside the blister may be estimated 

by Eq. (19) in terms of the blister radius and height. This could be of interest for applications using 

blisters of 2D materials for the study of interface-confined high-pressure chemistry (11-13).  

 

Hencky’s analysis with finite shear. Next we present a more rigorous analysis for the liquid-

filled blisters following Hencky’s approach (6, 7). The shear interactions between the membrane 

and the substrate is represented by a finite interfacial shear stress in the supported region (𝑎 < 𝑟 <

𝜌𝑎), where both the blister radius (𝑎) and the outer radius of the shear zone (𝜌𝑎) are to be 

determined depending on the liquid volume and the shear stress. The membrane size is assumed 

to be large so that the shear zone does not reach the edge of the membrane (Fig. S5). The membrane 

outside the sliding zone (𝑟 > 𝜌𝑎) is not deformed or stressed. Since ℎ/𝑎 is typically small, the 

membrane is assumed to conform to the liquid (𝑟 < 𝑎) with a uniform pressure, similar to the gas-

filled blisters. Outside the blister, the substrate-supported membrane is subject to in-plane stresses 

and a constant interfacial shear stress in the shear zone (𝑎 < 𝑟 < 𝜌𝑎). The two parts are coupled 

at the edge of the blister ( 𝑟 = 𝑎 ) by the continuity conditions in terms of the stress and 

displacement. 

 

Figure S5. Schematic illustration of water-filled 2D materials blister on a rigid substrate. 
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The mechanical equilibrium of the bulged membrane (𝑟 < 𝑎) over the liquid requires that: 

 
𝑑

𝑑𝑟
(𝑟𝑁𝑟) − 𝑁𝜃 = 0, (20a) 

 
𝑑

𝑑𝑟
(𝑟𝑁𝑟

𝑑𝑤

𝑑𝑟
) + 𝑞𝑟 = 0, (20b) 

where 𝑞 is the intensity of the transverse loading (i.e. the pressure difference across the membrane). 

These equations assume axisymmetric deformation and ignore bending rigidity of the membrane. 

With linear elasticity and nonlinear kinematics, Eqs. (20a) and (20b) can be combined into one 

nonlinear equation: 

 𝑁𝑟
2 𝑑

𝑑𝑟
[

1

𝑟

𝑑

𝑑𝑟
(𝑟2𝑁𝑟)] +

𝐸2𝐷𝑞2

8
𝑟 = 0. (21) 

Following Hencky's approach (6, 7), the solution to Eqs. (20-21) is assumed to take the polynomial 

form as: 

 𝑁𝑟(𝑟) = (
𝐸2𝐷𝑞2𝑎2

64
)

1

3
∑ 𝑏2𝑛 (

𝑟

𝑎
)

2𝑛∞

𝑛=0 , (22a) 

 𝑁𝜃(𝑟) = (
𝐸2𝐷𝑞2𝑎2

64
)

1

3
∑ (2𝑛 + 1)𝑏2𝑛 (

𝑟

𝑎
)

2𝑛∞

𝑛=0 , (22b) 

 𝑤(𝑟) = (
𝑞𝑎4

𝐸2𝐷
)

1

3
∑ 𝑎2𝑛 [1 − (

𝑟

𝑎
)

2𝑛+2

]
∞

𝑛=0 , (23) 

where seven terms (n = 0-6) are typically included in each polynomial. Substituting Eq. (22a) into 

Eq. (21), all the coefficients 𝑏2𝑛 can be determined in terms of one parameter, 𝑏0. That is, 𝑏2 =

−
1

𝑏0
2 ; 𝑏4 = −

2

3𝑏0
5 ; 𝑏6 = −

13

18𝑏0
8 ;  𝑏8 = −

17

18𝑏0
11 ;  𝑏10 = −

37

27𝑏0
14 ;  𝑏12 = −

1205

567𝑏0
17 . Similarly, 

substituting Eq. (23) into Eq. (20b) yields:  𝑎0 =
1

𝑏0
; 𝑎2 =

1

2𝑏0
4 ;  𝑎4 =

5

9𝑏0
7 ;  𝑎6 =

55

72𝑏0
10 ;  𝑎8 =

7

6𝑏0
13 ;  𝑎10 =

205

108𝑏0
16 ;  𝑎12 =

17051

5292𝑏0
19 . Given 𝑎  and 𝑞 , the coefficient 𝑏0  can be determined 

numerically, depending on Poisson’s ratio of the membrane and boundary conditions. For instance, 

