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Conformability of flexible sheets on spherical surfaces
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Nanshu Lu1,5*

Three-dimensional surface-conformable electronics is a burgeoning technology with potential applications in
curved displays, bioelectronics, and biomimetics. Flexible electronics are notoriously difficult to fully conform to
nondevelopable surfaces such as spheres. Although stretchable electronics canwell conform to nondevelopable
surfaces, they need to sacrifice pixel density for stretchability. Various empirical designs have been explored to
improve the conformability of flexible electronics on spherical surfaces. However, no rational design guidelines
exist. This study uses a combination of experimental, analytical, and numerical approaches to systematically
investigate the conformability of both intact and partially cut circular sheets on spherical surfaces. Through
the analysis of thin film buckling on curved surfaces, we identify a scaling law that predicts the conformability
of flexible sheets on spherical surfaces. We also quantify the effects of radial slits on enhancing conformability
and provide a practical guideline for using these slits to improve conformability from 40% to more than 90%.

Copyright © 2023 The

Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

NonCommercial

License 4.0 (CC BY-NC).

INTRODUCTION
Thin-film electronics can simultaneously benefit from well-estab-
lished wafer-based electronics manufacturing processes and uncon-
ventional mechanical deformability. For example, flexible displays
that can curve and fold have been successfully industrialized as
curved or even rollable computer monitors, televisions, and cell-
phone screens. However, today’s flexible displays are only able to
form or conform to developable surfaces that have zero Gaussian
curvatures and can fully unroll onto a plane. Thin-film electronics
able to conform to three-dimensional (3D) curvilinear surfaces (1)
can unleashmuch broader possibilities, particularly body-conform-
able electronics (2), surface-conformable antenna (3), conformal
electronic armor (4), bioinspired electronic eyes (5, 6), and so on.
Well-known examples of body-conformable electronics include
epidermal electronics intimately but noninvasively coupled to the
skin (7), ultrathin electrocorticography (ECoG) electrodes accom-
modating brain curvature and movement (8), e-dura surrounding
the spinal cord (9), glucose-sensing contact lenses (10) or artificial
retina with a matching curvature to the eyeball (11), etc. Achieving
an intimate but nonirritating contact between electronics and living
tissue surfaces is crucial for tissue health, high-fidelity sensing, and
the mechanical durability of the device (12, 13), but it is challenging
because of the intrinsic geometric mismatch between as-fabricated
planar electronics and naturally curved tissue surfaces.

When the target surface is nondevelopable (i.e., with nonzero
Gaussian curvatures, e.g., spherical surface), Gauss’s Theorema
Egregium indicates that stretching or compression of the thin-film
electronics is required (14). In the past, tremendous efforts have

been exerted on material design and structural engineering to
improve the stretchability of thin-film devices (15, 16). On the
one hand, intrinsically soft and stretchable materials, including
organic materials, liquid-phase materials, hydrogels, and nanocom-
posites, have been created and widely applied in body-conformable
electronics (17–19). On the other hand, various stretchable struc-
tures have been proposed to achieve body conformability, including
mesh design (20), kirigami design (21, 22), serpentine structures
(7), and buckled structures (23). However, state-of-the-art stretch-
able electronics are not entirely adequate for body-conformable
electronics for the following two reasons. First, there is a well-
known trade-off between device stretchability and performance,
such as low conductivity or mobility in intrinsically soft electronic
materials (2, 24) or low areal coverage of active devices due to the
real estate consumed by the stretchable interconnects such as ser-
pentines (2, 25). Second, the fabrication of many stretchable elec-
tronics is not fully compatible with well-established wafer-based
microfabrication processes (26), which prevents the incorporation
of many high-performance electronic components and limits
their industrialization.

When a high-performance electronic sheet is flexible but too stiff
to stretch, it has to buckle and delaminate from the underlying non-
developable substrate to release the compressive strain energy.
Several strategies have been proposed to avoid buckling and
enhance conformability. Inspired by soccer balls, Choi et al. (11)
demonstrated an empirical truncated icosahedron design with
cuts for a high-density (1935 pixels within 3 mm2), 1.4-μm-thick
artificial retina to well conform to an eyeball without any stretchable
structures, as shown in Fig. 1A. However, this design is empirical
and hard to generalize. In a different design, a planar 1D array of
petal-shaped ribbons can perfectly wrap a hemispherical surface
that mimics the closure of a bud, as shown in Fig. 1B (27), but it
is not applicable in high-performance electronics because its
limited device integrity requires perfect alignments during the
wrapping process. For complicated 3D surfaces, computational
methods were built to discretize the target surface into hundreds
of small flat elements, which can be deployed into a planar design
(28). In addition, kirigami designs with optimized small cuts can
also morph 2D sheets into deterministic 3D surfaces but with
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compromised areal coverage (29). However, in applications de-
manding high device densities such as the displays or the artificial
retina, too many small elements or cuts disrupt the integrity of the
device and hamper self-conformation on the curved surfaces. Hith-
erto, there lacks a rational but practical guideline to design planar
flexible sheets to achieve 3D surface conformability. This prompts
us to investigate the buckling-controlled conformability on nonde-
velopable surfaces for both intact and cut-engineered sheets.

Adhering circular thin sheets to spherical surfaces has been
studied for their delamination patterns and the maximum size of
complete contact, i.e., the largest radius that can be drawn
without intersecting with any buckling zone. Previous studies dis-
covered that there exists a critical radius, below which the sheet can
always fully conform to the sphere, but beyond it, buckle delamina-
tion starts to appear and different delamination patterns can form
depending on the sheet radius (30). Although the deformation is
nonlinear and the buckling patterns have some stochasticity, the
maximum size of complete contact was found to be controlled by
the substrate curvature, the interfacial adhesion, and the sheet stiff-
ness but independent of the sheet size, which has been proved the-
oretically and validated by experiments and molecular dynamics
simulations (30–33). Box et al. (34) further investigated the
number of buckle delaminations of an ultrathin sheet under
radial stretching during the conforming process. However, none

of the existing theories can capture the area of the delaminated
regions, and hence, the overall conformability is not yet predictable.

In this work, we first quantify the overall conformability and the
shape of the buckle-delaminated region through experiments and
coarse-grained molecular dynamics (CGMD). Next, a scaling rela-
tion is derived to describe the shape and number of delaminated
regions, which, in reciprocal, yields the conformed region. At the
end, we investigate how radial cuts emanating from the edge may
enhance the conformability, which leads to a simple yet effective
guideline for cut-facilitated conformable designs.

RESULTS
Conforming flexible sheets to spherical surfaces
As many in vivo flexible electronics conform to biotissues with the
presence of body fluids (9, 11), plus water-assisted transfer of soft
electronics has been widely reported (35, 36), we chose a conform-
ing process through draining dyed water between a circular thin
sheet and a hemispherical container with a small hole opened at
the bottom, as illustrated by the schematics in Fig. 1C. The thin
sheet has a known thickness h, radius R, and Young’s modulus E,
and the rigid hemispherical bowl has a known radius ρ. The dyed
water with a known surface tension γ drives the thin sheet to contact
the hemispherical surface during water draining and also offers the

