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A B S T R A C T

Multilayer laminated beams, comprised of alternating stiff and soft layers, are widely used in flexible electronics
and photonics. These structures exhibit complex mechanical behaviors that deviate from the Euler–Bernoulli
beam theory under conditions of extreme inter-layer modulus mismatch. Extending beyond prior studies on
trilayer beams, we present an analytical framework for laminated beams with arbitrary number of layers
subjected to various bending conditions, and validate our theory with finite element analysis. We define an
equivalent flexural rigidity, exploring its dependence on position and deformation, and systematically examine
the impact of the number of layers, applied deformation, layer properties, and the layer aspect ratio.
. Introduction

The advent of flexible electronics has had a significant impact on a
iverse range of applications, including flexible displays (Zhao et al.,
022), flexible sensors (Luo et al., 2023), wearable and implantable
lectronics (Sunwoo et al., 2021; Liu et al., 2022; Song et al., 2019),
rosthetics (Chortos et al., 2016; Park et al., 2020), bio-mimetic elec-
ronic skins (Yang et al., 2019) and bionic eyes (Lee et al., 2018),
nd soft photonics (Geiger et al., 2020). A widely adopted structural
esign in flexible devices involves layering stiff functional layers with
oft insulating or isolating layers. These functional layers can range
rom glass-based optical waveguides (Fig. 1a), copper interconnects in
ultilayer wearable electronics (Fig. 1b), to PZT films in a flexible

nergy harvester (Fig. 1c), and even flexible battery arrays (Fig. 1d).
hen there is a substantial mismatch in Young’s modulus between the

unctional layers and the insulating or isolating layers, the mechanical
ehaviors of these laminated beams can significantly deviate from the
uler–Bernoulli beam theory due to the shear-lag effects.

The concept of ‘shear-lag’ was initially used to describe the nonuni-
orm normal stress distribution observed in the flanges of box beams,
hich was found to ‘lag’ behind the predictions of the Euler–Bernoulli

E–B) theory due to the shear deformation of the unsupported flanges
Fig. 2(a)) (Reissner, 1938; Kuhn, 1939; Reissner, 1946). This un-
erstanding of shear-lag was soon extended to scenarios where the
tress transfer via shear results in nonuniform normal stress distri-
ution and lower stiffness, including tension panels, riveted tension
embers (Fig. 2(b)) (Fan, 1939; Williams, 1951), fibrous composite
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(Fig. 2(c)) (Cox, 1952), and nacre or nacre-inspired composites (Jack-
son et al., 1989; Ji and Gao, 2004; Jin et al., 2022). The shear-lag
model for composites has been notably successful and has later been
applied to laminated composites (Nairn and Mendels, 2001) and var-
ious nanocomposites (Weerasinghe et al., 2017; Gao and Li, 2005)
(Fig. 2(d)). Most applications of shear-lag theories to composite ma-
terials are focused on the average tensile properties, with the notable
exception of a recent work by Chen et al. (2023), where they studied
the bending of nacre-like composites and proposed a bending de-
formable tension-shear model (BDTS) similar to this work but with the
following differences. Firstly, the stiff layers in nacre-like structures are
discontinuous, causing the results to depend on the length of platelets
rather than the length of the whole beam. Moreover, the difference in
the locations of breaks in different layers of the nacre-like structure
also causes different boundary conditions from the laminated beams.
Secondly, the methods they took were based on force equilibrium and
assumed small deflection while our framework used an energy-based
method and is applicable to large rotations. Finally, they only applied
BDTS to the constant curvature case and resorted to the modified
Timoshenko beam theory using the effective flexural rigidity for more
complicated loading conditions, while our work present a general
solution expressed in terms of applied bending curvature. Despite
varying mathematical formulations, these shear-lag theories all feature
a dimensionless parameter reflecting the characteristic aspect ratio and
the modulus mismatch in a problem. As such, the shear-lag effect is
more pronounced when the aspect ratio is small or when the modulus
vailable online 31 October 2023
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Fig. 1. Examples of flexible devices in the form of laminated beams with extreme
modulus mismatch. (a) Chalcogenide glass-based flexible photonics (Li et al., 2014).
(b) Multilayer stretchable heater (Huang et al., 2018). (c) Multilayer flexible energy
harvester (Su et al., 2015). (d) Flexible battery (Li et al., 2022).

mismatch is large. These models also predict a spatially nonuniform
stress distribution, represented in the form of hyperbolic functions.

While not explicitly referred to as shear-lag, the reduced bending
stiffness observed in multilayer 2D materials bears a conceptual re-
semblance to the laminated beams investigated in this work, where
the weak tangential interlayer interactions are similar to the shear
deformability of the soft layers in laminated beams (Shen and Wu,
2012; Chen et al., 2015; Liu et al., 2013). Huang et al. (2023) developed
an analytical framework for multilayer 2D materials under arbitrary
loading and applied the framework to the bending stiffness under
three-point bending. They also constructed a deformation-mode phase
diagram based on two universal characteristic lengths. The problem
of 2D materials differs from the laminated beams in that the layer
and interlayer properties are constant from layer to layer, while the
laminated beams for flexible electronics may involve different mate-
rials and dimensions for each layer. Moreover, they did not provide
explicit results on membrane strains, which is important for flexible
electronics. Recent studies also incorporated interlayer slip through a
periodic interfacial potential energy, which introduces non-linearity to
the problem and results in a unique size dependence that is distinct
from conventional shear-lag problems (Huang, 2020; Ma et al., 2021).

Li et al. (2014) pioneered in exploring the unconventional mechan-
ical behaviors of laminated beam with extreme modulus mismatch.
They discovered that a flexible photonic device with an SU8-silicone-
polyimide laminate exhibits two mechanical neutral axes, contradicting
the kinematic assumption used in the E–B beam theory that planar
cross-sections remain planar. This phenomena and related theory has
been since known as the ’split of neutral axis’. This discovery was later
confirmed by Lee et al. (2019) using digital image correlation for full
field deformation measurement of multilayer laminated beams. Li et al.
(2014) proposed an analytical modeling of the phenomena by employ-
ing force balance and fitting one parameter to the FEA results. Shi et al.
(2014) employed an energy-based analytical framework that eliminated
the need for any fitting parameters. Su et al. (2015) were the first to
propose that the soft layers within the multilayer laminated beam act
as shear lags, and included the shear energy of the soft layer in their
analysis. The analytical framework, which showed excellent agreement
with FEA results for a trilayer beam conforming to a cylindrical surface,
has been successfully applied to other deformation modes and device
configurations (Li et al., 2017, 2022, 2016).