 𝑏0 = 1.67  was obtained for an elastic membrane clamped at the edge with 𝜈 = 0.165  (for 

graphene). 
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Outside the blister, the supported 2D membrane is constrained to in-plane deformation with 

axisymmetry and a constant interfacial shear stress (frictional force per unit area), 𝜏 , which 

opposes sliding. For a given blister pressure or volume, there would exist an annular interfacial 

sliding zone (𝑎 < 𝑟 < 𝜌𝑎), beyond which there would be no sliding and thus zero shear stress. 

Assuming no buckling or any out-of-plane deflection (i.e. 𝑤 = 0) for the supported membrane 

outside the blister, the in-plane equilibrium equation is (5): 

 
𝑑

𝑑𝑟
(𝑟𝑁𝑟) − 𝑁𝜃 + 𝜏𝑟 = 0. (24) 

With linear elasticity and in-plane kinematics, Eq. (24) can be re-written as: 

 
𝑑

𝑑𝑟
[𝑁𝑟 +

𝑑

𝑑𝑟
(𝑟𝑁𝑟)] = −(2 + 𝜈)𝜏. (25) 

Solving Eqs. (24) and (25) with the boundary condition at 𝑟 = 𝜌𝑎, where the in-plane 

stresses are zero (𝑁𝑟 = 𝑁𝜃 = 0), we obtain: 

 𝑁𝑟 = 𝜏𝑎 [(2 + 𝜈) (−
1

3

𝑟

𝑎
−

𝜈−1

6(2+𝜈)
𝜌3 𝑎2

𝑟2) +  
1+𝜈

2
𝜌], (26a) 

 𝑁𝜃 = 𝜏𝑎 [(2 + 𝜈) (−
1+2𝜈

3(2+𝜈)

𝑟

𝑎
+

𝜈−1

6(2+𝜈)
𝜌3 𝑎2

𝑟2) +  
1+𝜈

2
𝜌]. (26b) 

At the edge of the blister (𝑟 = 𝑎), the radial stress and displacement are continuous. As a 

result, both the strain and stress components are continuous, i.e., 𝑁𝑟
𝑖𝑛 = 𝑁𝑟

𝑜𝑢𝑡  𝑎𝑛𝑑 𝑁𝜃
𝑖𝑛 =

𝑁𝜃
𝑜𝑢𝑡  𝑎𝑡 𝑟 = 𝑎. Based on Eq. (22) for the bulged membrane and Eq. (26) for the membrane outside 

the blister, the continuity conditions at the edge of the blister lead to: 

 𝜏𝑎 [(2 + 𝜈) (−
1

3
−

𝜈−1

6(2+𝜈)
𝜌3) +  

1+𝜈

2
𝜌] = (

𝐸2𝐷𝑞2𝑎2

64
)

1

3
(𝑏0 −

1

𝑏0
2 −

2

3𝑏0
5 − ⋯ ), (27a) 

 𝜏𝑎 [(2 + 𝜈) (−
1+2𝜈

3(2+𝜈)
+

𝜈−1

6(2+𝜈)
𝜌3) +  

1+𝜈

2
𝜌] = (

𝐸2𝐷𝑞2𝑎2

64
)

1

3
(𝑏0 −

3

𝑏0
2  −

10

3𝑏0
5 − ⋯ ). (27b) 

Given 𝜏, 𝑎 and 𝑞, Eq. (27) can be solved to obtain the Hencky constant 𝑏0 and the ratio 𝜌 for the 

outer radius of the interfacial sliding zone.  