Fig. 1. Research on conforming a flexible sheet to a spherical surface. (A) Images of 1.4-μm-thick image sensor arrays with circular design (left) and truncated ico-
sahedron design conformed to a concave spherical poly(dimethylsiloxane) substrate. Reproduced from (11) with the permission of Springer Nature. (B) Planar array of
petal-like ribbons can be perfectly assembled onto a hemispherical surface. Reproduced from (27) with the permission of John Wiley and Sons. (C) Our experimental
setup. Water-assisted transfer of a 13-μm-thick polyethylene terephthalate (PET) sheet of radius R to a rigid hemispherical container with radius ρ: (i) The sheet was placed
on water in a hemispherical container with a hole drilled in the bottom. (ii) Water was drained through the hole. (iii) The sheet formed stable conforming pattern after
water was drained. (D) Top-down optical image of a 9-mm-radius PET sheet conformed to a 30-mm-radius container. rc is the maximum radius of complete contact. (E)
Our coarse-grained molecular dynamics (CGMD) simulation setup: (i) A sheet was placed on water in a hemispherical container. (ii) Uniform pressure was applied to the
sheet to drive the contact. (iii) The sheet conformed to the spherical container. (F) The CGMD result of the gap between the sheet and the spherical surface for R = 9 mm
and ρ = 30 mm.
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interfacial adhesion after the thin sheet contacts the hemispherical
surface. Experimentally, we selected commercially available 13-μm-
thick polyethylene terephthalate (PET) to be a good mechanical
representative of many flexible electronics (37, 38). The radii of
the circular PET sheets varied from 3 to 14 mm in our study. We
chose rigid hemispherical surfaces with radii ranging from 30 to 70
mm as good surrogates of human organ geometries such as the
heart and the brain. Although biotissues are mechanically soft
and geometrically diverse, our current study is limited to rigid
spherical surfaces to establish the first viable framework to
unravel the conformability of flexible thin sheets to nondevelopable
surfaces. Figure 1D offers an experimental top-down view after an
intact circular PET sheet of 9-mm radius formed a stable conform-
ing pattern on a rigid hemispherical surface of 30-mm radius. Mul-
tiple fingertip-shaped buckle delaminations emanated from the
edge of the sheet can be observed, similar to the branched pattern
reported by Hure et al. (30). In Fig. 1D, drawing the largest possible
circle without intersecting with any buckle delamination yields the
maximum radius of complete contact (30–33), which is labeled as rc.
Numerically, we performed CGMD to simulate the conforming
process as illustrated in Fig. 1E and movie S1. The PET sheet and
the rigid hemispherical container were simulated by lattice-spring
models (39, 40), and an estimated pressure equivalent to the con-
forming driving force was applied to the sheet to mimic the water
draining process. After the system achieved an equilibrium state,
buckle delaminations emerged when R/ρ was large enough. De-
tailed experimental procedures and CGMD model setup can be
found in Materials and Methods.

Figure 2A displays the top-down views of experimental and sim-
ulation results for various ratios of R/ρ, based on which we quanti-
fied the conformability and plotted them as markers in Fig. 2B. We
define conformability to be the fraction of all the sheet areas in
contact, i.e.

C ¼
Acontact

Asheet
ð1Þ

In our study, we limited the PET sheet radius to be R/ρ < 1/3,
beyond which there could be more than 2% error between the arc
length in top-down projected 2D views and that on actual 3D
curved surfaces. As there exist multiple equilibrium conforming
states for a given configuration, although Fig. 2A only displays
one experiment and one simulation result for each R/ρ, at least
three independent experiments and five independent simulations
were performed for each configuration for us to plot the average
values as the markers (solid markers for experiments and open
markers for simulations) and the standard deviations as the error
bars in Fig. 2B. We can make the following essential observations
out of Fig. 2:

1) Despite variations in equilibrium states from one experiment
(simulation) to another, reasonably good agreement between exper-
iments and simulation has been achieved in terms of both conform-
ing patterns (Fig. 2A) and conformability (Fig. 2B).

2) Given sheet thickness, modulus, and adhesion, R and ρ
control the conformability only through R/ρ, not separately.

3) When R/ρ is below a critical size, 100% conformability can be
achieved, which is consistent with existing studies (30–33).

4) As R/ρ increases, buckle delamination emerges, and conform-
ability declines monotonically.

5) Large and small buckle delaminationsmay coexist when R/ρ is
large (Fig. 2A). Although the simulated number and location of
large and small buckle delaminations do not fully agree with exper-
iments, this does not affect the agreement on overall conformability,
as evident in Fig. 2B.

The aggregated monotonic relationship between conformability
versus R/ρ given in Fig. 2B implies that a scaling law (the black
curve) could be found after the physics is revealed. It motivates us
to investigate the buckle delamination of thin sheets conforming to
curved surfaces to predict the number and shape of buckle delam-
inations and, ultimately, the overall conformability. However, given
the stochastic conforming process, a prediction for the shape of each
individual buckle delamination would be impossible. Therefore, the
focus of our following analysis is the overall conformability.

Geometric features of blisters
Following the convention of mechanics of buckle delamination (41,
42), we refer buckle delaminations to be blisters from now on. As
shown in Fig. 2A, all the blisters extend radially from the edge
toward the center of the sheet with fingertip-shaped terminations.
If we denote the total number of blisters as N and the edge wave-
length and the radial extent of the ith blister as λe,i and rb,i, respec-
tively, the total area out of contact can be estimated by the product
of the three parameters

Ablister ≏
XN

i¼1
λe;irb;i ≏ Nλerb ð2Þ

where λe and rb represent the average edge wavelength and the
average radial extent of the N blisters. Among the three unknowns
in Eq. 2

rb � R � rc ð3Þ

where rc is the radius of the maximum complete contact zone,
which has been investigated before and will be discussed later.

Obtaining N and λe is a new effort, which requires us to analyze
the geometric features of the blisters. For a flat sheet trying to
conform to a spherical surface without any external stretching
applied, hoop compression emerges in the sheet. When the hoop
compressive strain exceeds the critical buckling strain, blisters
form to release the hoop strains. As the surface tension of water
(72.8 mN/m) is negligible compared to the tensile stiffness (39
kN/m) of the PET sheet, there is no radial strain in the blisters
either. According to the Theorema Egregium or the compatibility
conditions, the parts of blisters far from the delamination fronts
should maintain Gaussian curvatures as close to zero as possible,
which helps minimize the overall strain energy. As the blisters are
curved in the hoop direction, they must have zero curvatures in the
other direction, e.g., the radial direction or the axis of symmetry of
the blister.

To validate these expectations on the geometric features of blis-
ters, 3D scans using an optical profilometer (Fig. 3A, left) and
CGMD simulations (Fig. 3A, right) were performed and compared
for two scenarios: R = 5 mm, ρ = 50 mm (Fig. 3) and R = 7 mm,
ρ = 50 mm (fig. S1). The sheet deflections along the symmetric
axes of the two blisters in Fig. 3A are plotted as dotted lines
(blister 1) and dashed lines (blister 2) in Fig. 3B, in which green
curves are from experiments and red ones are from simulations.
The sheet deflections at no blister region (line 0 in Fig. 3A) are
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plotted as solid curves in Fig. 3B as references, which are circular
arcs. The straight dashed and dotted lines in Fig. 3B indicate that
there is zero curvature in the direction for blisters 1 and 2, confirm-
ing that the no radial membrane strain argument is true.

The gap between the sheet and the spherical surface along the
periphery of the sheet is plotted in Fig. 3C. The wavelength and am-
plitude of the blister at the edge of the sheet, (λe, δe), can be mea-
sured out of this plot. To confirm that the blister has self-similar
hoop cross sections along the radial direction, we plot the normal-
ized hoop blister profiles at different radii far from the delamination
front in Fig. 3D. Note that the deflection close to the delamination
front does not have the same self-similar profile (43). The delami-
nated gap is normalized by the profile amplitude, δi such that all the
curves peak at 1. The wavelength is normalized by the estimated
wavelength of a corresponding 1D blister based on the buckling am-
plitude λ0i ≏

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LecδiðrÞ

p
(44), where Lec ¼

ffiffiffiffiffiffiffiffi
B=γ

p
is the elasto-capil-

lary length and B is the flexural rigidity of the sheet, i.e., B = Eh3/
12(1 − ν2). It is evident in Fig. 3D that after normalization, the
cross-sectional profiles at different radii collapse into a single sinus-
oidal shape, indicating that the amplitude and thewavelength of dif-
ferent hoop cross sections of a blister follow the same scaling law
with the same prefactor. Therefore, the crest curvature of a 2D
blister formed on a curved surface given by δ/λ2 is only controlled
by the elasto-capillary length Lec. This discovery offers a valuable

insight that we can treat such 2D blisters as quasi-1D blisters and
use their edge profile (λe, δe) to fully represent their shapes.