Prior work in this field has primarily concentrated on specific
deformation types and fixed number of layers, with focuses on strain
distribution analysis to prevent failure during bending. However, the
importance of evaluating the structural stiffness of laminated beams is
2

Fig. 2. Existing shear-lag examples: (a) Nonuniform normal stress distribution in the
flange of box beams (Singh et al., 2020), (b) nonuniform normal stress distribution
near the junction of a tension member (Priya et al., 2013), (c) reduced modulus in
a fibrous composite due to shear deformation in the matrix (Murasawa et al., 2005),
(d) two schematics of shear-lag model used for laminated nanocomposites (He et al.,
2022).

manifested by the growing significance of soft implantable bioelectron-
ics such as neuroprobes (Sunwoo et al., 2021; Lecomte et al., 2018)
and the electronic dura mater (Minev et al., 2015), where minimizing
bending stiffness is key to reducing immune responses. This study
broadens the framework outlined by Li et al. (2016) to encompass
laminated beams with arbitrary number of layers under any bending
condition. The rest of paper is organized as follows. Section 2 details
the proposed theoretical framework and the FEA used to validate the
analytical solution. Section 3 presents the results on multilayer beam
conforming to a rounded wedge, defines an equivalent flexural rigidity,
and explores the effects of various parameters. Section 4 probes the
theoretical upper and lower bounds of flexural rigidity in relation
to applied deformation, dimensionless control parameter, and layer
number. Finally, Section 5 concludes our work.

2. Method

2.1. Analytical model

Fig. 3(a) illustrates the initial configuration of a straight laminated
beam consisting of 2N + 1 layers with a length of L. The 𝑖th layer
has height ℎ𝑖, Young’s modulus 𝐸𝑖 and Poisson’s ratio 𝜈𝑖. The odd-
numbered layers are much stiffer than the even-numbered layers. We
develop an analytical framework for the laminated beam subject to
various bending conditions described by an imposed bending curvature
𝜅(𝑥) along the bottom of the beam (Fig. 3(b)). In this framework,
each stiff layer is assumed to obey the kinematic assumption that cross
section remain planar and perpendicular to the longitudinal axis; The
stretching energy and bending energy are neglected due to the small
modulus of the soft layers and we assume the shear to be the dominant
mechanical deformation in the soft layers. As a demonstration, the
results are applied to the cases where the beam conforms to a rounded
wedge (Fig. 3(c)) and two arcs in the opposite sides of the beam
(Fig. 3(d)).

Let 𝐮 =
(

𝑢1, 𝑢3,… , 𝑢2𝑁+1
)𝑇 be the vector of axial displacement,

where 𝑢2𝑘−1 is the axial displacement at the central axis of the stiff
layers. The membrane strains in the stiff layers are written as:

𝝐 =
(

𝜖 , 𝜖 ,… , 𝜖
)𝑇 = d𝐮 . (1)
1 3 2𝑁+1 d𝑥
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Fig. 3. Schematics of a multilayer laminated beam with extreme modulus mismatch. Golden color represents stiff layers and light blue represents soft layers. (a) The undeformed,
tress-free configuration. (b) The deformed configuration with arbitrary bending curvatures. (c) The deformed configuration on a rounded wedge. (d) The deformed configuration
n two cylinders. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In this work, the laminated beams are assumed to be slender. The
hickness change is neglected due to the minimal transverse stress
aused by the deformation considered in this work. As a result, the
eformed layers remain parallel in the deformed configuration, and the
urvature at the center of 𝑖th layer can be written as:

𝑖 =
1
𝜌𝑖

= 1
𝑦𝑖 + 1∕𝜅

= 𝜅
1 + 𝜅𝑦𝑖

, (2)

here 𝑦𝑖 is the 𝑦 coordinate of the center of the 𝑖th layer.

As shown in Fig. 4, the shear strain 𝛾2𝑘 in the soft layer 2𝑘 can be
xpressed geometrically as:

2𝑘 ≈ ∠𝐹𝐸𝐶 + ∠𝐸𝐶𝐷
2

≈ ED + FC
2𝐴𝐵

= BD − BE + AC − AF
2𝐴𝐵

.
(3)

Utilizing the kinematic assumptions in the stiff layers, BD, BE, AC
, and AF can be related to the deformation of the adjacent layers as:

BD =
∫ 𝑥
0
(

𝑦2𝑘 + ℎ2𝑘∕2 + 1∕𝜅
)

𝑑𝑠

∫ 𝑥
0
(

𝑦2𝑘−1 + 1∕𝜅
)

𝑑𝑠

(

𝑥 + 𝑢2𝑘−1
)

,

AC =
∫ 𝑥
0
(

𝑦2𝑘 − ℎ2𝑘∕2 + 1∕𝜅
)

𝑑𝑠

∫ 𝑥
0
(

𝑦2𝑘−1 + 1∕𝜅
)

𝑑𝑠

(

𝑥 + 𝑢2𝑘−1
)

,

BE =
∫ 𝑥
0
(

𝑦2𝑘 + ℎ2𝑘∕2 + 1∕𝜅
)

𝑑𝑠

∫ 𝑥
0
(

𝑦2𝑘+1 + 1∕𝜅
)

𝑑𝑠

(

𝑥 + 𝑢2𝑘+1
)

,

AF =
∫ 𝑥
0
(

𝑦2𝑘 − ℎ2𝑘∕2 + 1∕𝜅
)

𝑑𝑠

∫ 𝑥
0
(

𝑦2𝑘+1 + 1∕𝜅
)

𝑑𝑠

(

𝑥 + 𝑢2𝑘+1
)

.