For a liquid-filled blister with a constant volume (𝑉), we define a length scale as 𝐿𝑤 =

𝑉1/3. By integrating the deflection in Eq. (23), the volume is related to the pressure difference as: 
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 𝑉 = 2𝜋 ∫ 𝑤(𝑟)
𝑎

0
𝑟𝑑𝑟 =

2𝜋𝑎10/3𝑞1/3

𝐸2𝐷
1/3 ∑ 𝑎2𝑛 (

𝑛+1

2𝑛+4
)𝑛 . (28) 

Thus, the normalized pressure difference is: 

 𝑞̅ =
𝑞𝐿𝑤

𝐸2𝐷
= (

𝐿𝑤

𝑎
)

10

[2𝜋 ∑ 𝑎2𝑛 (
𝑛+1

2𝑛+4
)𝑛 ]

−3

. (29) 

For given 𝜏 , 𝑎  and 𝑉 , Eq. (27) can be solved to obtain 𝑏0  and 𝜌 , both depending on three 

dimensionless parameters: 𝜈, 𝜏̅ =
𝜏𝐿𝑤

𝐸2𝐷
, and 𝑎̅ =

𝑎

𝐿𝑤
. Moreover, for a particular membrane material 

with a constant Poisson’s ratio 𝜈, 𝑏0 and 𝜌 depend on a single parameter: 𝜉 = 𝜏̅ 𝑎̅7. In Fig. S6, we 

plot 𝑏0 and 𝜌 versus 𝜉 for graphene (𝜈 = 0.165). Clearly, when 𝜉 → ∞ (i.e. 𝜏 → ∞ or 𝑎̅ → ∞), 

the results approach the strong shear limit without any sliding (i.e. 𝜌 = 1 and  𝑏0 = 1.67). With a 

finite interfacial shear stress 𝜏, 𝜌 increases as 𝜉 decreases. In the weak shear limit (𝜉 → 0), 𝜌 → ∞ 

and  𝑏0 → 1.47. 
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Figure S6. The radius ratio 𝜌  of the interfacial sliding zone (black lines) and Hencky constant 𝑏0 (blue 

lines) as a function of 𝜉. 

 

According to Eq. (23), the blister height, ℎ = 𝑤|𝑟=0, and the height-to-radius ratio is: 

 
ℎ

𝑎
= 𝐶1 (

𝑞𝑎

𝐸2𝐷
)

1

3
= 𝐶1 𝑎̅−3 [2𝜋 ∑ 𝑎2𝑛 (

𝑛+1

2𝑛+4
)𝑛 ]

−1

. (30) 

where 𝐶1 = ∑ 𝑎2𝑛𝑛 =
1

𝑏0
+

1

2𝑏0
4 +

5

9𝑏0
7 + ⋯. By Eq. (30), ℎ/𝑎 depends on both 𝑎̅ and 𝜏̅. Similarly, 

by Eq. (29), the normalized pressure difference 𝑞̅ depends on 𝑎̅ and 𝜏̅ as well. For a given 𝜏̅, 𝑞̅ is 

related to 𝑎̅ and then to ℎ/𝑎. It is thus possible to determine the pressure inside the blister based 

on the measurement of the height and radius of the blisters. Fig. S7 plots 
𝑞𝑎

𝐸2𝐷
 (= 𝑞̅𝑎̅) as a function 

of ℎ/𝑎 for blisters with various interfacial shear stresses. Note that, Eq. (30) can be rewritten as: 

 𝑞 = 𝜂(𝜉, 𝜈)
𝐸2𝐷ℎ3

𝑎4  (31) 

where 𝜂(𝜉, 𝜈) = 𝐶1
−3. We find that the 

𝑞𝑎

𝐸2𝐷
−

ℎ3

𝑎3 curves collapse when  𝜏̅ ≥ 1 (strong shear) and 

𝜏̅ ≤ 10−4 (weak shear). Eq. (31) is similar to Eq. (19) by the simple analysis, but it is more accurate. 

In particular, for the strong and weak shear limits, the simple analysis underestimates the pressure 

significantly. 
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Figure S7. The dimensionless pressures as a function of height/radius ratio under various shear stress. 

Blue and red dots are from the simple analysis.  