Scaling analysis
If we can derive a scaling law for Ablister, because Asheet = Acontact +
Ablister, then conformability defined in Eq. 1 can be expressed as

C ¼ 1 �
Ablister

Asheet
ð4Þ

According to Eq. 2, our task is to explore how the blister radial
extent rb, blister edge wavelength λe, and the number of blisters N
scale with given geometric parameters and material/interface
properties.

To obtain rb, we just need to find out rc according to Eq. 3.Majidi
and Fearing (31) first theoretically derived a scaling law for rc, and
Hure et al. (30) have experimentally validated this scaling law and
offered a fitted prefactor

rc ¼ 1:9ρ
γ
Eh

� �1=4
ð5Þ

It indicates that the maximum contact radius is proportional to
the radius of the spherical surface and independent of the sheet
radius. Note that the sheet is not subjected to any radial stretching
during our conforming process, so rc scales with (γ/Eh)1/4 instead of
(γ/Eh)1/2, which is for sheets under radial stretching (45, 46) In our
experiments, the Young’s modulus of the PET sheet is E = 3 GPa,
the sheet thickness is 13 μm, and the surface tension of water is γ =
72.8 mN/m, so Eq. 5 predicts the maximum contact radius to be rc =
0.07ρ. For substrates with radii of 30, 50, and 70 mm, Eq. 5 predicts
rc to be 2.1, 3.5, and 4.9 mm, respectively. In our experiments as
shown in fig. S2, we find that themaximum sheet radius of complete
contact is smaller than 3 mm, falls between 3.5 and 4 mm, and falls

Fig. 2. Experimental and simulated conformability. (A) Grayscale optical
images (left) and CGMD simulation results (right) for nine different configurations
in the top-down views. (B) Conformability plotted as a function of normalized
sheet radius R/ρ. Solid markers are from experiments, and open markers are
from simulations. Error bars represent the standard deviations of multiple trials.
The black curve is a scaling law given by Eq. 12.

Fig. 3. Geometric features of blisters in the configuration of R = 5 mm and
ρ = 50 mm. (A) Contour plots of the gap between the sheet and the spherical
substrate by experimental 3D scan (left) and CGMD simulation (right). (B) Sheet
deflection along the radial direction at fully conformed region (solid curves) and
the symmetric axes of two blisters (dashed and dotted curves). (C) The gap
between the sheet and the substrate along the periphery of the circular sheet.
(D) Normalized hoop profiles at different radial positions of the same blister in
an experiment. The black curve corresponds to a sinusoidal shape given by
[1 + cos(2πrθ/5)]/2. The inset illustrates the circumferential cuts far from the de-
lamination front to obtain the plotted profiles.
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between 5 and 6 mm for the substrate with radii of 30, 50, and 70
mm, respectively. Therefore, our experimental observations of the
maximum sheet radius of complete contact are almost consistent
with Eq. 5 predictions. To further visualize the linear relationship
between rc and ρ, we plot our experimentally measured rc (fig. S2)
versus ρ in Fig. 4A, which shows that the experimental data scatter
around the linear curve. The scatter does not show a correlation
with the sheet radius and may be attributed to the initial imperfec-
tions of the PET sheet (e.g., preexisting folds or wrinkles). In
summary, the existing scaling law for rc is validated by our
experiments.

There is no available scaling law for λe, so we have to find it by
ourselves. We recall that for a 1D blister on a flat surface, its crest
radius of curvature is controlled by the elasto-capillary length (44)

λ2

δ
≏ Lec ð6Þ

For 2D blisters on spherical surfaces, the radius of the substrate ρ
can play a role in the bending of the blisters and affect the prefactor
of Eq. 6. Hence, we analyze 2D blisters in experiments and simula-
tions to study the effect of substrate radius. For the simulation
results, the average edge profiles λe and δe were extracted out of
10 independent simulations. The range of R/ρ was 0.1 to 0.28 in
simulations. In experiments, the λe and δe of every blister were mea-
sured out of the 3D optical profilometer scans (Fig. 3 and fig. S1).
For the blisters that we investigated, we plot δe as a function of
λ2e=Lec in Fig. 4B and found a strong linear correlation between
them with a prefactor of 0.06. According to the mechanics of 1D
blisters (44), the end-to-end compressive displacement

Δ ≏ δ2e=λe, combined with Eq. 6, Δ can be estimated by

Δ ≏
λ3e
L2
ec

ð7Þ

For an intact circular sheet with N different 2D blisters, the total
hoop compression released by blistering is therefore the summation
of the individual compressive displacement

Δtotal ¼
XN

i¼1

λ3e;i
L2
ec

ð8Þ

Such hoop compression is induced by the geometric incompat-
ibility between the flat sheets and the spherical substrates. Assuming
no membrane strains, the following hoop compression must be ac-
commodated (47)

Δtotal ¼ 2π R � ρsin
R
ρ

� �

≏
R3

ρ2
ð9Þ

where Taylor expansion is used.
Combining Eqs. 8 and 9, we can obtain the following scaling re-

lation

XN

i¼1
λ3e;i ≏ L2

ec
R3

ρ2
ð10Þ

To validate Eq. 10, we plot our experimental results in Fig. 4C,
where we see a linear relation with a fitted coefficient of 58.8 and an
R2 of 0.92, which is within a reasonable range with the analytically
derived coefficient of 41.4 assuming 1D blisters. Considering that
the experimental system has imperfections in the PET sheets, sto-
chastic conforming process, multistable states, and measurement
uncertainties, an R2 of 0.92 of the fitted results signifies a reasonable
linear correlation. Therefore, a scaling law for λe is successfully ob-
tained and validated.

The last missing scaling law is for N. Performing total energy
minimization is a potential approach, but the energy close to the
delamination fronts is difficult to estimate because of the complex-
ity of the 3D curvature (41, 42). Instead, we draw inspiration from
another study. Xu et al. (48) have derived that the wrinkling wave
number of a growing circular aquatic plant leaf floating on water is
proportional to the leaf radius, i.e., Nwave~R(ρwg/B)1/4, where ρw is
the mass density of water and g is the gravitational acceleration. The
characteristic length, (B/ρwg)1/4, reveals that the critical wrinkling
wave number of a circular floating lotus leaf is governed by the com-
petition between the water pressure applied on the leaf and the
bending stiffness of the leaf. On the basis of our experimental and
numerical results, we found the following empirical relation for the
number of blisters

N ≏
R � rc

LðE; h; γÞ
≏

R � rc
Lec

ð11Þ

where L(E, h, γ) is a length scale that controls the buckle formation
and the buckle number. In our problem, the compression is induced
by geometric mismatch instead of leaf growth, while the constraints
come from the interface adhesion instead of the water pressure
applied on the leaf. Therefore, we selected the elasto-capillary
length to be our characteristic length, i.e., L(E, h, γ) = Lec. This
scaling law is plotted in Fig. 4D, which suggests a strong linear

Fig. 4. Validations of scaling laws represented by black lines. (A) Validation of
the scaling law in Eq. 5. (B) Validation of the scaling law in Eq. 6. (C) Validation of
the scaling law in Eq. 10. (D) Validation of the scaling law in Eq. 11. Note that N in
these aggregated results does not need to be an integer.