(4)

Substituting Eq. (4) into Eq. (3), we have:

𝛾2𝑘 = 1
ℎ2𝑘

[

𝑟2𝑘2𝑘−1(𝑥 + 𝑢2𝑘−1) − 𝑟2𝑘2𝑘+1(𝑥 + 𝑢2𝑘+1)
]

,

𝑟𝑖𝑗 =
𝑓𝑖
𝑓𝑗

, 𝑓𝑖 = 1 − 𝑦𝑖
𝐾(𝑥)
𝑥

, 𝐾(𝑥) = ∫

𝑥

0
𝜅(𝑠)𝑑𝑠.

(5)

Following Li et al. (2016), the total energy is the sum of the bending
nd stretching energy in the stiff layers and the shear energy in the soft
3

Fig. 4. Schematic illustration for calculating the shear strain in the soft layers from
the curvature and axial displacement in the adjacent stiff layers.

layers:

𝑈 = 𝑈 𝑠𝑡𝑟𝑒𝑡𝑐ℎ + 𝑈 𝑏𝑒𝑛𝑑 + 𝑈 𝑠ℎ𝑒𝑎𝑟,

𝑠𝑡𝑟𝑒𝑡𝑐ℎ =
𝑘=𝑁+1
∑

𝑘=1
∫

𝐿

−𝐿

1
2
𝐸𝐴2𝑘−1𝜖

2
2𝑘−1𝑑𝑥,

𝑈 𝑏𝑒𝑛𝑑 =
𝑘=𝑁+1
∑

𝑘=1
∫

𝐿

−𝐿

1
2
𝐸𝐼2𝑘−1𝜅

2
2𝑘−1𝑑𝑥,

𝑈 𝑠ℎ𝑒𝑎𝑟 =
𝑘=𝑁
∑

𝑘=1
∫

𝐿

−𝐿

1
2
𝐺2𝑘ℎ2𝑘𝛾

2
2𝑘𝑑𝑥.

(6)

where 𝐸𝐴𝑖 = 𝐸𝑖ℎ𝑖∕
(

1 − 𝜈2𝑖
)

is the axial modulus of the 𝑖th layer,
𝐸𝐼 𝑖 = 𝐸𝑖ℎ3𝑖 ∕

[

12(1 − 𝜈2𝑖 )
]

is the flexural rigidity of the 𝑖th layer, and
𝐺𝑖 =

𝐸𝑖
2(1+𝜈𝑖)

is the shear modulus of 𝑖th layer.
The governing equation and the boundary condition can be ob-

ained by substituting Eqs. (1), (2), (3) into Eq. (6) and taking the
ariation 𝛿𝑈 = 0:

d2𝐮
d𝑥2

= 𝐀𝐮 − 𝐛, (7)

d𝐮 |
| = d𝐮 |

| = 0, (8)
d𝑥 |
|𝑥=−𝐿 d𝑥 |

|𝑥=𝐿
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓

where

𝐊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝐴1

𝐸𝐴3

𝐸𝐴5

⋱

𝐸𝐴2𝑁+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵1
11 𝐵1

12

𝐵1
12 𝐵1

22 + 𝐵2
11 𝐵2

12

𝐵2
12 𝐵2

22 + 𝐵3
11 ⋱

⋱ ⋱ 𝐵𝑁
12

𝐵𝑁
12 𝐵𝑁

22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑘
11 =

𝐺2𝑘
ℎ2𝑘

𝑟2𝑘2𝑘−1𝑟
2𝑘
2𝑘−1, 𝐵

𝑘
12 =

𝐺2𝑘
ℎ2𝑘

𝑟2𝑘2𝑘−1𝑟
2𝑘
2𝑘+1, and 𝐵𝑘

22 =
𝐺2𝑘
ℎ2𝑘

𝑟2𝑘2𝑘+1𝑟
2𝑘
2𝑘+1, and

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺2
ℎ2

𝑟21
(

−𝑟21 + 𝑟23
)

𝐺4
ℎ4

𝑟43
(

−𝑟43 + 𝑟45
)

+ 𝐺2
ℎ2

𝑟23
(

−𝑟23 + 𝑟21
)

𝐺6
ℎ6

𝑟65
(

−𝑟65 + 𝑟67
)

+ 𝐺4
ℎ4

𝑟45
(

−𝑟45 + 𝑟43
)

⋮
𝐺2𝑁
ℎ2𝑁

𝑟2𝑁2𝑁+1

(

−𝑟2𝑁2𝑁+1 + 𝑟2𝑁2𝑁−1

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑥.

ere 𝐊 is the matrix representing the axial rigidity of the stiff layers.
represents the interaction of stiff layers through the shear-lag effect

f the sandwiched soft layers. 𝐛 is a vector representing the applied
ending.

When N = 1 and 𝜅(𝑥) = 1∕𝑅, the governing equation Eq. (7)
educes to the equations previously reported by Li et al. (2016). To
erive an analytical solution to Eq. (7) in terms of applied bending
urvature 𝜅, linearization and nondimensionalization are implemented.
t is assumed that the radius of curvature is much larger than the total
hickness of the beam, i.e. 𝜅ℎ𝑖 < 𝜅

∑

ℎ𝑖 ≪ 1. The governing equation
and the boundary condition reduce to:

d2𝐮
d�̂�2

= 𝛱2

[

�̂��̂�𝐮 − �̂��̂�(ℎ1 + ℎ2)∫

�̂�

0
𝜅(𝑠)𝑑𝑠

]

, (9)

d𝐮
d�̂�

|

|

|

|�̂�=−1
= d𝐮

d�̂�
|

|

|

|�̂�=−1
= 0, (10)

here �̂� = 𝑥∕𝐿 is the normalized coordinate, 𝛱 =
√

(

1 − 𝜈21
) 𝐿2

ℎ1ℎ2
𝐺2
𝐸1

is the dimensionless shear-lag number reflecting the interplay between
modulus mismatch and the layer aspect ratio,