  

For given 𝜏 and 𝑉, the blister radius is determined by minimizing the total free energy of 

the blister, including the elastic strain energy of the membrane and the interfacial energy. With the 

membrane stresses in Eq. (22), the strain energy for the bulged membrane can be obtained as  

 𝐹𝑒1(𝑎) = 2𝜋 ∫ 𝑈𝑆(𝑟)
𝑎

0
𝑟𝑑𝑟 = 𝐸2𝐷𝐿𝑤

2 (
𝐿𝑤

𝑎
)

10

𝑓1(𝜉, 𝜈). (32) 

Similarly, the strain energy for the supported membrane can be obtained with the in-plane stresses 

in Eq. (26) as 

 𝐹𝑒2(𝑎) = 2𝜋 ∫ 𝑈𝑆(𝑟)
𝜌𝑎

𝑎
𝑟𝑑𝑟 = 𝐸2𝐷𝐿𝑤

2 (
𝐿𝑤

𝑎
)

10

𝑓2(𝜉, 𝜈). (33) 

Relative to a reference state of the membrane on the substrate without liquid, the interfacial energy 

of the liquid-filled blister is: 
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  𝐹𝑖(𝑎) = 𝜋𝑎2(𝛾𝑤𝑠 − 𝛾𝑚𝑠) + 𝛾𝑤𝑚𝐴′,  (34) 

where 𝐴′ is the area of blister surface, i.e., 

 𝐴′ = 2𝜋 ∫ √1 + (
𝑑𝑤

𝑑𝑟
)

2𝑎

0
𝑟𝑑𝑟 = 𝐶3𝜋𝑎2, (35) 

and 𝐶3 is a constant that depends on 𝑏0. With 𝛥𝛾 = 𝛾𝑚𝑤 + 𝛾𝑠𝑤 − 𝛾𝑚𝑠, we have 

  𝐹𝑖(𝑎) = 𝜋𝑎2Δ𝛾 [1 + (𝐶3 − 1)
𝛾𝑤𝑚

Δ𝛾
]. (36) 

To minimize the total free energy, we set 

 𝐹̅(𝑎̅, 𝜏̅, 𝜈) =
𝐹𝑒1+𝐹𝑒2+𝐹𝑖

𝐸2𝐷𝐿𝑤
2 = [𝑓1(𝜉, 𝜈) + 𝑓2(𝜉, 𝜈)]𝑎̅−10 +

𝜋Δ𝛾

𝐸2𝐷
[1 + (𝐶3 − 1)

𝛾𝑤𝑚

Δ𝛾
] 𝑎̅2, (37) 

and  

  
𝜕𝐹

𝜕𝑎̅
= 0,  (38) 

by which 𝑎̅ = 𝑎/𝐿𝑤 can be solved as a function of 𝜏̅, 𝜈, 
Δ𝛾

𝐸2𝐷
 and 

𝛾𝑤𝑚

𝐸2𝐷
. Then, by Eq. (30), the ratio 

ℎ/𝑎 can be obtained as well. Since 𝐶3~1 + 𝑶(ℎ2/𝑎2), here we neglect the effects of  
𝛾𝑤𝑚

Δ𝛾
 due to 

the small aspect ratio observed in our experiments, and only examine the effect of shear stress on 

ℎ/𝑎 in Fig. S8. Similar to the observation in Fig. S7, ℎ/𝑎 − Δ𝛾/𝐸2𝐷 curves collapse when  𝜏̅ ≥ 1 

(strong shear) and 𝜏̅ ≤ 10−4 (weak shear) and show agreement with the simple analysis under 

small ℎ/𝑎 (< 0.15). However, slight deviations can be observed under high aspect ratio, implying 

the limitation of our simple analysis for large deformation.  
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Figure S8.  The dependency of the aspect ratio on Δ𝛾/𝐸2𝐷 for different shear stresses. Blue and red dots 

are from the simple analysis.  