Liu et al., Sci. Adv. 9, eadf2709 (2023) 19 April 2023 5 of 12

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversity of T
exas A

ustin on A
pril 28, 2023



relation with a fitted coefficient of 2.75 and an R2 of 0.98. Note that
in both experiments (solid markers) and simulations (open
markers), N varied from one test to another under the same condi-
tion. As a result, the markers in Fig. 4D can be non-integers and
have error bars.

To validate this scaling law for various sheet thicknesses and
moduli, we adopted the CGMD simulation as it has been validated
by experiments. We performed simulations for fixed R = 9 mm and
ρ = 30 mm, but varied E from 0.3 to 30 GPa and h from 3.25 to 52
μm. The maximum contact radius rc in simulations was extracted
and plotted against the prediction of Eq. 5 in Fig. 5A. Note that dif-
ferent from all other cases, the central region of the 52-μm-thick
sheet failed to achieve full contact to the substrate after the water
was fully drained. As a result, the maximum contact radius for
this case is no longer located in the central region, as illustrated in
Fig. 5D. It is validated that Eq. 5 can well predict the maximum
contact radius rc. The buckle number of these cases was counted
and plotted in fig. S4, which deviates from the prediction of Eq.
11 when the sheet thickness or modulus is far from the 3 GPa or
13 μm, respectively. It indicates that the choice of L(E, h, γ) = Lec
has limitations and a more rigorous relationship between N and R
should be derived in the future. Although Eq. 11 cannot accurately
predict the number of buckles for a wide range of sheet thicknesses
and moduli, it highlights the linear relationship between N and R −
rc in a limited regime of interest to this study. Besides, the buckle
number has a limited effect on the delaminated area within the
chosen thickness and modulus ranges because the delaminated
area (Ablister) is proportional to N2

3 by combining Eqs. 2, 3, and 10.

Conformability of intact sheets
With the scaling relations for rc, λe, and N established, we are ready
to estimate the conformability C. Assuming that N identical blisters
appear for given sheet and substrate radii, the blisters have identical

λe and extend from the edge of the sheet to rc. Combining Eqs. 2 to
4, 10, and 11, we can obtain

CðR; ρÞ ¼
1 ;R , rc

1 � α ðR� rcÞ
5
3

Rρ2=3 ;R . rc

(

ð12Þ

where α is an unknown coefficient. Normalizing R and rc by ρ, we
then obtain

CðRÞ ¼
1 ;R , rc

1 � α ðR� rcÞ
5
3

R
;R . rc

(

ð13Þ

where R ¼ R=ρ is the only variable in this equation and
rc ¼ 1:9ðγ=EhÞ1=4 is a dimensionless constant determined by mate-
rial/interface properties, which equals 0.07 in our system. Equation
13 is plotted as the black curve in Fig. 2B with a fitted α = 1.75, which
offers an excellent prediction of conformability when compared
with experimental and simulation results. Equation 13 confirms
our experimental/simulation observations (2) and (4) that R/ρ is
the only controlling parameter for the conformability of a thin
sheet to a rigid spherical surface and the two have a monotonic re-
lationship. We also find that rc is a good prediction of the critical
size mentioned in observation (3), beyond which blisters will
emerge to accommodate the geometric mismatches between a flat
sheet and a spherical surface.

To investigate the effects of sheet modulus and thickness on con-
formability, we also plot the CGMD simulation results in Fig. 5 (B to
D). It is evident that the conformability of the sheets can be well
predicted by Eq. 13 for sheet modulus ranging from 0.3 to 30
GPa when sheet thickness is fixed to be 13 μm, as shown in
Fig. 5B, and for sheet thickness ranging from 3.25 to 39 μm when
sheet modulus is fixed to be 3 GPa, as shown in Fig. 5C. One excep-
tion is the sheet of 52-μm thickness and 3-GPa modulus, whose

Fig. 5. Effects of sheetmodulus and thickness. (A) Validation of the scaling law given by Eq. 5. (B) Validation of the scaling law given by Eq. 13 for different sheet moduli
at a fixed sheet thickness of 13 μm. E0 = 3 GPa. (C) Validation of the scaling law given by Eq. 13 for different sheet thicknesses at a fixed sheet modulus of 3 GPa. h0 = 13 μm.
(D) Four representative simulation results for different sheet moduli and sheet thicknesses. The red dashed circle in each case denotes the maximum contact radius.
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center failed to conform to the substrate, as shown in movie S2. It
indicates that Eq. 13 is not applicable to sheets whose bending
energy has the same order of magnitude as the adhesion energy,
i.e., BπR2/ρ2~γπR2. In summary, the conformability prediction
Eq. 13 is applicable when B ≪ γρ2.

Conformability enhancement by radial slits
For a circular sheet of radius R larger than rc trying to conform to a
spherical substrate of radius ρ, the formation of edge blisters is det-
rimental to conformability. As hoop compressive strain can be re-
leased by introducing radial slits (without removing any materials),
it is the simplest alteration to the circular sheet to enhance conform-
ability. Intuitively, more and longer slits are more effective.
However, from the perspective of device integrity, which is critical
for both circuit design and fabrication, it is useful to investigate how
the conformability varies with cut number M and cut length l such
that we can provide a rational guideline for the slit designs.

We first carried out experiments and CGMDmodeling to quan-
tify cut-facilitated conformability as summarized in Fig. 6. The ex-
perimental and numerical results are compared in Fig. 6A for three
different cut-facilitated designs, (l, M ) = (2 mm,3), (3 mm,2),
(3 mm,3), for the configuration of R = 7 mm and ρ = 50 mm. It
can be discovered that when M = 3, despite different l, all the big
edge blisters disappear. However, when M = 2, one edge blister
still exists, indicating that M = 3 is the minimum number of slits
to eliminate edge blisters, i.e., Mmin. The hoop compression that
must be accommodated by each slit can be estimated as Δtotal/
Mmin, where Δtotal is the hoop compression induced by the intrinsic
geometric mismatch as given in Eq. 9. Although all edge blisters dis-
appear when M = 3, small conical blisters emerge at the tips of the
slits because of the inward rotation of the slit edges to accommodate
the hoop compression during conformation. Cone topology sug-
gests that its apex angle is negatively correlated with the hoop com-
pression released by it and positively correlated with the cut length,

Fig. 6. Cut-facilitated conformability. (A) Schematics, 3D optical scans, and CGMD simulations for cut-facilitated designs with different cut lengths l and cut numbersM
for the configuration of R = 7 mm and ρ = 50 mm. The last column plots the extracted sheet-substrate gap along the cuts from the sheet center, which is helpful for
determining the sizes of the buckle delaminations at the tips of the slits. (B) Conformability variation with the cut number and the cut length in the experiment and
simulation for the configuration of R = 10 mm and ρ = 30 mm. (C) The schematic (left) of curved cut design and simulated conformability result for R = 15 mm and ρ = 30
mm with 12 curved cuts.
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as illustrated in fig. S5. If the apex angle is below a critical value, then
the sheet-substrate interfacial adhesion is not strong enough to keep
the sheet conformed, so the blister around the slit tip emerges. As a
result, more cuts or longer cuts can lead to better global conform-
ability. This is consistent with observations in the last column of
Fig. 6A. When M = 3 is given, the sheet with l = 2 mm (row 1) ex-
hibits larger (both width and height) slit tip blisters than the sheet
with l = 3 mm (row 3). For fixed cut length (l = 3 mm), blisters with
fewer slits (M = 2, row 2) have a larger slit tip blister height than the
ones inM = 3 (row 3), although the edge blister in row 2 has already
released some hoop compression.

