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Abstract— The article presents a charge-domain comput-
ing ternary neural network (TNN) classifier with a complete
four-layer neural network (NN) on a chip. The proposed ternary
network provides 1.5-b resolution (0/+1/−1) for weights and acti-
vations, leading to 3.9× fewer operations (OPs) per inference than
binary neural network (BNN) for the same Modified National
Institute of Standards and Technology (MNIST) accuracy. The
1.5-b multiply-and-accumulate (MAC) is implemented by VCM-
based capacitor switching scheme, which inherently benefits
from the reduced signal swing on the capacitive digital-to-analog
converter (CDAC). Also, the VCM-based MAC introduces sparsity
during training, resulting in a lower switching rate. The prototype
is fabricated in a 40-nm LP CMOS process with an active area of
0.98 mm2, operates at 549 frames/s (FPS), and consumes 96 µW.
With all OPs on the chip, it achieves 97.1% MNIST accuracy with
0.18 µJ per classification, which is the smallest to our knowledge
for comparable MNIST classification accuracy.

Index Terms— In-memory computing, mixed-signal processing,
switched capacitors (SCs), ternary neural networks (TNNs).

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved state-of-
the-art performance on various applications such as

pattern recognition [1], image classification [2], and object
detection [3]. The core operation (OP) of DNN inference
is multiply-and-accumulate (MAC) calculation, as shown in
Fig. 1. Challenges arise from the fact that modern DNN
models require millions to billions of MAC OPs, making them
difficult to deploy on edge platforms. When evaluating the
total energy in a DNN model, the energy per inference can be
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Fig. 1. Typical structure for MAC calculation arrays.

expressed as

Energy

Inference
= Energy

Operation
× Operations

Inference
(1)

where the energy per OP is affected by hardware design.
OPs per inference is the number of MAC OPs in a DNN
model. Both metrics should be considered in low-power design
optimization.

The energy per OP can be broken down into mem-
ory access energy and computational energy. Many DNN
accelerators have been designed to boost the computational
energy efficiency of MAC OPs [4], [5]. To alleviate the
memory accessing energy, recent works proposed in-memory-
computing (IMC) [7], [8], [9], [10] and low-resolution neural
networks [11]. The key concept of IMC is enabling the com-
putational circuitry to access the stationary weights over many
stored bits in a memory column, amortizing memory read and
write energy. Binary neural network (BNN) is the extreme case
among low-resolution neural networks [12]. BNN combined
with IMC greatly improves the storage and MAC computing
efficiency. With weights and activations restricted to ±1,
the multiplication in BNN is simplified as 1-bit XNOR OP,
making it well-suited for edge-based applications [13]. For
the accumulation of bit products, collecting charge on a sum-
mation node has been proven as an energy-efficient way [15],
[16], [17]. Charge-domain computing benefits from the high
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Fig. 2. Comparison of energy consumption between binary charge-domain
computing and proposed ternary charge-domain computing under 98%
MNIST accuracy.

linearity, stability, and accurate matching of metal-oxide-metal
(MOM) capacitors [14]. In these designs, the output voltage
of each synapse or bit cell is connected to the bottom plate
of an MOM capacitor, where binary multiplication results (+1
and −1) are mapped to drain power voltage (VDD) and ground
(GND). With the top plates of capacitors from all the synapses
connected, the addition is performed via charge redistribution
on this summing node, where the voltage expresses the MAC
result. The integration of charge-domain computing and BNN
has demonstrated state-of-the-art energy efficiency [15], [16].

Nevertheless, when evaluating the overall energy per infer-
ence, a tradeoff between the energy per OP and OPs per
inference needs to be considered [18]. The energy per OP
scales down with the computing resolution [6]. Despite the
1-bit computation yielding low energy per OP, the BNN
model incurs severe information loss. If given an accuracy
requirement for a specific task, BNN requires a deeper network
or more channels, namely more OPs per inference, than a
full-resolution network [19].

This article presents a highly efficient ternary neural net-
work (TNN) accelerator that reduces both energy per OP
and OP per interference, thus greatly reducing energy per
interference compared to a BNN. The proposed ternary net-
work provides a 1.5-b resolution (0/+1/−1). A baseline test
is conducted by building BNN and TNN models targeting
the same 98% accuracy on the Modified National Institute
of Standards and Technology (MNIST) dataset. As shown in
Fig. 2, the proposed TNN model features 75% OPs/inference
reduction compared to the BNN model. The 1.5-b MAC is
implemented by a VCM-based capacitor switching scheme,
which inherently benefits from the reduced signal swing on
the capacitive digital-to-analog converter (CDAC). As a result,
it consumes 31% lower energy/OP than binary charge-domain
MAC. The overall energy/inference is reduced by 82%. It con-
sumes only 0.18 μJ total energy for MNIST classification, the
smallest to our best knowledge for comparable classification
accuracy.