Next, we consider the effect of finite membrane size (𝜌 = 𝜌0). As the 2D membranes in 

experiments typically have finite lateral sizes (here, defined as 𝜌0𝑎), the sliding zone around a 

blister could grow to the boundary of the membrane if the interface is relatively weak or if the 

blister is located near the edge of a membrane. In these cases, the sliding zone radius ratio  𝜌 would 

become fixed once it reaches the critical value 𝜌0 as shown in Fig. S9. Unlike the previous case 

with 𝑁𝑟 = 𝑁𝜃 = 0 at 𝑟 = 𝜌𝑎, the boundary condition at 𝑟 = 𝜌0𝑎 is slightly different, i.e., 𝑁𝑟 =

0 but 𝑁𝜃 ≠ 0. Thus, for a finite outer boundary, the Eq. (25) can be solved exactly to obtain: 

 𝑁𝑟 = 𝜏𝑎 [−
(2+𝜈)

3

𝑟

𝑎
+ 𝐴0 (

𝑎2

𝑟2
−

1

𝜌0
2
) +  

(2+𝜈)

3
𝜌0] (39a) 

 𝑁𝜃 = 𝜏𝑎 [−
(1+2𝜈)

3

𝑟

𝑎
+ 𝐴0 (−

𝑎2

𝑟2 −
1

𝜌0
2) +  

(2+𝜈)

3
𝜌0] (39b) 
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where 𝐴0 is a dimensionless constant to be determined. Then, based on Eqs. (22) for the bulged 

membrane over the blister and Eqs. (39) for the supported membrane, the continuity conditions at 

the edge of blister (𝑟 = 𝑎) lead to: 

 𝜏𝑎 [−
(2+𝜈)

3
+ 𝐴0 (1 −

1

𝜌0
2) +  

(2+𝜈)

3
𝜌0] = (

𝐸𝑡𝑞2𝑎2

64
)

1

3
(𝑏0 −

1

𝑏0
2 −

2

3𝑏0
5 − ⋯ ) (40a) 

 𝜏𝑎 [−
(1+2𝜈)

3
+ 𝐴0 (−1 −

1

𝜌0
2
) +  

(2+𝜈)

3
𝜌0] = (

𝐸𝑡𝑞2𝑎2

64
)

1

3
(𝑏0 −

3

𝑏0
2  −

10

3𝑏0
5 − ⋯ ) (40b) 

Combining Eq. (29) and Eq. (40) we can solve for the constant 𝐴0 and Hencky constant 𝑏0, 

with given 𝜈 , 𝜏̅ , and 𝑎̅  . Following the same process, we can calculate the total free 

energy  𝐹̅(𝑎̅, 𝜏̅, 𝜈)  and determine 𝑎̅  by minimizing the free energy. The ratio ℎ/𝑎  can still be 

determined by Eq. (30), but with 𝑏0 depending on 𝜌0. In Fig. S9, we demonstrated the effect of 𝜌0 

on the ratio ℎ/𝑎. We find that the finite size effect is negligible when 𝜌0 > 4, which can be readily 

satisfied experimentally by choosing 2D materials blisters not located close to the edge of a 

membrane. 
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Figure S9. The aspect ratio as function of 𝜌0. The shear stress used for this demonstration is 𝜏̅ = 10−5, 

with which interface is more sensitive to the lateral size compared with strong shear. 
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Section 3: MD simulations. 

We performed classical MD simulations for water blisters trapped between SiO2 and graphene 

using LAMMPS (14). A square-shaped graphene membrane (L ~ 30 nm) was placed on top of a 

flat substrate surface, with water molecules in between. MD simulations were carried out in NVT 

ensemble with periodic boundary conditions at 300K, where the temperature was controlled by a 

Nose-Hoover thermostat. The integration time step was 1 fs. The in-plane dimension of the 

periodic box was set by the size of the graphene sheet (~30 nm), and the thickness of the periodic 

box was 20 nm so as to keep periodic images in the thickness direction from interacting with each 

other. The substrate was modeled as a rigid surface placed at z = -0.316 nm so that the average 

position of the carbon atoms in the graphene would be around z = 0 if no water molecules are 

trapped in between. Initially, a number of water molecules were placed as a block between the 

substrate and the graphene sheet. Then, the system was relaxed for 2 ns to form a blister. Fig. S10 

shows a snapshot of a graphene blister with 2700 water molecules, shaped like a spherical cap by 

the top and side views. We retrieved the blister configuration by sampling 10 snapshots evenly 

after 1 ns relaxation. The blister height was measured as the difference between the largest z 

positon of the carbon atoms and the average z position (~0) outside the blister edge (see Fig. S10B). 