�̂� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸𝐴1
𝐸𝐴3

𝐸𝐴1
𝐸𝐴5

⋱
𝐸𝐴1

𝐸𝐴2𝑁+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1
−1 1 + 𝐺4

ℎ4
ℎ2
𝐺2

−𝐺4
ℎ4

ℎ2
𝐺2

− 𝐺4
ℎ4

ℎ2
𝐺2

⋱ ⋱

⋱ ⋱ −𝐺2𝑁
ℎ2𝑁

ℎ2
𝐺2

−𝐺2𝑁
ℎ2𝑁

ℎ2
𝐺2

𝐺2𝑁
ℎ2𝑁

ℎ2
𝐺2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0.5ℎ1+0.5ℎ3+ℎ2
ℎ1+ℎ2

𝐺4
ℎ4

ℎ2
𝐺2

0.5ℎ3+0.5ℎ5+ℎ4
ℎ1+ℎ2

− 0.5ℎ1+0.5ℎ3+ℎ2
ℎ1+ℎ2

𝐺6
ℎ6

ℎ2
𝐺2

0.5ℎ5+0.5ℎ7+ℎ6
ℎ1+ℎ2

− 𝐺4
ℎ4

ℎ2
𝐺2

0.5ℎ3+0.5ℎ5+ℎ4
ℎ1+ℎ2

⋮

−𝐺2𝑁 ℎ2 0.5ℎ2𝑁−1+0.5ℎ2𝑁+1+ℎ2𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

.

4

⎣ ℎ2𝑁 𝐺2 ℎ1+ℎ2
⎦

The general solution to Eq. (9) is:

𝐮 =
𝑁+1
∑

𝑖=2

[(

𝐶𝑖 + ∫

�̂�

0
𝜅(𝑠) sinh(𝛱�̂�𝑖𝑠)𝑑𝑠

)

sinh (𝛱�̂�𝑖�̂�)

+

(

𝐷𝑖 − ∫

�̂�

0
𝜅(𝑠) cosh(𝛱�̂�𝑖𝑠)𝑑𝑠

)

cosh (𝛱�̂�𝑖�̂�)

+ ∫

�̂�

0
𝜅(𝑠)𝑑𝑠

]

(ℎ1 + ℎ2)𝑔𝑖
�̂�2𝑖

�̂�𝑖 +
[

𝐶1 +𝐷1�̂�
]

�̂�1.

(11)

here �̂�2𝑖 is the eigenvalue of �̂��̂� in ascending orders, �̂�𝑖 is the corre-
ponding unit eigenvector, and �̂��̂� =

∑𝑖=𝑁+1
𝑖=1 𝑔𝑖𝐯𝑖. It can be shown that

1 = 𝑔1 = 0, 𝜆2𝑖 > 0, and that and all eigenvectors are real (Appendix A).
n general, the eigenvalue �̂�𝑖 and eigenvector �̂�𝑖 cannot be written out
n an explicit analytical expression. In this work, we calculate �̂�𝑖 and �̂�𝑖
umerically using the built-in function ‘eig’ in Matlab.

The constants 𝐶1, 𝐷1, 𝐶2, 𝐷2,… , 𝐶𝑁+1, 𝐷𝑁+1 are determined by sub-
tituting boundary condition Eq. (8) into Eq. (11):

𝐶1 = 𝐷1 = 0

𝐶𝑖 = ∫

1

0
𝜅S(𝑠)

sinh
(

𝛱𝜆𝑖(1 − 𝑠)
)

cosh
(

𝛱�̂�𝑖
)

𝑑𝑠

𝐷𝑖 = ∫

1

0
𝜅A(𝑠)

sinh
(

𝛱𝜆𝑖(1 − 𝑠)
)

sinh
(

𝛱�̂�𝑖
)

𝑑𝑠

(12)

where 𝜅S(𝑠) = 1
2 (𝜅(𝑠) + 𝜅(−𝑠)) and 𝜅A(𝑠) = 1

2 (𝜅(𝑠) − 𝜅(−𝑠)) are the
symmetric part and asymmetric part of the function 𝜅 respectively.

In practical applications, the membrane strains in the stiff layers are
of particular interest to avoid the device failure. The membrane strains
are derived by taking derivatives of the displacement as:

𝝐 =
𝑁+1
∑

𝑖=2

[(

𝐶𝑖 + ∫

�̂�

0
𝜅(𝑠) sinh(𝛱�̂�𝑖𝑠)𝑑𝑠

)

cosh (𝛱�̂�𝑖�̂�)

+

(

𝐷𝑖 − ∫

�̂�

0
𝜅(𝑠) cosh(𝛱�̂�𝑖𝑠)𝑑𝑠

)

sinh (𝛱�̂�𝑖�̂�)

]

𝛱(ℎ1 + ℎ2)𝑔𝑖
�̂�𝑖

�̂�𝑖.

(13)

2.1.1. Case I: conforming to rounded wedge
Now we consider a special case where the beam is conformed to a

rounded wedge (Fig. 3c) with radius R and angle 𝜃. The curvature of
the deformed shape is:

𝜅 =

{

1∕𝑅 0 ≤ |�̂�| ≤ 𝑅𝜃
𝐿

0 𝑅𝜃
𝐿 ≤ |�̂�| ≤ 1

(14)

For simplification, we focus on the case where 𝐸1 = 𝐸3 = ⋯ = 𝐸2𝑁+1 =
𝐸ℎ, 𝜈1 = 𝜈3 = ⋯ = 𝜈2𝑁+1 = 𝜈ℎ, ℎ1 = ℎ3 = ⋯ = ℎ2𝑁+1 = ℎℎ,
𝐺2 = 𝐺4 = ⋯ = 𝐺2𝑁 = 𝐺𝑠, ℎ2 = ℎ4 = ⋯ = ℎ2𝑁 = ℎ𝑠. In this case,
�̂��̂� reduces to a symmetric matrix and we have:

𝑔𝑖 = �̂� ⋅ �̂�𝑖. (15)

Plugging Eqs. (12), (14), and (15) into Eq. (11), we have:

𝐮 =
ℎ1 + ℎ2

𝑅

𝑁+1
∑

𝑖=2
𝑓𝑖(𝑥)

�̂� ⋅ �̂�𝑖
�̂�2𝑖

𝐯𝑖. (16)