This article is an extended version of [20], providing a
detailed explanation and analysis of the design. The rest of
this article is organized as follows. Section II presents the
architecture and data path of the design. Section III presents
the detailed circuit implementation of the 1.5-b SC neu-
ron, the comparison between charge-domain BNN and TNN,
and the impact of circuit nonidealities. Section IV presents
the measurement results. Finally, Section V concludes the
article.

Fig. 3. (a) Overview of the proposed chip. Our design features a pipeline
architecture, with all weights and biases memory on the chip. (b) Proposed
TNN features 31% less energy/OP, 75% fewer OPs/inference, and 82% lower
energy/inference than BNN. (c) Topology of the proposed TNN (description
of the input feature size and the number of channels in each layer).

II. SYSTEM ARCHITECTURE

Fig. 3(a) shows the chip architecture and Fig. 3(b) and (c)
shows the neural network (NN) topology. The pipeline data
path consists of one digital CNN layer CONV1 at the input,
two mixed-signal hidden CNN layers, CONV2 and CONV3,
followed by max-pooling layers, one SRAM bank to store
image data, and one mixed-signal fully connected (FC) layer
at the end. Each convolutional layer has a 1.5-b quantizer at the
output as an activation function, either implemented by digital
logic or a pair of analog comparators. All weights, biases, and
transition thresholds of activation functions are trained offline
on Tensorflow. The TNN model requires 5.44 kB for total
weights and biases. They are loaded to on-chip SRAM before
classification via the write circuitry, including scan chains,
address decoder, and bitline and wordline drivers. The weight
memory is integrated with computation elements. It remains
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stationary during the whole inference to mitigate the data
movement cost.

The input 1-B grayscale pixels are ternarized to a one-
channel, tri-level picture (black, white, and gray), padded to
30 × 30 pixels, then fed into the chip via 8b bus. To exploit
hardware parallelism and regularity, the number of channels
for each CNN layer is 32 with 2 × 2 valid convolutions.
Dilated 2 × 2 filters are implemented on CONV1 and CONV2
to increase the receptive field to 3 × 3 [21]. Evaluated on the
proposed four-layer model, the 2 × 2 dilated convolution costs
56% less area and CDAC power than 3 × 3 convolution, with
the loss of 0.7% classification accuracy. To further improve
classification accuracy with the architecture, a different num-
ber of bias units are evaluated in the python model. Experi-
ments show allocating 20% of the full-scale range as biasing
units would improve the classification accuracy by 0.8%. As a
result, 32 biased units are introduced to CONV2 and CONV3
in addition to the 128-pixel convolutional window.

A. Design of the Input Layer CONV1

The architecture of the input layer CONV1 is shown in
Fig. 4. CONV1 takes the ternarized image data and computes
the multiplications of one-channel, 2 × 2 convolution window.
The results of CONV1 are integers within the range of
[−4, +4]. For the four-elements MAC OP, the charge-domain
computing approach does not benefit from the power, area,
simplicity, and error rate than the digital circuit, because of
the parasitic capacitance on the charge summing node and the
noise/offset from the activation comparators. As a result,
the CONV1 is synthesized from Verilog and implemented
in the RTL-to-GDS flow. Observed from the training results of
the TNN model, the high and low activation thresholds remain
less than one LSB, which indicates the activation of CONV1
only generates zero with zero MAC input. To reduce hardware
cost, the activation function of CONV1 (ACTCONV1) utilizes
fixed-step thresholds and is hardcoded as

ACTCONV1(X) =

⎧⎪⎨
⎪⎩

1, if X > 0

−1, if X < 0

0, if X = 0.

This simplification results in an area of 70 × 2.5 μm for
each CONV1 channel, and the area-efficient implementation
enables us to stack 4 of the 32-channel computational logics
for higher throughput. The 128 pixels image data for CONV2
are generated in one clock cycle.