Similar to intact sheets, we conducted experiments and CGMD
simulations to systematically quantify the effects of the cut number
and cut length.We selected the case of R = 10mm and ρ = 30 mm as
it has the worst conformability (44%) among all the cases that we
studied. Optical images are displayed in fig. S3. We failed to
handle sheets with l = 9 mm, M = 6 and l = 9 mm, M = 8 given
their highly compromised integrity due to very long cuts. Three in-
dependent experiments and five independent simulations were
carried out for each configuration, and the average conformability
is summarized as contour plots for both experiments and simula-
tions in Fig. 6B, where the horizontal axis represents the cut length,
the vertical axis denotes the cut number, and the color indicates
conformability. The two contour plots are within a 5% difference
and verify that the conformability can be best enhanced when in-
creasing both the length and the number of cuts. Fixing one and
increasing the other can reach a plateau of conformability and
hence is not the most effective.

Design strategies for optimal slits can be selected according to
different criteria. To achieve 100% conformability, we just need to
ensure that there is no intact zonewith a radius exceeding rc. So first,
the slit must be cut starting from the edge and up to rc

l ¼ R � rc ð14Þ

Then, the distance between two adjacent slits must be less than
2rc, so the cut number can be determined as

M ¼
2πR
2rc

ð15Þ

This estimation would yield a large number of cuts, which cor-
responds to a conservative strategy that aims to achieve extreme
conformability.

In practice, however, too many slits compromise device perfor-
mance and increase handling difficulties. For example, given R =
10 mm and ρ = 30 mm, Eq. 14 suggests l = 7.9 mm, and Eq. 15
gives M = 15. However, in experiments, M = 8 was already difficult
to handle in our experiments. An alternative design strategy is to
aim for 90% conformability, which can be well achieved when M
= N. According to Eq. 11, we can select

M ¼ N ¼ 2:75
R � rc
Lec

ð16Þ

where the coefficient came from fitting in Fig. 4D. This equation
gives M = 7 for the case of R = 10 mm and ρ = 30 mm. From the
contour plot in Fig. 6B, M = 7, l = 8 mm (white triangle) can give us
a final conformability higher than 90% in both experiments and
CGMD simulation. It is already a notable improvement compared
with the intact circular sheet (44%). We performed CGMD

simulation to examine whether Eq. 16 works for other geometric
conditions. For two other cases of sheet and substrate radii R =
14 mm, ρ = 50 mm and R = 14 mm, ρ = 70 mm, nine cuts with
10.5-mm length and seven cuts with 9-mm length were derived
from the second design guideline, respectively. We obtained con-
formability of 94.2 and 95.3% based on the CGMD simula-
tion results.

Therefore, the guidelines for the cut-facilitated designs are sum-
marized as follows: (i) Choose the cut length to be R − rc. (ii) If 100%
conformability is desired, then the cut number should be πR/rc. (iii)
If 90% conformability is adequate, the recommended cut number is
2.75(R − rc)/Lec.

DISCUSSION
The conformability of a stiff thin sheet to a nondevelopable surface
is practically meaningful for displays on 3D curved surfaces and
body-conformable high-density electronics. In this study, we
investigate the conformability of a flat circular sheet to a rigid
spherical substrate with water-assisted conforming and adhesion.
Experiments and CGMD simulations for various combinations of
sheet and substrate radii were conducted to quantify not only the
overall conformability but also the number and profiles of blisters.
Mechanics-guided scaling laws were derived and validated. We first
validated the radius of the maximum contact zone,
rc = 1.9ρ(γ/Eh)1/4, beyond which edge blisters will form. Next, for
film radius larger than rc, we validated that the 2D blisters on spher-
ical substrates can be regarded as quasi-1D blisters, and a scaling
relation Nλ3e ≏ R3L2

ec=ρ
2 can be derived on the basis of the

knowledge of 1D blisters and the geometric confinement. We also
found the number of blisters has a linear relationship with the
sheet radius, N~(R − rc)/Lec. At last, the overall conformability
can be estimated by a simple but nonlinear relation
C(R, ρ) = 1 − 1.75(R − rc)5/3/(Rρ2/3) for film radius larger than rc
when B ≪ γρ2. This fundamental discovery enables us to propose an
easy-to-implement strategy to improve conformability through
radial cuts without removing any materials from the sheet. While
edge blisters can be eliminated by radial cuts, smaller blisters
could form at the tips of the slits. The increasing cut number or in-
creasing cut length can monotonically improve the conformability,
although the enhancement is the most effective when the two in-
crease together. Eventually, we propose a rational design guideline
for the cut-facilitated conformability: l = R − rc for the cut length
and M = πR/rc for the cut number if complete contact is desired, or
M = 2.75(R − rc)/Lec if 90% conformability is adequate.

Simple linear slits result in overlapping after the conformation,
as shown in fig. S3. To avoid overlapping, we propose a curved cut
design by removing some materials to match the hoop compression
due to the conformation. Because the hoop compression is a func-
tion of r, the opening of each cut is therefore a function of r, as
shown in the left schematic of Fig. 6C. On the basis of our design
guidelines, the cut must start from r = rc, so we obtained

wðrÞ ¼
0 r � rc

0:73πLec
r� ρsinr

ρ
R� rc

r . rc

(

ð17Þ

Simulation is performed to validate this design for R = 15 mm
and ρ = 30mmwith 12 curved cuts following Eq. 17. Its conforming
process is shown in movie S3, and the final conformability is shown
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in Fig. 6C (right). Compared with Fig. 6A, blisters at the tips of the
cuts disappear. Although two edge blisters emerge, the overall con-
formability can still reach 96.5%.

In this study, we examined the conformability and methods for
enhancing conformability of flexible sheets on a rigid spherical
surface. The findings of this work can be used as a conservative es-
timate for conformability on soft substrates, which have the ability
to deform and adapt to the electronics. The conformability would
be higher when substrate radius of Gaussian curvature is larger than
the undeformed configuration. However, predicting the exact 3D
conformability on soft, nondevelopable surfaces requires more in-
depth research. A 2D analysis of conformability on soft substrate
has been demonstrated in our previous study (49).

MATERIALS AND METHODS
Experimental setup and the conforming process
The setup of a single experiment consists of a circular PET sheet,
about 10 ml of black ink, and a hemispherical plastic shell as the
rigid substrate. To ensure the flatness of the PET sheets and avoid
folding during fabrication, laser cutting was used to pattern circles
with different radii on a large PET sheet. To enable ink draining for
fast conforming, a 0.8-mm-diameter hole was drilled at the center of
the plastic shells. A customized pipette was developed to control the
draining pressure and drain the excessive ink from the plastic shell
through the hole. The draining pipette was customized by gluing a
suction cup at the tip of a plastic transfer pipette. The suction cup
guaranteed intimate contact between the pipette and the plastic
shell for a smoother draining process. As a result, the draining
process is controllable.

The conforming process is illustrated in Fig. 1D. First, 10 ml of
black ink was added to the concave side of the hemispherical shell,
and a circular sheet was placed on the ink surface. Because of the
surface tension, the ink cannot leak from the small draining hole.
Second, the draining pipette was applied to the outer surface of
the hemispherical shell and kept draining for 30 s. Third, the drain-
ing pipette was gently slipped away from the draining hole and then
removed from the hemispherical shell. Last, after the circular sheet
achieves a stable state, the plastic shell with a circular sheet was
placed on a lighting panel. The optical images were taken from
the top-down view. For each geometry, three independent experi-
ments were run to obtain the average conformability.

Image processing
A MATLAB code was programmed to process the images and esti-
mate the conformability of the PET sheet. The optical images were
first cropped to remove unnecessary regions, so the code only
focuses on the sheet region for processing time reduction. Then,
the full-color space of the images was converted to grayscale, and
the region growth function (50) was implemented to capture the
delaminated region. After that, binary pictures with black and
white colors only were generated to show the status of in-contact
or out-of-contact, respectively. At last, the contact area can be cal-
culated pixel by pixel. The wavelength of buckle delamination was
measured manually from the optical images.