𝑖(�̂�) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑥 −
cosh

(

𝛱�̂�𝑖
𝐿1
𝐿

)

sinh
(

𝛱�̂�𝑖�̂�
)

𝛱�̂�𝑖 cosh
(

𝛱�̂�𝑖
)

|�̂�| < 𝑅𝜃
𝐿

𝑅𝜃 −
sinh

(

𝛱�̂�𝑖
𝑅𝜃
𝐿

)

cosh
(

𝛱�̂�𝑖 (1 − �̂�)
)

𝛱�̂�𝑖 cosh
(

𝛱�̂�𝑖
)

|�̂�| ≥ 𝑅𝜃
𝐿

⎩
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And the membrane strains are:

𝝐 =
ℎ1 + ℎ2

𝑅

𝑁+1
∑

𝑖=2
𝑓 ′
𝑖 (𝑥)

�̂� ⋅ �̂�𝑖
�̂�2𝑖

𝐯𝑖. (17)

′
𝑖 (�̂�) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 −
cosh

(

𝛱�̂�𝑖
𝐿1
𝐿

)

cosh
(

𝛱�̂�𝑖�̂�
)

cosh
(

𝛱�̂�𝑖
)

|�̂�| > 𝑅𝜃
𝐿

sinh
(

𝛱𝜆𝑖
𝑅𝜃
𝐿

)

sinh
(

𝛱𝜆𝑖 (1 − �̂�)
)

cosh
(

𝛱�̂�𝑖
)

|�̂�| ≥ 𝑅𝜃
𝐿

The membrane strain is further normalized by 𝑁(ℎ1 +ℎ2)∕𝑅, which
is the maximum membrane strain predicted by the Euler–Bernoulli
beam theory:

�̂� = 1
𝑁

𝑁+1
∑

𝑖=2
𝑓 ′
𝑖 (𝑥)

�̂� ⋅ �̂�𝑖
�̂�2𝑖

𝐯𝑖. (18)

2.1.2. Case II: conforming to two arcs
Consider the deformation where the beam is conformed to two arcs

of radius 𝑅1 and 𝑅2 lying on opposite sides of the beam, which is a
ommon deformation in the roll-to-roll process. The curvature of the
eformed shape is described as:

=

⎧

⎪

⎨

⎪

⎩

1
𝑅1

−1 ≤ �̂� ≤ 𝑅1𝜃1
𝐿 − 1

− 1
𝑅2

𝑅1𝜃1
𝐿 − 1 ≤ �̂� ≤ 1

(19)

gain, we focus on the case where all stiff layers have the same
odulus 𝐸ℎ, Poisson’s ratio 𝜈ℎ, and height ℎℎ, and all soft layers have

the same shear modulus 𝐺𝑠 and height ℎ𝑠.
Plugging Eqs. (12), (15), and (19) into Eq. (11) and assuming 𝑅1𝜃1 ≥

𝑅2𝜃2 we have:

𝐮 =
(

ℎ1 + ℎ2
)

𝑁+1
∑

𝑖=2
𝐹𝑖(𝑥)

�̂� ⋅ �̂�𝑖
�̂�2𝑖

𝐯𝑖. (20)

𝑖(�̂�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̂�
𝑅1

+ 𝐴𝑖,1 sinh
(

𝛱�̂�𝑖�̂�
)

+ 𝐴𝑖,2 cosh
(

𝛱�̂�𝑖�̂�
)

�̂� ≤ �̂�𝑚
�̂�𝑚
𝑅1

−
�̂� − �̂�𝑚
𝑅2

+ 𝐴𝑖,3 sinh
(

𝛱�̂�𝑖�̂�
)

+

𝐴𝑖,4 cosh
(

𝛱�̂�𝑖�̂�
)

�̂� ≥ �̂�𝑚

here �̂�𝑚 = 𝑅1𝜃1−𝐿
𝐿 is the position that the two arcs join, and

𝐴𝑖,1, 𝐴𝑖,2, 𝐴𝑖,3, 𝐴𝑖,4 are coefficients expressed as:

𝐴𝑖,1 =
−( 1

𝑅1
+ 1

𝑅2
) cosh

(

𝛱�̂�𝑖(1 − �̂�𝑚)
)

− 1
𝑅1

+ 1
𝑅2

2𝛱�̂�𝑖 cosh
(

𝛱�̂�𝑖
)

𝑖,2 =
−( 1

𝑅1
+ 1

𝑅2
) cosh

(

𝛱�̂�𝑖(1 − �̂�𝑚)
)

+ 1
𝑅1

+ 1
𝑅2

2𝛱�̂�𝑖 sinh
(

𝛱�̂�𝑖
)

𝐴𝑖,3 =
( 1
𝑅1

+ 1
𝑅2

) cosh
(

𝛱�̂�𝑖(1 + �̂�𝑚)
)

− 1
𝑅1

+ 1
𝑅2

2𝛱�̂�𝑖 cosh
(

𝛱�̂�𝑖
)

𝑖,4 = −
−( 1

𝑅1
+ 1

𝑅2
) cosh

(

𝛱�̂�𝑖(1 + �̂�𝑚)
)

+ 1
𝑅1

+ 1
𝑅2

2𝛱�̂�𝑖 sinh
(

𝛱�̂�𝑖
)

and the membrane strains are:

𝝐 =
(

ℎ1 + ℎ2
)

𝑁+1
∑

𝑖=2
𝐹 ′
𝑖 (𝑥)

�̂� ⋅ �̂�𝑖
�̂�2𝑖

𝐯𝑖. (21)

′
𝑖 (�̂�) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

1
𝑅1

+ 𝐴𝑖,1𝛱�̂�𝑖 cosh
(

𝛱�̂�𝑖�̂�
)

+𝐴𝑖,2𝛱�̂�𝑖 sinh
(

𝛱�̂�𝑖�̂�
)

�̂� ≤ �̂�𝑚
− 1
𝑅2

+ 𝐴𝑖,3𝛱�̂�𝑖 cosh
(

𝛱�̂�𝑖�̂�
)

+𝐴 𝛱�̂� sinh
(

𝛱�̂� �̂�
)

�̂� ≥ �̂�
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Fig. 5. A schematic of the FEA model set-up.