B. Datapath From CONV2 to CONV3

The convolution of CONV2 is shown in Fig. 5(a). CONV2
performs the dilated convolution of 32-channel input data with
32 filters. Each filter is applied independently to the input
activation and generates the output image of a specific channel.
As a result, the output also has 32 channels. The 128-pixel
input activation from the output of CONV1 is broadcasted
across 32 parallel filters, as shown in Fig. 5(b). Once the
CONV2 input is ready, the 32-channel parallel switched-
capacitor (SC) neuron CONV2 processes the data and then

Fig. 4. (a) MAC calculation and activation function in CONV1. (b) Imple-
mentation of one channel in CONV1. (c) Structure of stack-4 in CONV1.

passes it into a set of 64-bit registers for temporary storage.
The structure from CONV2 output to CONV3 input is shown
in Fig. 6. Four sets of 64-b registers are placed in front of the
max-pooling logic. It downsamples a 2 × 2 patch into one
pixel. When one channel of CONV2 MAC calculation and
activation is completed, the output image pixel is latched at the
comparator output and stored in one of the 4-D flip-flops. The
CONV2 output is accumulated four times with φ0–φ3 and is
computed by the max-pooling logic. An image SRAM follows
the max-pooling layer with a size of 64-b wide, 1352 B, for
storing an entire frame of CONV3 input activations. CONV3
is implemented the same way as CONV2, and a 256-b register
provides its input elements through crossbar multiplexers. Half
of the 2 × 2 CONV3 input activation window is reused
during the sliding window convolution by exchanging the two
columns, thus saving the memory read energy by 50%. For
CONV3, the data flow is the same as CONV2, and the 12 ×
12 × 32 output image is downsampled to 6 × 6 × 32 for the
FC layer.
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Fig. 5. (a) Convolution, MAC calculation, and the activation function in
CONV2. (b) Architecture of CONV2, including SC neurons, SRAM write
circuitry, and comparators for tri-level quantization. The input feature is
broadcast across 32 parallel channels.

C. Architecture of FC Layer
An example of the convolution in the FC layer is shown

in Fig. 7(a). The 32-channel input image is flattened and
multiplied with weights of each category (number 0∼9), and
the one with the highest multiplication result represents the
classifier output. Fig. 7(b) illustrates the architecture of the
FC layer. The FC input image is accumulated in the activation
registers one row at a time. Thirty-six rows of synapses are
designed to store the flattened input image, and each row
represents one 32-channel image pixel. Each synapse in the FC
layer has a 2-bit activation register and 20-bits weight memory
shown in Fig. 7(c). After the previous max-pooling layer gets
activated 36 times, a total of 1152 pixels are loaded to the
activation register shown in Fig. 7(c). All weight memory
for number 0∼9 is preloaded near the multipliers and then
selected sequentially. The FC classification procedure is shown
in Fig. 7(d). In the first cycle, the voltage representing number
“0” redistributed and stored on C1. The weights for number
“1” are selected and the neurons act again, leaving the resulting
voltage on C2. Based on the comparison results, C1 or C2
with higher voltage is kept, and the other one is reset (RST)
for storing the MAC result of the following number. After

Fig. 6. (a) CONV2 output is accumulated four times and stored in SRAM
after the downsampling of the max-pooling layer. (b) Read-out circuit of
CONV3 input features.

nine comparisons, the final classification result is chosen as
the number with the largest voltage on C1/C2.

III. DESIGN AND OPS OF TERNARY

SWITCH-CAPACITOR NEURON

The design of the SC neuron is shown in Fig. 8. The
fully-differential circuit consists of 320 synapses and unit
capacitors for computing the convolution of 128 input acti-
vations and their corresponding weights. 20% of the total
capacitance is used for biasing, and they are separated into
32 unit capacitors. The convolution sequence and the detailed
design of each building block are discussed below.

A. Operating Sequence
Before the convolution begins, the weights are loaded into

the synapse SRAM cells from the write driver. Then the top
and bottom plates of the CDAC are connected to VCM by
asserting the RST line to clear all the charges. After pulling
down the RST signal, the ideal MAC result is represented by
the differential voltage on the capacitor top plates

VINP − VINN

VREFP − VREFN
= Cu

Ctotal
×

⎛
⎝

128∑
i=1

(wi × xi ) +
32∑

j=1

bias j

⎞
⎠.

(2)

In this equation, wi , xi , and bias j take on ternary values

wi , xi , bias j ∈ {−1, 0,+1}. (3)
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Fig. 7. (a) MAC calculation in the FC layer. (b) Architecture of the FC
layer (only single-end is shown), including 1152 synapses and a comparator.
(c) Design of the synapse in the FC layer and the comparison logic. (d) OP
sequence of the FC layer.