Height profile by 3D scanning
Although the wavelength and the conformability can be measured
from the optical images in experiments, we cannot obtain the out-

of-plane deflection of the thin sheet. The height profiles in Fig. 3A
and fig. S1A were measured by an optical profilometer (Keyence
VK-X1100), but it cannot be conducted for arbitrary geometry of
sheet and substrate due to the height limitation. Therefore, we
only investigated sheets of two different radii R = 5 and 7 mm on
a substrate of 50-mm radius. Because nontransparent objects are re-
quired for laser scan, the experimental setup was modified. An ul-
trathin layer of black ink was spray-coated and dried on the PET
sheets to colorize the sheets. The hemispherical shell was cut into
a spherical cap with a height of 5 mm and could be scanned
under low magnification. The 3D scanning must be finished
within 30 min to ensure the attachment of the sheet to the spherical
cap because the laser accelerates the water evaporation and intro-
duces thermal perturbation to the system, which can significantly
affect the buckling morphology if water is completely evaporated.

After the height profile was obtained, postprocessing of the
height profile data was performed. First, the few missing height
data due to scanning errors were filled by interpolating neighboring
data. Second, the spherical substrate was identified on the basis of
the sheet regions in full contact. Last, we subtracted the spherical
substrate from the height profile, so the contour plot of the gap
between the sheet and the substrate was obtained.

MD simulation
For complicated contact problems, convergence is a challenge for
the finite element method and usually requires high computational
costs. Hence, we selected CGMD to simulate the sheet-conforming
process in the experiment. Both the sheet and substrate are explicitly
modeled in the simulation, but water is implicitly considered to
further reduce the computational cost. Both the sheet and substrate
are modeled by lattice-spring models. The driving force of the con-
forming process comes from water drainage, so an equivalent uni-
formly distributed load is first applied in a circular region and then
removed after the sheet contacts the substrate. In the following sub-
sections, we briefly introduce the methods andmodels for the sheet,
substrate, water, and their interactions.

Lattice-spring model
The sheet is modeled by a series of interactive particles xi (i ∈
1⋯Nv), which forms Ns bonds and Nt triangular elements, as
shown in fig. S6A (39, 51–53). The mechanical property of the
sheet is governed by the area potential Varea, volume potential
Vvolume, in-plane stretching potential Vin−plane, and bending poten-
tial Vbending. The total potential energy of the sheet can then be de-
scribed as

VðxiÞ ¼ Varea þ Vvolume þ V in� plane þ Vbending ð18Þ

As shown in fig. S6B, the in-plane stretching of the sheet is
modeled by the length variation of particle bonds, so the stretching
energy Vin−plane can be expressed by

V in� plane ¼
X

i[1���Ns
ks ðli � li0Þ2 ð19Þ

where ks is the stretching spring constant and li and li0 are the
current spring length and its original length in equilibrium.

The area potential energy Varea is used to constrain the area
change of the sheet that reflects the conservation of surface area
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for the sheet

Varea ¼
ka ðA � AT0Þ

2

2AT0
þ
X

i[1���Nt

kd ðAi � A0Þ
2

2A0
ð20Þ

where ka and kd are the global and local area constraint coefficients,
respectively, A and AT0 are the total area and the original total area
of the sheet, respectively, andAi andA0 are the area element and the
original area of each triangular element, respectively. Note that the
area potential energy Varea consists of two parts: The first term con-
strains the total area of the entire sheet; the second term regulates
the local area of each element. In addition, the relationship between
the in-plane stretching modulus K of the particle sheet and the
global area ka, local area constraints coefficients kd, and spring cons-
tant ks can be derived as (54, 55)

K ¼ ka þ kd þ
ffiffiffi
3
p

ks ð21Þ

The volume potential Vvolume is used to control the volume
change

Vvolume ¼
kv ðV � VK0Þ

2

2VK0
ð22Þ

where kv is the volume constraint coefficient and V and VK0 are the
total volume and the original volume of the sheet, respectively.

The bending energy can be described by the variation of the di-
hedral angle between two adjacent elements, as shown in fig. S6C.
The bending potential Vbending

Vbending ¼
X

i[1���Ns
kbend ½1 � cosðθi � θi0Þ� ð23Þ

where kbend is the bending constant, θi is the dihedral angle between
two adjacent elements with shared edge i, and θi0 is the original di-
hedral angle. Note that the bending constant kbend is associated with
the macroscopic bending rigidity B of the sheet based on the Hel-
frich model (54, 55), which can be written as B ¼

ffiffiffi
3
p

kbend=2. In our
study, the sheet thickness is far less than the sheet radius, so the con-
tribution of Vvolume is negligible. Existing studies also show that the
sheet buckling can be well captured even not considering the area
constraint Varea (56, 57). Therefore, in our simulation, we only con-
sider the in-plane stretching Vin−plane and bending Vbending in the
total potential energy. The sheet elasticity is governed by the
bending constant kbend and stretching constant ks of the lattice-
spring model. The motion of all particles obeys Newtonian
mechanics.

Coarse-grained molecular dynamics
CGMD simulation has proved its capability in simulating both the
large-scale continuum mechanics and the atomistic Monte Carlo
simulations (58–60), such as calculating the elastic constants (61),
simulating the deformation of an origami plate (62), and simulating
the transport of nanoparticle-based drug carriers in blood flow (39).
Therefore, we performed CGMDwith the large-scale atomicmolec-
ular massively parallel simulator (63) to model the conforming of
thin sheets to spherical substrates.

In the CGMD model, the substrate was modeled by a spherical
thin shell consisting of the discretized particles, and these particles
were uniformly distributed on the spherical surface using the
method proposed by Deserno (64), as shown in Fig. 1E. The sub-
strate serves as a rigid body in the experiment, so all the potential

energies among the interactive particles of the substrate are neglect-
ed. The circular sheet modeled by the lattice-spring model was
placed on the top of a hemispherical container and parallel to the
X-Y plane. Then, a uniformly distributed load was applied around
the center of the sheet to model the driving force from the water. As
the sheet gradually conformed to the substrate, the distributed load
was removed, but the conforming of the sheet continued because of
the existence of gravity, inertia, and adhesion. To simulate the ad-
hesion provided by interfacial water, the Lennard-Jones potential
with parameters σ and ϵ is used and calibrated.

Constant temperature CGMD simulations were carried out at
300 K using the canonical ensemble (NVT) with a Langevin ther-
mostat with a time step of 0.1. A gravity load was imposed on each
particle. The cutoff parameter was set to be 2σ for the Lennard-
Jones potential. After the sheet conforms to the substrate, the sim-
ulation kept running for 2 × 107 time steps, which is long enough to
achieve equilibrium. When the total energy achieves equilibrium,
the sheet morphology was considered as its final stable morphology.
It was used in the subsequent analysis, including conformability cal-
culation, wavelength, and amplitude measurement for each buckle
delamination. In addition, to eliminate the random velocity effect,
five independent models with different initial velocities are per-
formed for each combination of sheet and substrate radii. The
final quantitative results for each configuration were obtained by av-
eraging the results of the five independent models.