The membrane strains are normalized as:

�̂� =
min(𝑅1, 𝑅2)

𝑁

𝑁+1
∑

𝑖=2
𝐹 ′
𝑖 (𝑥)

�̂� ⋅ �̂�𝑖
�̂�2𝑖

𝐯𝑖. (22)

2.2. Numerical model

A finite element analysis was performed using the ABAQUS software
package to validate the analytical results. The bottom surface of the
laminated beam was attached to an extremely stiff substrate beam using
a frictionless ‘hard’ contact that does not allow separation after contact
(Fig. 5). The symmetry boundary condition was imposed on both the
substrate and the laminated beam so that only the right half of the
beam was analyzed. Rotation was applied on a selected cross-section
of the substrate. The geometry of the system was discretized using a
structured mesh consisting of CPE4R elements.

3. Result

The baseline geometrical parameters and material properties are
chosen to be 2𝐿 = 10 mm, ℎ1 = 50 nm, ℎ2 = 1 μm, 𝑁 = 6, 𝐸1 = 79
GPa, 𝜈1 = 0.415, 𝐸2 = 0.5 MPa, and 𝜈2 = 0.495 based on a typical neural
robe (Le Floch et al., 2023). The loading condition, if not otherwise
tated, is 𝐿1 = 0 cm and 𝑅 = 100 mm for case I, in which case the
urvature is constant.

.1. Position dependence

Fig. 6a plots the normalized membrane strains 𝜖 along the stiff
ayers of the multilayer laminated beams according to Eq. (18), the
uler–Bernoulli beam theory, and FEA. The results from the proposed
heory agree excellently with the FEA, while there is a significant
eviation from the Euler–Bernoulli beam theory. In all layers, 𝜖 in-
reases from 0 at the two ends of the beam and reaches a plateau
hen 𝜖 < 0.65. At the plateau, the membrane strains of the proposed

heory align with the predictions from the Euler–Bernoulli beam theory.
his position-dependent deformation forms a distinct contrast to the
uler–Bernoulli beam theory, where the membrane strain is position-
ndependent under a constant curvature. A Similar position-dependent
embrane strain has also been reported by Li et al. (2016) for a

rlayer beam. The small rotation angle of 0.05 rad applied in the
umerical simulation effectively excludes the geometrical nonlinear
ffects around the beam edges as reported in Chen et al. (2023). When
here is a large rotation in the deformed configuration, geometrical
on-linearity needs to be included in the FEA simulation and the strain
ensor needs to be transformed into longitudinal and normal directions
n the deformed configuration.

The internal moment at a cross-section can be calculated from the
embrane strains and the curvatures of the stiff layers as:

=
𝑁+1
∑

𝑘=1

(

𝐸𝐼2𝑘−1𝜅2𝑘−1 + 𝑦2𝑘−1𝐸𝐴2𝑘−1𝜖2𝑘−1
)

. (23)

The contribution from the soft layers to the bending moment is ne-
glected in Eq. (23) due to the extreme modulus mismatch. We define
the equivalent flexural rigidity to be:

𝐷 = 𝑀 = 𝑀𝑅 (24)

𝜅
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Fig. 6. (a) The normalized membrane strain and (b) the normalized equivalent flexural rigidity along the beam under constant curvature. Both are position dependent.
Fig. 7. (a) The master curves depicting (i) the increase in normalized maximum membrane strain 𝜖𝑚𝑎𝑥 and (ii) the increase in normalized maximum flexural rigidity �̂�𝑚𝑎𝑥 as
the shear-lag number 𝛱 enlarges. (b) (i) The maximum membrane strain 𝜖𝑚𝑎𝑥 and (ii) the maximum flexural rigidity 𝐷𝑚𝑎𝑥 increase with the beam length 2𝐿 and approach the
Euler–Bernoulli beam theory. (c) (i) The maximum membrane strain 𝜖𝑚𝑎𝑥 and (ii) the maximum flexural rigidity 𝐷𝑚𝑎𝑥 increase with the soft layer thickness ℎ2 and diverge from
the Euler–Bernoulli beam theory as soft layer becomes thicker. (d) (i) The maximum membrane strain 𝜖𝑚𝑎𝑥 and (ii) the maximum flexural rigidity 𝐷𝑚𝑎𝑥 increase with the soft layer
modulus 𝐸2 and converge to the Euler–Bernoulli beam theory.
The equivalent flexural rigidity is further normalized by the flexural
rigidity predicted by the Euler–Bernoulli beam theory 𝐷EB to be:

�̂� = 𝐷
𝐷EB

(25)

Fig. 6b plots the normalized equivalent flexural rigidity against the
normalized 𝑥 coordinate for the baseline case. �̂� starts from 0.000047
at two ends and increases towards a plateau in the middle region. The
�̂� reaches a peak of 0.9999 at �̂� = 0. The observed position dependence
of �̂� closely resembles that of 𝜖, as the bending moment is calculated
from the membrane strains.

3.2. Effect of the shear-lag number 𝛱

In this section, the effect of the shear-lag number 𝛱 is systematically
investigated for the case N = 6 by varying the beam length, soft layer
thickness, and soft layer modulus. These parameters can be adjusted
conveniently in the fabrication process. For conciseness, we only plot
the maximum normalized membrane strain 𝜖𝑚𝑎𝑥 and the maximum
normalized flexural rigidity �̂�𝑚𝑎𝑥, which is the 𝜖 and �̂� of the topmost
layer when �̂� = 0. Fig. 7a plots the master curve of 𝜖𝑚𝑎𝑥 and �̂�𝑚𝑎𝑥 versus
𝛱 . 𝜖 begins at 0 and approaches 1 as 𝛱 increases, indicating that the
6

𝑚𝑎𝑥
shear-lag effect diminishes at a large shear-lag number and the shear-
lag theory converges to the classical Euler–Bernoulli beam theory. A
similar trend is observed for �̂�𝑚𝑎𝑥.

