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ABSTRACT 
Noninvasive detection of blood oxygen abnormalities in arteries 
and veins is crucial for determining sepsis, shock, and 
metabolic demand but is still unattainable. In this work, we 
devise a soft wearable e-tattoo sensor able to measure deep 
hemodynamics on the neck through photoplethysmography 
(PPG). There is widespread doubt that PPG cannot penetrate 
to the arteries and veins, a requirement to measure arterial and 
venous oxygenations (SaO2 and SvO2) directly. We investigate 
the penetration depth of PPG with computational and in vitro 
models. Finally, we demonstrate the e-tattoo’s ability to 
distinguish arterial and venous pulses in vivo. These tests 
contradict the stereotype of PPG’s poor penetration depth, 
substantiating the pursuit to optically measure arterial and 
venous pulses for SaO2 and SvO2 extraction. 

CCS CONCEPTS 
• Hardware → Emerging technologies → Biology-related 
information processing → Bio-embedded  
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1 Introduction 
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2 Optical E-Tattoo 

3 Monte Carlo Light Propagation Models 

Figure 1 | Overview of neck wearable PPG e-tattoo. The e-tattoo
consists of two diffuse reflectance sensors, an analog front end, and 
a Bluetooth Low Energy microprocessor. Simultaneous jugular 
vein and carotid artery pulse waveforms can be monitored. 
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4 Dynamic Optical Phantom Model  

Figure 2 | Monte Carlo simulation setup. A, Cross-sectional 
tissue-vessel geometry and corresponding optical properties per 
tissue type. B, Example PMDF plot for SD = 6 mm. C, Example 
absorption in optical path plot for SD = 6 mm. 

Figure 3 | Monte Carlo simulation results.  A, Contribution of 
total absorption in the optical path for each tissue type. Multiple 
source-detector distances were tested. B, Artery radius vs. optical 
density in the optical path. As blood volume increases, 
absorbance also increases. This indicates that light does interact 
with the arterial blood. 
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Figure 4 | Dynamic phantom setup.  A bi-directional pump 
cycles dyed water in and out (f = 1 Hz) of a tissue phantom. A 
PPG sensor on the surface of the phantom records the diffuse 
reflected light intensity (labeled “Diffuse”). Another sensor was 
directly placed on the tube inside the phantom for inversion tests 
(labeled “Direct”). Blown-up yellow dashed box: a diagram of 
how the dyed water enters and leaves the phantom. 

Figure 5 | Signal-to-noise ratio. To test if the optical signal could
have been influenced by factors other than the absorbance in the
phantom, the signal-to-noise ratio was calculated to be over 80 dB.
The noise reference was measured with the same phantom, motor,
vessel, and sensor set up, but without the air gap in the vessel. 

Figure 6 | Diffuse reflectance signal vs. lateral position. We
tested if signal inversion could be caused solely by lateral position 
of the sensor relative to the vessel. One PPG sensor was placed 
directly on the vessel inside the phantom (Direct) and another was 
placed on the surface of the phantom (Diffuse). None of the lateral 
positions led to inverted waveforms.
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5 In Vivo Measurement of Carotid and Jugular 
Pulses 

6 Conclusion 

in vitro
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Figure 7 | In vivo placements of the e-tattoo on the neck. PPG 
signals were obtained from different locations on the neck to
observe the changes in waveform morphology. 

Figure 8 | PPG signal vs. position on neck. One minute of PPG 
signals was recorded at each location. Waveforms were 
segmented by the R peaks from a synchronous ECG recording 
and normalized by period. The dark curve is the grand average of 
all waveforms. 
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