To perform the CGMD simulation, it is crucial to correctly de-
termine the parameters of the properties based on the macroscopic
properties of the physical system. For example, the stretching spring
constant can be determined by ks and the bending constant is cal-
ibrated from experiments. Details can be found in the Supplemen-
tary Materials. In addition, the effect of mesh size was checked, and
a 0.2-mmmesh size was selected to perform all CGMD simulations.
To avoid unexpected fluctuations affecting our results, the final
stable morphology was defined as the average morphology of the
last 50 steps. Details about the mesh convergence study can be
found in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S9
Tables S1 to S4
Legends for movies S1 to S3

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S3
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1. Curved Design of the Cut

For cut-facilitated design, the cut opening can be nonlinear for better coverage on the target 

substrate. The cut opening can be estimated by pure geometric relations. Assuming no 

radial stretching applied on the thin sheet, the entire sheet is subjected to hoop compression, 

which is a function of the radial coordinate 𝑟 . Equation (9) offers the total hoop 

compression  

Δ(𝑟) = 2𝜋 (𝑟 − 𝜌 sin
𝑟

𝜌
) (S1) 

If the cut is a simple parallel narrow slit, such a compression induces sheet overlapping 

instead of buckle delamination, as shown in Fig. S3. Here, we propose a curved design to 

achieve a high coverage without overlapping by considering the hoop compression in Eq. 

(S1). Assuming 𝑀 cuts of length 𝑙 are made to improve the conformability of a sheet of 

radius 𝑅 > 𝑟c, we can obtain the slit opening, i.e., the material to be removed at each cut is 

𝑤(𝑟) =
Δ(𝑟)

𝑀
=

2𝜋(𝑟−𝜌 sin
𝑟

𝜌
)

𝑀
(S2) 

Using the 90% conformability strategy Eq. (16), the cut opening can be obtained 

𝑤(𝑟) = {

0 𝑟 < 𝑟𝑐

0.73𝜋𝐿ec

𝑟−𝜌 sin
𝑟

𝜌

𝑅−𝑟𝑐
𝑟 > 𝑟𝑐

(S3) 

It indicates that the cut starts at 𝑟 = 𝑟c and is curved as shown in Fig. 6C. Simulation is 

performed to validate this design for a sheet with a radius of 15 mm conformed to a 

spherical surface of a radius of 30 mm, as shown in Fig. 6C. The thin sheet has 12 curved 

slits of 12.9 mm long. It conformed well to the spherical substrate, and its conformability 

is 96% without any overlapping. Movie S3 shows the entire conforming process and final 

morphology in simulation.  

2. Model Calibration and Reduced-Scale Structural Model

For thin-sheet structures, on the macroscopic scale, finite element methods usually 

have difficulties in separating the contribution of different deformation types, e.g., 

stretching and bending. Hence, molecular dynamics (MD) simulations are more suitable to 

model the water-assisted transfer process. However, using MD simulations at a 



microscopic scale can be time-consuming and costly due to the large number of atoms and 

the small timestep for integration. To overcome these challenges, the experimental setup 

was first scaled to the atomic scale, and then a particle-based coarse-grained approach was 

employed to model the deformable sheet at the atomic scale in this work. Following coarse-

grained molecular dynamics (CGMD), one particle can represent a part of the scaled sheet 

to reduce the degrees of freedom in the system. The mechanical properties in both 

simulation and physical space are listed in Table S1. 

Table S1 Material parameters used in CGMD and their corresponding physical values 

Parameters Simulation Physical 

Length scale 1 1 × 10-4 m 

Force scale 1 1.70 × 10-3 N 

Surface tension 3.970 × 10-3 7.200 × 10-2 N m-1 

Adhesion energy 7.940 × 10-3 1.440 × 10-1 N m-1 

Stretching constant 1500 2.546× 104 N m-1 

Bending constant 4.313 7.171 × 10-7 N m 

Since the unit system in simulation (e.g., time, temperature, amount of substance, 

length, etc.) is totally different from the physical values in the experiments, a calibration 

of the material parameters is required. Three key material properties, the sheet bending 

rigidity, stretching stiffness, and adhesion energy, must be correctly converted in the 

simulation because they are governing the buckling delaminations. The material 

parameters in our simulation were calibrated based on a top-down method to achieve 

experimental observations by a trial-and-error heuristic search in CGMD. 

We first determine the length scaling factor: 1 mm in the experiment corresponds 

to 10 in the simulation. Taking the case of ρ = 50 mm and R = 5 mm in the experiment as 

an example, in the simulation, 500 was calculated to be the scaled radius of the substrate, 

and the scaled radius of the sheet was calculated to be 50. In the simulation, we selected 

the average distances of the discretized particles (the mesh size) in the sheet and substrate 

to be 2 and 1.5, respectively. The equilibrium distance σ between sheet particles was set to 

be 2, at which the potential energy between the sheet particles was zero, while the cutoff 

was set to be 2σ. 



We then find an initial combination of the sheet bending rigidity, stretching 

stiffness, and adhesion energy as a starting point for our parameter calibration. The 

stretching coefficient (𝑘s) and bending coefficient (𝑘bend) were first calculated based on 

the Helfrich model. 47, 48 In the Helfrich model, 𝑘s =
𝐸ℎ

30.5(1−𝑣2)
, and  𝑘b =

2𝐸ℎ3

12×30.5(1−𝑣2)
, where 𝐸 is Young’s modulus, ℎ is thickness, and 𝑣 is the Poisson ratio. The 

c

potential well depth (ε) between substrate and sheet particles in the CGMD model governs 

the interfacial adhesion. To calculate the potential well depth, a sheet with a radius of 5 

mm was placed at a distance σ above a square plate with a side length of 15 mm, as shown 

in Fig. S7. The adhesion energy was the total potential between the sheet particles and the 

substrate particles in the CGMD model. We then obtained an initial ε, and eventually, we 

found ε = 0.16 offered the adhesion energy per unit area of 0.144 J m-2. Note that if the 

mesh size changes, the potential well depth must be recalibrated. However, this set of 

material properties was not the correct material parameters in simulation space since other 

units affected the unit conversion for the force unit. Therefore, it is essential to find the 

correct unit conversion for the forces.  

After that, we performed a trial-and-error heuristic search to find the correct 

combination of 𝑘s, 𝑘b, and ε simultaneously employed them as material parameters. The 

correct property must achieve approximately the same sheet edge deflection, buckling 

number, and sheet conformability as the experiments. We performed this search based on 

two cases, sheets with radii of 5 mm and 7 mm on the substrate with a radius of 50 mm, as 

shown in Fig. 3 and Fig. S1. The three macroscopic behaviors of both cases by CGMD 

simulation agreed well with their corresponding experimental results. Based on the 

physical parameter shown in Table S1, the calibrated stretching coefficient 𝑘s and bending 

coefficient 𝑘bend  were 1500 and 4.313 for the lattice-spring model, respectively. The 

potential well depth (ε) between the substrates and the sheet particles is determined by 

adhesion energy per unit, as shown in Fig. S8. The equilibrium distance σ between the 

substrate and the sheet particle was set to be 0.2 mm. These calibrated parameters were 

used in all other cases. To demonstrate the validity of this combination of material 

parameters in simulation, the normalized maximum radius of complete contact �̅� =



1.9(𝛾 𝐸ℎ⁄ )1 4⁄  can be calculated to be 0.068 in simulation and 0.070 in physical

experiments. The error came from the adhesion energy calculation in simulation but is 

reasonably small. 

In addition, the size scaling and top-down method will take two scaling factors: the 

length scaling factor, 𝐶length and the force scaling factor, 𝐶force. The length scaling factor 

can be written as  𝐶length =
𝐿simulation

𝐿physical
= 1 × 104 m−1, where 𝐿simulation and 𝐿physical are

the unit length in the simulation and physical space, respectively. The force scaling factor 

can be expressed as 𝐶force =
𝐹simulation

𝐹physical
= 5.88 × 10−4 N−1 , where 𝐹simulation  and

𝐹physical are the unit force in the simulation and physical space, respectively. Finally, based 

on the two scaling factors, the results from the simulation scale can be transformed into the 

experimental scale. In this work, we consider three types of substrate radii and a wide range 

of different sheet radii as listed in Table S2. 