The blister diameter was measured as the maximum span distance for the carbon atoms with z > 

0.1 nm. The height-radius ratio (h/a) was calculated by averaging over the 10 snapshots with an 

error bar for the standard deviation.   

The second-generation reactive empirical bond-order (REBO) potential (15) was used for 

the carbon-carbon interactions in graphene. The TIP4P/2005 model (16) was used for interactions 

between water molecules, which has been shown to accurately predict the surface tension of water 

(17). A fictitious surface interacting with both graphene and water molecules was used to represent 

the rigid substrate (18). The interaction potential between carbon atoms of graphene and the 

surface was specified in form of Eq. (41) with two parameters ( CS  and CS ), 























−








=

39

15

2

CS

CS

CS

CS
CSCS

rr
U


              (41), 

where CSr  is the distance between each carbon atom and the surface. The equilibrium separation 

and adhesion energy of the graphene/substrate interface can then be obtained as 
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       CSGSh 

61

5

2








=        (42), 

       
2

039

104

r

CS
GS


=       (43), 

where 142.00 =r  nm is the bond length of graphene. Here, we used 368.0=CS  nm so that hGS = 

0.316 nm, as predicted by DFT calculations for graphene on SiO2 (19). The adhesion energy ΓGS 

was varied between 0.1 and 0.5 J/m2, as the typical range from both experiments and theoretical 

calculations (19-25).  

 

Figure S10.  MD simulation of a graphene blister with 2700 water molecules. The adhesion energy was 

ΓGS = 0.242 J/m2, while the water contact angles were 60⁰and 40⁰for graphene and the substrate, respectively. 
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(A) A top view snapshot of the blister, with color contour for the z-position of the carbon atoms in graphene; 

(B) A height profile along a line scan (dashed line in A) across the blister; (C) A cross-sectional view of the 

blister, showing the water molecules (oxygen in red and hydrogen in white) between graphene (carbon in 

gray) and the substrate surface (blue line).    

The interactions between water molecules and the substrate surface were modeled similarly 

by a potential function with two parameters ( OS  and OS ) for the interactions between the oxygen 

atoms of water and the surface as  

























−










=

39

15

2

OS

OS

OS

OS
OSWS

rr
U


      (44), 

while the interactions between the hydrogen atoms of water and the surface were ignored. We also 

let 368.0=OS  nm so that the equilibrium separation between the water molecules and the surface 

is identical to the graphene/substrate interface. The parameter OS  can be varied to yield different 

water contact angles for the substrate. We performed MD simulations of a water droplet on the 

surface to determine the contact angle as a function of OS  (Fig. S11). For this purpose, the water 

surface was re-constructed at 10 snapshots of the simulation by the alpha-shape method (26) with 

a virtual probe sphere of radius 0.4 nm using OVITO (27). The surface area and the water volume 

were calculated, with which the averaged contact angle (s) was calculated by assuming a spherical 

cap shape for the droplet. The effect of the number of water molecules on the contact angle was 

examined and found to be insignificant in the range from N = 100 to N = 4500. Based on this result, 

we chose 08.0=OS  eV to have a water contact angle of ~40⁰ for the substrate. 
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Figure S11. (A) A snapshot of a water droplet on a substrate surface with N = 900 and OS = 0.08 eV, where 

the contact angle is around 40⁰. (B) Water contact angle of substrate as a function of OS . 

       Next, for the interactions between water and graphene, previous first-principle calculations 

(28, 29) have shown that the interactions between graphene and water are dominated by dispersion 

interactions. Werder et al. (30) calibrated a set of parameters for the interactions between the 

oxygen atoms of water and the carbon atoms of graphene using the LJ potential in its standard 

form: 

     






















−




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


=
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CO
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CO
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rr
U


      (45). 