After the weighted sum of multiplication results from filters
and input pixels are computed by charge distribution, the
clocked comparators are activated to perform the tri-level
quantization. The 2-b result is latched then at the comparator
output ports for the following the max-pooling layer.

B. Synapse Design
Each synapse, the unit cell of MAC elements, consists of

two 6T SRAM cells and a local 1.5-b multiplier. The layout

of a synapse is shown in Fig. 9. The synapse is designed
with maximum density by routing the SRAM and logic gates
with M1–M3, while M4–M6 above the transistors are used
for the CDAC. A shielding layer is implemented on M4, and
the 3.5 fF unit capacitor is formed by metal fingers on M5
and M6, with its top plate routed on M6 to minimize the
parasitic capacitance. The height of the synapse is designed
to match two rows of a standard cell. The size is designed to
be 2.75 × 7.5 μm.

The local 1.5-b multiplier takes 2-b activation inputs from
the 256-b data bus and the weight inputs from the two SRAM
cells. The two standard 6T SRAM cells are directly connected
to computation logic without a read-out circuit. They remain
stationary during inference, amortizing the power from the
charging bitline. The logic gates in the multiplier calculate
the 1.5-b multiplication results and select the proper output
voltage on the 1.5-b CDAC. The ternary value 0/+1/−1 is
coded as 0X/10/11. Fig. 10 shows how this way of encoding
translates to hardware simplicity. The 1.5-b multiplication is
performed efficiently by one AND and XOR. Then the 1.5-b
CDAC only needs one more AND and OR to select one of the
tri-level voltages for the output. Due to the mismatch of the
MOM capacitors, the unit capacitance for each synapse is not
the same. Monte-Carlo simulation of the capacitor mismatch
is shown in Fig. 11(a). The design point of the unit capacitor
value features a 0.37% mismatch. The mismatch variation
is included in the Python neural network model. Simulation
results in Fig. 11(b) shows the capacitor array mismatch does
not affect the classification accuracy.

C. Comparator Design

Two comparators with positive/negative thresholds perform
the ternary activation function. The strong-arm latch-based
comparator with two input pairs and offset cancellation digital-
to-analog converter (DAC) is shown in Fig. 12(a) [24]. One
of the input pairs takes the differential voltage VIN = VINP −
VINN from the charge summing nodes. The other one VSTEP+
and VSTEP− is generated from off-chip DAC as the activation
thresholds. VSTEP+ and VSTEP− remain constant during the
whole inference without driving a low-impedance load. They
can be provided by low-power resistor ladder or CDAC if
implemented on-chip. Ideally, the transfer function from the
comparators is

ACTCONV2(VIN) =

⎧⎪⎨
⎪⎩

1, if VIN > VSTEP+ − VSTEP−
−1, if VIN < VSTEP− − VSTEP+
0, otherwise.

Illustrated in Fig. 12(b), the comparators do not resolve per-
fect activation thresholds in the presence of offset. According
to the Monte-Carlo simulation, they exhibit an 8.1-mV rms
offset which translates to 5.6 LSB. The effect of comparator
offsets on classification accuracy is shown in Fig. 12(c).
To suppress the offsets within 1 LSB, thus achieving an
accurate activation function, one-time foreground calibration
is realized by creating unbalanced capacitor loading. To ensure
the calibration CDAC fully covers the maximum range of
comparator offset, the CDAC is sized to be capable of creating
a 4σ offset, −32 to 32 mV. To guarantee an accurate activation
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Fig. 8. 1.5-b SC neuron implemented with VCM-based switching scheme. Summation is mapped to charge redistribution and two comparators perform
tri-level quantization.

threshold, the minimum step voltage of the DAC needs to be
lower than the LSB voltage of the MAC array. Therefore, each
calibration CDAC is split to 5-b resolution, 1 mV step size.
Fig. 12(d) describes the calibration process. At the beginning
of the calibration procedure, the comparator input terminals
are connected to VCM. Then the calibration code is sent into
the 10-b SRAM, starting from the minimum value. After each
set of code is written to the CDAC, the comparator is activated
1000 times to provide an estimation of output probability.
When it gives out about the same amount of 0’s and 1’s, the
calibration is marked as completed, and the current offset code
remains in the SRAM.