Table S2 Geometric parameters of substrate and sheet simulated by CGMD 

Simulation Physical (mm) Sheet radius-to-

substrate radius ratio Substrate radius Sheet radius Substrate radius Sheet radius 

300 

30.0 

30 

3.0 0.10 

40.0 4.0 0.13 

50.0 5.0 0.17 

60.0 6.0 0.20 

70.0 7.0 0.23 

80.0 8.0 0.27 

90.0 9.0 0.30 

100.0 10.0 0.33 

500 

35.0 

50 

3.5 0.07 

50.0 5.0 0.10 

70.0 7.0 0.14 

100.0 10.0 0.20 

120.0 12.0 0.24 

140.0 14.0 0.28 

700 35.0 70 3.5 0.05 



70.0 7.0 0.07 

90.0 9.0 0.10 

100.0 10.0 0.14 

120.0 12.0 0.17 

140.0 14.0 0.20 

Besides, we studied the effect of the mesh size. In the above simulations, the 

distance of the discretized particles in the sheets (the mesh size) was selected to be 2 based 

on previous experiences. To study how the mesh size affects the sheet buckling, we took a 

sheet with a radius of 5 mm and a substrate with a radius of 50 mm as an example 

(Corresponding to a sheet with a radius of 50 and a substrate with a radius of 500 in 

simulations, and see simulation parameters in Table S3 for details). We simulated the 

sheets conforming to the spherical substrates with four different mesh sizes, 0.5, 1, 2, and 

4. We first calibrated the potential well depth ε and plotted it as a function of the mesh size,

as shown in Fig. S9A. Then, five independent models were simulated for the same sheet 

and substrate radius. Their conformability is plotted in Fig. S9B, and their edge deflections 

are plotted in Fig. S9C. It can be observed that the mesh size does not play a significant 

role in these macroscopic buckling behaviors. Therefore, we choose 2.0 as the mesh size 

for all the following studies.  

Table S3 The model parameters for the thin sheet with different mesh sizes 

Mesh size 
Particle 

number 
Particle mass Epsilon Sigma Cut off 

0.5 32866 0.0258 0.010 2.0 4.0 

1 8424 0.1007 0.028 2.0 4.0 

2 2151 0.3945 0.085 2.0 4.0 

4 610 1.3912 0.230 2.0 4.0 

3. Computational Method for Cut-Facilitated Design

For cut-facilitated design, we first simulated the experiments using the above 

calibrated potential parameters to validate our simulation. Taking the sheet with a radius 

of 7 mm and the substrate with a radius of 50 mm as an example, we simulated l= 2 mm 



and M = 3, l = 3 mm and M = 2, and l = 3 mm and M = 3 to compare their sheet 

conformability, contour plots of the gap between the sheet and the substrate, and the gap 

between the sheet and the substrate along the boundary of the circular sheet. In simulations, 

the sheet radius is 70 and the substrate radius is 500. The cut length l = 2 mm and 3 mm 

corresponds to l = 20 and 30, respectively. 

After validation, to study how the cut-facilitated design affects the sheet 

conformability, we consider different cut lengths and cut numbers for a sheet with a radius 

of 10 mm on a substrate with a radius of 30 mm (Corresponding to a sheet with a radius of 

100 and a substrate with a radius of 300 in simulations). Table S4 lists the cut length and 

cut number we investigated by simulation. The mesh size of 2.0 is used in all CGMD 

simulations. Their conformability is calculated and plotted in Fig. 6C. 

Table S4 Different combinations of cut length and cut number 

The substrate with a radius of 300 and the thin sheet with a radius of 100 

Cut length l Cut number M 

10 2 3 4 6 8 10 

30 2 3 4 6 8 10 

50 2 3 4 6 8 10 

70 2 3 4 6 8 10 

90 2 3 4 6 8 10 



Figure S1. The gap between the sheet and substrate obtained by experiment and 

CGMD. (A) Contour plots of the gap between the sheet and the substrate by optical 3D 

scan (left) and CGMD simulation (right) for the case of R = 7 mm and ρ = 50 mm. (B) 

Corresponding sheet deflection along the radial direction at fully conformed region (solid 

curves) and the axes of symmetry of two buckles (dashed and dotted curves). The gap 

between the sheet and the substrate along the edge of the sheet of five optical 3D scan 

experiments (blue) and five independent CGMD simulations (red) for the cases of (C) R = 

5 mm and ρ = 50 mm and (D) R = 7 mm and ρ = 50 mm. The zoomed-in profiles of the 

first blister are shown at the bottom.   



Figure S2. Greyscale images of top-down optical micrographs for different sheet radii 

and different substrate radii. The scale bars denote 3 mm. 



Figure S3. Greyscale images of top-down optical micrographs for different cut lengths 

and different cut numbers for the case R = 10 mm, ρ = 30 mm. The scale bar denotes 3 

mm.



Figure S4. Buckle number for thin sheets with different moduli and thicknesses. (A) 

Buckle number in experiments (hollow markers), simulations (filled markers), and 

prediction by Eq. (11) with fitted coefficient based on 3 GPa and 13-μm-thick sheets (solid 

line). Green, blue, and red denote the substrate radius of 30 mm, 50 mm, and 70 mm, 

respectively. The triangular markers with a corner pointing to the left denotes simulations 

with various modulus E and fixed thickness h. The triangular markers with a corner 

pointing to the right denotes simulations with various thickness h and fixed modulus E. (B) 

An zoom-in view when (R - rc) /Lec is small. 



Figure S5. The schematic of a 3D cone developed into a planar circle with a wedge 

opening. 



Figure S6. A CGMD model for the thin sheet. (A) A circular elastic sheet was discretized 

into a triangulated network, where particles with mass were located at the lattice points 

with bonds and elements defined. (B) Stretching energy was defined for each bond based 

on Hooke’s Law with an initial bond length of L0. (C) Bending energy was defined for 

each pair of neighbor elements based on the dihedral angle θ.  



Figure S7. Calibration of interfacial adhesion for the CGMD model. (A) side view and 

(B) top view of a 5-mm-radius circular sheet placed on a flat substrate with a distance of σ.



Figure S8. Investigation of adhesion energy for different R and ρ. The calculated 

adhesion energy per unit area dominates the well depth of L-J potential for different sheet 

radii and substrates. The black dashed line defines the adhesion energy in experiments. The 

red color represents the total adhesion energy between substrate and sheet in simulations. 

The blue color shows the adhesion energy per unit area between substrate and sheet in 

simulations, which all are close to the experimental value (0.144 J m-2). 



Figure S9. Investigation of proper mesh size in the exemplary case of R = 5 mm and 

ρ = 50 mm. (A) Calibrated well depth of L-J potential and adhesive energy per unit area 

for different mesh sizes. (B) Sheet conformability with different mesh sizes. (C) The gap 

between the sheet and the substrate along the circle boundary for different mesh sizes. Five 

independent simulations are performed for each case (M1-M5). 



Supplementary Movies: 

Movie S1. The top-down view of the conforming process of a thin sheet of R = 7 mm, h = 

13 μm and E = 3 GPa on a spherical substrate of ρ = 50 mm in CGMD simulation.  

Movie S2. The top-down view of the conforming process of a thin sheet of R = 9 mm, h = 

52 μm and E = 3 GPa on a spherical substrate of R = 9 mm and ρ = 30 mm in CGMD 

simulation.  

Movie S3. The top-down view of the conforming process of a thin sheet of R = 15 mm, h 

= 13 μm and E = 3 GPa with 12 curved cuts of 12.9 mm long on a spherical substrate of R 

= 9 mm and ρ = 30 mm in CGMD simulation. 
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