Fig. 7b–d plot the maximum membrane strain 𝜖𝑚𝑎𝑥 and the maxi-
mum flexural rigidity 𝐷𝑚𝑎𝑥 predicted by Eqs. (17) and (24) versus the
beam length 2𝐿, the soft layer height ℎ2, and the soft layer modulus
𝐸𝑠. The results are compared to the Euler–Bernoulli theory and FEA.
The proposed shear-lag theory matches excellently with FEA for all
parameters investigated.

While the Euler–Bernoulli beam theory predicts a length-
independent membrane strain and flexural rigidity, the proposed shear-
lag theory predicts that both 𝜖𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥 increase with beam length
and approaches the Euler–Bernoulli beam theory when 𝐿 is large
enough (Fig. 7b). The observed length dependence is a result of
increasing aspect ratio as beam length increases, which in turn enlarges
the shear-lag number 𝛱 and attenuates the shear-lag effect.

Both the shear-lag theory and the Euler–Bernoulli beam theory
predict increasing 𝜖𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥 as the soft layer thickens. However,
the discrepancy between the two becomes more pronounced at larger
soft layer thickness (Fig. 7c). The increasing deviation results from
decreasing 𝛱 as the soft layer aspect ratio decreases, strengthening the
shear-lag effect. For the cases studied, the increasing shear-lag effect
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Fig. 8. (a) The maximum membrane strain 𝜖𝑚𝑎𝑥 and (b) the maximum flexural rigidity 𝐷𝑚𝑎𝑥 increase with layer number 2N + 1.
Fig. 9. (a) The membrane strain in the topmost layer along the beam length when the beam conforms to a rounded wedge. (b) The maximum equivalent flexural rigidity increases
with the normalized deformed area 𝑅𝜃∕𝐿.
is overridden by the increasing cross-sectional area, and therefore 𝜖𝑚𝑎𝑥
and 𝐷𝑚𝑎𝑥 still increase with increasing ℎ2.

Similar to the case of the beam length, both 𝜖𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥 increase
with the soft layer modulus 𝐸2 and converge to the Euler–Bernoulli
beam theory (Fig. 7d). This is consistent with the fact decreasing mod-
ulus mismatch lowers 𝛱 and inhibits the shear-lag effect. Notice that
the dependence of flexural rigidity on 𝐸2 in the Euler–Bernoulli beam
theory is negligible due to the extreme modulus mismatch (Fig. 7d(ii)).

3.3. Effect of the layer number

We investigate the effect of the layer number by changing N from 1
to 100 while maintaining a constant 𝛱 (Fig. 8). The proposed shear-lag
theory agrees excellently with the FEA results, with the maximum error
being less than 0.2%. Both the shear-lag theory and the Euler–Bernoulli
theory predict an increase in maximum membrane strain and maximum
flexural rigidity as the total thickness of the laminated beam increases
with the layer number. For the selected parameters, the difference
between the two theories is less than 0.1% for both 𝜖𝑚𝑎𝑥 and 𝐷𝑚𝑎𝑥 when
N = 1. The discrepancy grows as 𝑁 increases. When N = 100, the 𝜖𝑚𝑎𝑥
and 𝐷𝑚𝑎𝑥 predicted by the shear-lag theory is only 42.5% and 32.7%
of the prediction by the Euler–Bernoulli beam theory respectively. This
indicates that the shear-lag effect accumulates as the number of soft
7

layers increases.
3.4. Effect of the deformed shape

In this section, we investigate the effect of deformed shape and keep
the beam properties the same as the baseline case for two categories of
deformation. For case I where the beam conforms to a round wedge,
we vary the bending area 𝑅𝜃 while keeping the 𝑅 = 100 mm. For
case II where the beam conforms to cylinders on the opposite side of
the beam as in roll to roll processing, we first vary �̂�𝑚 while keeping
𝑅1 = 𝑅2 = 100 mm; we then vary the ratio of the radius of two arcs
𝑅2∕𝑅1 while keeping 𝑅1 = 100 mm and �̂�𝑚 = 0.

3.4.1. Conforming to round wedge
Fig. 9a illustrates the normalized membrane strain along the top-

most layer 𝜖𝑁+1 for various 𝑅𝜃∕𝐿. The shear-lag theory matches per-
fectly with FEA for all cases examined. While the Euler–Bernoulli beam
theory predicts a step-like membrane strain in accordance with the
applied curvature, the shear-lag theory predicts a smooth, S-shaped
change in membrane strain near the curvature discontinuity. The mem-
brane strain peaks at �̂� = 0 for all cases. The peak value aligns closely
with the Euler–Bernoulli beam theory when 𝑅𝜃∕𝐿 = 1 and 𝑅𝜃∕𝐿 = 0.6,
while there is a difference of 6.5% for 𝑅𝜃∕𝐿 = 0.2. For all �̂� values,
𝜖𝑁+1 increases with increasing bent area 𝑅𝜃∕𝐿.

Notice that the membrane strains are finite when the local curvature
is zero for cases where 𝑅𝜃∕𝐿 < 1. Correspondingly, the internal bending

moment could also be finite when curvature is zero. To avoid dividing
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Fig. 10. The normalized membrane strain along the topmost layer of the beam when conforming to two cylinders (a) of the same radius and varying arc lengths and (b) of the
same arc length and varying radius.
N
𝐷
t
k

4

t
i
f
N

a
b

finite internal moment by zero curvature, we define the equivalent
flexural rigidity in the general case as:

𝐷(𝑥, 𝜅(𝑥)) =
|𝑀(𝑥)|
max (|𝜅|)

. (26)

In this case, max(|𝜅|) = 1∕𝑅. The normalized equivalent flexural rigidity
is defined as dividing 𝐷(𝑥, 𝜅(𝑥)) by the flexural rigidity predicted by the
Euler–Bernoulli beam theory:

�̂�(𝑥, 𝜅(𝑥)) =
𝐷(𝑥, 𝜅(𝑥))

𝐷𝐸𝐵
. (27)

Fig. 9b plots the maximum normalized flexural rigidity �̂�𝑚𝑎𝑥 against
the normalized bent area 𝑅𝜃∕𝐿. The maximum normalized flexural
rigidity starts at 0 and approaches the 1 as 𝑅𝜃∕𝐿 increases. �̂�𝑚𝑎𝑥
reaches the maximum when 𝑅𝜃∕𝐿 = 1, i.e., when the entire beam is
subjected to a constant curvature.