D. Comparison Between the Mixed-Signal BNN and TNN
Fig. 13(a) shows a simplified structure of binary SC neu-

rons. In this case, +1/−1 are mapped as VREFP and VREFN in
the voltage domain, and the two-level quantization is done
by one comparator. For proposed tri-level computation in
Fig. 13(b), 0/+1/−1 are represented by VCM, VREFP, and
VREFN, respectively. In the ternary synapse, zero input weight
or activation means no switching activity after RST, while
nonzero multiplication result drives the capacitor to switch
from VCM to VREFP or VREFN. In terms of energy/OP, the
introduction of VCM reduces voltage swing on CDAC to half
rail-to-rail, providing 31% MAC power saving than two-level
CDAC based on simulation. Furthermore, the fully differential

TABLE I

BNN MODEL FOR 98% MNIST ACCURACY

SC neuron benefits from the constant common-mode voltage
at the comparator inputs, but the BNN implementation in [15]
requires an extra common-mode setting section. Fig. 13(c)
shows a comparison of the charge-domain BNN and TNN.
The computation circuits are simple in both cases. The synapse
of BNN is implemented with four logic gates [15], while
the TNN synapse consists of four logic gates and six more
transistor switches. To illustrate the OPs/inference reduction
in TNN, we conduct a baseline test by building BNN and
TNN models targeting the same 98% accuracy on the MNIST
dataset. The topology is shown in Tables I and II.

The TNN model only takes 3.57 × 107 OPs for
each classification task, while the BNN model consumes
1.38 × 108 OPs for the same level of accuracy. In this case,
the TNN model benefits from 75% OPs/inference reduction
without accuracy loss.
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Fig. 9. (a) Cross section view of the synapse layout. The layout of a
(b) ternary synapse and (c) 6T SRAM cell. (d) Capacitor layout.

In addition, extra sparsity can be introduced during training
by enforcing more zero weights, resulting in further switching
activity reduction. Fig. 14 shows a tradeoff among sparsity,

Fig. 10. Encoding of the ternary values and the 1.5-b multiplier.

Fig. 11. (a) Capacitor mismatch simulation. (b) Classification accuracy versus
capacitor mismatch.

TABLE II

TNN MODEL FOR 98% MNIST ACCURACY

classification accuracy, and normalized energy consumption
of a ternary SC neuron.

IV. MEASUREMENT AND SIMULATION RESULTS

A. MNIST Evaluation

Fig. 15 shows a die photograph of the chip. The prototype
is fabricated in 40-nm LP CMOS and occupies an active area
of 0.96 mm2. The measurement setup is shown in Fig. 16.
After the neural network model is trained on Tensorflow, all
the weights, biases, and activation thresholds are exported to
an SD card, which is then picked up by a microcontroller.
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TABLE III

COMPARISON TABLE

The microcontroller (STM32H753) is used on the charac-
terization printed circuit board (PCB) for programming the
weights into on-chip memory, controlling a thresholds gen-
eration DAC (AD5669R), calibrating the comparator offsets,
plotting output activations for debugging, and triggering the
field-programmable gate array (FPGA) (EP4CE10) to generate
critical control signals. To identify and analyze the error
source, the TNN model is reconstructed in the microcontroller.
It runs the inference parallel with the prototype to compare the
ideal and measured output.

Fig. 17(a) shows the energy breakdown. Analog VDD
(AVDD) powers comparators, and digital VDD (DVDD)
powers the supply for SRAM and digital circuits, including
CONV1, max-pooling layer, and control logic. VREFP and VCM
serve as the supply for SC neurons, including the CDACs and
synapses. The accuracy evaluation on the MNIST dataset is
entirely from measurement. As shown in Fig. 17(b), randomly
selected pictures are sent into the prototype from the FPGA for
power consumption measurement. A high-speed oscilloscope
is used to capture the supply current waveform through serial
resistors on different power domains. For MNIST classifi-
cation, this chip operates at 549 FPS with 0.7 V DVDD,
0.8 V AVDD, 0.9 V VREFP, and 0.45 V VCM, leading to an
average MAC energy of 0.18 μJ/classification. The measured
classification accuracy is 97.1%, which is 0.8% lowered than
the ideal software model due to circuit noise, mismatch, and
charge leakage.