With fitted parameters 319.0=CO  nm and 07.4=CO meV, they obtained a water contact angle 

of around 90⁰ for graphene (30, 31). However, recent studies found that the water contact angle is 
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around 60⁰ for pristine graphene without air-borne contamination (32). In this study, we used εCO 

= 6.0 meV so that the predicted water contact angle is 60⁰ for graphene. Fig. S12A shows a 

snapshot of a water droplet on graphene by MD simulations, and Fig. S12B shows the water 

contact angle as a function of εCO based on the MD simulations. It is noted that, by adjusting the 

interaction parameters between water and graphene, the wetting behavior of graphene can be 

described without affecting the mechanical properties of graphene itself. For the other 2D materials, 

although we did not perform MD simulations in the present study, the continuum model as verified 

for graphene blisters was applied with their corresponding wetting and mechanical properties. 

 

Figure S12. (A) A snapshot of a water droplet on graphene with N = 1000 and CO = 6.0 meV, where the 

contact angle is around 60⁰. (B) Water contact angle of graphene as a function of 
CO  by MD simulations. 
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Breakdown of the continuum model. By assuming the trapped water in the blister as a 

continuum liquid, the model predicts the shape of the blister close to a spherical cap. However, 

our MD simulations showed that the blister may take a different shape when the 

membrane/substrate adhesion energy was relatively low and the number of water molecules was 

small. Instead of a spherical cap, the top of the blister was flat, indicating that the water 

molecules formed discrete layers. In this case, the continuum model breaks down because the 

trapped water cannot be treated as a continuum liquid. It is found that the breakdown occurs 

when the height of the blister predicted by the continuum model drops below the thickness of 

three water monolayers. A simple analysis is presented below to predict the breakdown condition 

in terms of the adhesion energy and the number of water molecules. 

By the simple continuum model, the water volume in the blister is approximately  

 𝑉 =
1

2
𝜋ℎ𝑎2 (46). 

The number of water molecules can then be found as 

 𝑁 = 𝜌𝑉 (47), 

where ρ is the number density of water, which equals 33.2 𝑛𝑚−3 at T = 300K by the TIP4P/2005 

model in MD simulations(33). Thus, the height of the blister can be written as  

 ℎ = (
2𝑁

𝜋𝜌
)

1 3⁄

(
ℎ

𝑎
)

2 3⁄

= (
2𝑁

𝜋𝜌
)

1 3⁄

(𝜙
𝛤−𝛾𝑤(𝑐𝑜𝑠 𝜃𝑚+𝑐𝑜𝑠 𝜃𝑠) 

𝐸2𝐷
)

1

6
 (48), 

where Eq. (1) is used for the ratio  
ℎ

𝑎
 . Note that, under the condition of MD simulations, the 

parameter 𝜙 is given by Eq. (17) as a function of Г and V (or N). For a given adhesion energy Г 

and the water contact angles, the blister height decreases with decreasing number of water 

molecules as shown in Fig S13A. When the height drops below a critical level, the continuum 

model breaks down and the water molecules form discrete layers instead. The critical height is 

roughly three times the thickness of a water monolayer, which is estimated as ℎ𝑐 = 3𝜌−1 3⁄ =

0.93 𝑛𝑚. Thus, the continuum model holds only when ℎ > ℎ𝑐. For Г = 0.242 J/m2, the continuum 

model breaks down when the number of water molecules N < 1690, while for Г = 0.1 J/m2 the 

breakdown occurs for N < 7640. By setting ℎ = ℎ𝑐, we obtain the critical condition in terms of Г 

and N shown as the blue curve in Fig. S13B. Furthermore, when the number of water molecules 
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drops below a second critical level (~2𝜌−1 3⁄ = 0.62 𝑛𝑚), we may expect the water molecules to 

form a single monolayer. However, since the continuum model has already broken down, it is not 

possible to predict exactly when the water monolayer would form. 

  

 

Figure S13. (A) The height of graphene blister as a function of the number of water molecules, predicted 

by the continuum model for ΓGS = 0.1 J/m2 and 0.242 J/m2, where the dashed line indicate the critical height 

for the continuum model. (B) The breakdown limit for the continuum model, in terms of the adhesion energy 

ΓGS and the number of water molecules N with the water contact angles being 60 and 40 for graphene and 

the substrate, respectively.  

The formation of layered water molecules was observed in MD simulations. We conducted 

MD simulations with different number of water molecules ranging from N = 50 to N = 4500 for 

different values of the adhesion energy Γ. The h/a ratio varying with respect to the number of water 

molecules is plotted in Fig. S14, along with analytical predictions by the modified weak shear 

continuum model. For Γ = 0.242 J/m2, the MD results are in close agreement with the continuum 

prediction for N > 1600, below which the continuum model breaks down. The water molecules 

form a bilayer structure for 400 < N < 1600 and form a monolayer for N < 400. At each transition, 

from continuum to bilayer or from bilayer to monolayer, the ratio h/a drops abruptly and then 

increases with decreasing N. This can be understood as the blister height changes discontinuously 

at the transition, whereas the blister radius decreases almost continuously with decreasing N. For 

Γ = 0.1 J/m2, however, the continuum regime was not reached for the limited number of water 

molecules in the MD simulations (N < 5000). In this case, the water molecules form a bilayer 

structure for N > 400 and transition to a monolayer for N < 400. 
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Figure S14. Blister aspect ratio for different numbers of water molecules, for ΓGS = 0.242 J/m2 (A) and 0.1 

J/m2 (B) with water contact angles being 60 and 40 for graphene and the substrate, respectively. The 

dashed line is predicted by the continuum model. The breakdown of the continuum model is predicted at N 

= 1690 for ΓGS = 0.242 (dotted vertical line in A) and N = 7640 for ΓGS = 0.1 J/m2.  

 

Section 4: Properties of materials. 

Table S1. Shear/sliding stress in 2D material interface 

 
G-SiO2 (5, 

34) 

G-G 

(5) 

HOPG-

HOPG (35) 

MoS2-

MoS2 (36) 
G-G 

G-

hBN 

hBN-

hBN 

Shear stress 

(MPa) 

0.5-              

3.0 

0.02-

0.06 

0.02–     

0.04 

0.04-       

0.12 

 

MD simulations (37) 

Average: ~0 

 Maximum 𝜏̅* 10−4−10−3** < 10−4 < 10−4 ≈ 10−4 

G denotes graphene; Blue region shows experimentally measured data; Yellow region shows simulations 

results, whose averages approach 0 due to their stick-slip friction with periodically changing peak shear 

stress. 

 

*To estimate the maximum 𝜏̅, we utilized the largest experimentally observed h/a (1.8) and the radius 

(~300 nm) as well as the highest shear stress in the third row and the lowest 𝐸2𝐷  in Table S2. We 

conclude that for heterostrutures with atom-level smooth interface, we can safely use model with 

frictionless approximations where 𝜙 = 6/5. 

**For a typical graphene blister on SiO2 with h/a of ~0.8 and the radius of 200 nm, the 𝜏̅ is in the range 

from 0.0002 to 0.001. The used 𝜙 will cause little influence on the adhesion energy estimation since 

the contact angle part contributes to the 𝛤 greatly.  



 30 / 33 
 

Table S2. Average modulus of 2D materials 

 Graphene (38) MoS2 (39) hBN (40) 

𝐸 (TPa) 1.00 0.27 0.87 

𝐸2𝐷(N/m) 340 180 289 

 

Table S3. Water contact angle (WCA) for 2D materials and substrates 

 G/HOPG(32, 41) MoS2(42) hBN(43) Ice(44) CaF2(45) Mica(46) 

WCA 

( o ) 
64 69 47 12 20 23 

 SiO2(47) SiC(48) Si(49) Sapphire(50) Al2O3(51) V2O5(52) 

WCA 

( o ) 
40 73 60 10 36 0 

Note that the exact liquid contact angle is highly challenging to measure since it can be influenced by 

various surface treatments, treating times, surface roughness, as well as containment types and density. 

In fact, even for water contact angels, there still exits inconsistence in literatures, especially for water 

contact angels of 2D materials. Herein, we used most widely adopted water contact angles, which can 

allow further comparative studies. 
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