B. Comparison

Table III compares this work with prior arts. This work
efficiently realizes the wide vector summation in the charge
domain. In [10] and [22], the MAC OP is achieved by
discharging a bitline capacitor with a certain current. Careful
design consideration or tradeoff analysis is needed to ensure
stability and PVT variation suppression. While in our proposed
work, mapping the MAC OP into charge redistribution benefits
from the accurate matching of MOM capacitors in modern

TABLE IV

CIFAR-10 EVALUATION

TABLE V

4-bit ENCODING

CMOS technology. Compared to the designs in [15], [16],
and [23] with charge-sharing MAC OP, the proposed ternary
synapse features an inherently fully differential architecture.
It eliminates the concern of undefined input common-mode
voltage of the comparator or sense amplifier. Compared to [15]
and [16] using BNN, the proposed TNN model benefits from
fewer OPs/inference and less switching activity. Moreover, this
work performs all OPs on-chip, while [10], [16], [22], and [23]
have only MAC OP.

C. CIFAR-10 Evaluation

As the neural network architecture is dedicated to MNIST
classification, the prototype is not capable of performing
all OPs on-chip for the Canadian Institute For Advanced
Research-10 (CIFAR-10) dataset. The CIFAR-10 classification
result is obtained from a measurement based simulation on
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Fig. 12. (a) Strong-arm latch comparator with offset cancellation DAC.
(b) Comparator waveform with all inputs connected to VCM. (c) Activation
function affected by comparator offsets. (d) Simulation of classification
accuracy versus comparator offset. (e) Offset calibration procedure.

a Visual Geometry Group (VGG) style neural network as
shown in Fig. 18. The VGG network has six convolutional
layers and three FC layers. The MAC results from all con-

Fig. 13. (a) BNN SC neuron. (b) TNN SC neuron. (c) Comparison of
charge-domain BNN and TNN.

Fig. 14. Tradeoff between the percentage of 0 s, normalized power
consumption, and top-1 classification accuracy.

Fig. 15. Die photograph.

volutional layers are simulated from a 1152-synapse ternary
network macrobuilt in Python. The 3 × 3 × 128 activations
in a 128-channel convolutional window are mapped to the
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Fig. 16. Measurement setup.

Fig. 17. (a) Power breakdown. (b) Power consumption measurement setup.

1152 synapses. To process the 256 channels per pixel in L5
and L6 with 128 neurons, each 256-channel convolution is
divided into two 128-channel groups. For comparison with the
binary network model, we evaluated the accuracy of CIFAR-10
with binary resolution using the same neural network topology.
Table IV summarizes the simulated accuracy and MAC energy
consumption of convolutional layers. The NN with ternary

Fig. 18. Simulation-based CIFAR-10 evaluation.

Fig. 19. Example of 4-bit extension using the proposed ternary synapse.

accuracy demonstrates a 4.57% higher accuracy over the
binary model, while consuming 31% less MAC energy.

D. Scalability for Multibit Extension
In this section, we discuss a design approach to extending

the proposed ternary synapse to multibit resolution. To support
a range of −4 to +4 for activations and weights, 4-bit encoding
is needed as shown in Table V. The idea is illustrated in
Fig. 19. The multiplication of 4b-by-4b MAC result can be
broken into four partial ternary products. The four partial
products have the weights of 9:3:1. They can be merged by

MACresult = 9 ×
(∑

W[3:2] × X[3:2]
)

× 3 ×
(∑

W[3:2] × X[1:0]+
∑

W[1:0] × X[3:2]
)

+ 1 ×
(∑

W[1:0] × X[1:0]
)

. (4)

In this way, the 4-bit multiplication can be mapped into
the charge sharing of 16 unit capacitors. As the comparators
in the prototype only resolve 1.5-b output resolution, this
approach would require an ADC with 4-b or resolution on the
charge-sharing node to provide enough accuracy for output
activations.

V. CONCLUSION

This article proposed a charge-domain computing TNN
accelerator with a fully on-chip neural network. The four-layer
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neural network model is organized in a pipeline structure, with
all weight and biases memory remaining stationary during the
whole inference. By mapping the 1.5-b MAC calculation into
VCM-based capacitor switching scheme, the power of MAC
calculation is reduced by 31% compared to binary charge-
domain computing. Evaluated on the MNIST dataset, the TNN
model features 4× fewer OPs/inference than the BNN model
for the same accuracy level, leading to a 75% reduction of total
energy/inference. The proposed chip consumes only 0.18 μJ
total energy for MNIST classification, which is the smallest
to our best knowledge for comparable classification accuracy.
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