3.4.2. Conforming to two cylinders
Fig. 10a plots the normalized membrane strain along the topmost

layer for �̂�𝑚 = 0, 0.4, 0.8 when 𝑅1 = 𝑅2 along with the Euler–
Bernoulli theory and the finite element simulations. Similar to case I,
the normalized strains predicted by the shear-lag theory exhibit smooth
changes around the curvature jumps in contrast to the step-like change
predicted by the Euler–Bernoulli beam theory. When �̂� = 0, the result
is anti-symmetric, with the normalized strain being zero at two ends
and �̂� = 0, and approaching ±1 when |�̂�| is around 0.5. As the �̂�𝑚
increases, the symmetry breaks down. The magnitude of membrane
strain decreases in areas conforming to the 2nd cylinder, indicating a
stronger shear-lag effect due to decreased equivalent length 𝑅2𝜃2.

Fig. 10b plots the normalized membrane strain along the topmost
layer for 𝑅2∕𝑅1 = 1, 54 ,

5
3 ,

5
2 , 5. Again, a smooth change is observed at

the curvature jump. Varying curvature at �̂� > 0 has some influence on
the membrane strains when �̂� < 0 due to the non-local nature of shear-
lag effect. However, the effect quickly diminishes after �̂� < −0.25 for
the parameter chosen.

4. Discussion

4.1. Upper bound of the flexural rigidity

Section 3.4 showed that the equivalent flexural rigidity depends on
the applied bending curvature 𝜅(𝑥). In this section, we further show
that the equivalent flexural rigidity reaches the maximum for a given
laminated beam when the beam is under constant curvature.

Consider a beam subject to a given bending curvature 𝜅(𝑥). Denote
𝜅 = max(𝜅), 𝜅 = min(𝜅). Without the loss of generosity, assume that
8

𝑀 𝑚 i
𝜅𝑀 > |𝜅𝑚| ≥ 0. Combining equations Eqs. (13), (23), and (26), we have:

𝐷(𝑥, 𝜅(𝑥)) =
ℎ1 + ℎ2
𝜅𝑀

𝑁+1
∑

𝑖=2

[

sinh𝛱�̂�𝑖(1 − �̂�)∫

�̂�

0

(

𝜅S(𝑠)
cosh𝛱𝜆𝑖𝑠

cosh𝛱�̂�𝑖

+ 𝜅A(𝑠)
sinh

(

𝛱�̂�𝑖𝑠
)

sinh𝛱�̂�𝑖

)

𝑑𝑠 + ∫

1

�̂�

(

𝜅S(𝑠)
cosh𝛱�̂�𝑖�̂�

cosh𝛱�̂�𝑖
+

𝜅A(𝑠)
sinh𝛱�̂�𝑖�̂�

sinh𝛱�̂�𝑖

)

sinh𝛱�̂�𝑖(1 − 𝑠)𝑑𝑠

]

𝛱𝑔𝑖𝐯𝑖 ⋅ 𝐲
�̂�𝑖

+ (𝑁 + 1)𝐸𝐼1
𝜅
𝜅𝑀

≤
ℎ1 + ℎ2
𝜅𝑀

𝑁+1
∑

𝑖=2

[

sinh𝛱�̂�𝑖(1 − �̂�)∫

�̂�

0
𝜅𝑀

cosh𝛱𝜆𝑖𝑠

cosh𝛱�̂�𝑖
𝑑𝑠+

∫

1

�̂�
𝜅𝑀

cosh𝛱�̂�𝑖�̂�

cosh𝛱�̂�𝑖
sinh𝛱�̂�𝑖(1 − 𝑠)𝑑𝑠

]

𝛱𝑔𝑖𝐯𝑖 ⋅ 𝐲
�̂�𝑖

+ (𝑁 + 1)𝐸𝐼1
=𝐷(𝑥, 𝜅(𝑥) = 𝜅𝑀 )

=𝐷𝑎𝑟𝑐 (𝑥)

(28)

otice that 𝐷𝑎𝑟𝑐 (𝑥) is independent of the applied bending curvature.
𝑎𝑟𝑐 (𝑥) can be used to estimate the maximum bending moments of

he laminated beam for the applications where the deformed shape is
nown, for example, bio-electronics conforming to human bodies.

.2. The limiting case of extremely small 𝛱 and large 𝛱

In Section 3.2, we demonstrated numerically that the proposed
heory approaches the Euler–Bernoulli beam theory at large 𝛱 for the
nvestigated deformations. We can further establish this mathematically
or any layer number and applied bending curvature 𝜅(𝑥) (Appendix C).
ote that 𝛱2 =

(

1 − 𝜈21
) 𝐿2

ℎ1ℎ2
𝐺2
𝐸1

is the product of the soft layer aspect

ratio, stiff layer aspect ratio, and modulus mismatch. This indicates that
a lower modulus mismatch and higher aspect ratio inhibit the shear-
lag effect, which is common in many shear-lag problems (Cox, 1952;
Reissner, 1938).

It can be easily proved that lim𝛱−>0 𝐮 = 0 in Eq. (11). Therefore we
have lim𝛱−>0 𝝐 = 0 and lim𝛱−>0 𝐷 = (𝑁 + 1)𝐸𝐼1. This indicates that
when 𝛱 is sufficiently small, the stiff layers become decoupled and the
flexural rigidity of the beam is solely the algebraic sum of the flexural
rigidity of the stiff layers. This extreme case corresponds to 𝐺2 = 0
nd represents the lower bound of the flexural rigidity of the laminated
eam, where the stiff layers can slide upon each other freely like pages

n a book.



Mechanics of Materials 188 (2024) 104844Z. Wang et al.
Fig. 11. (a) The maximum membrane strain reaches a plateau at large layer number. (b) The flexural rigidity scales linearly with the layer number at large layer number.
4.3. The extreme case of 𝑁 approaches infinity

In this section, we investigate the limiting case as 𝑁 tends to
infinity. To exhibit the trend when 𝑁 is sufficiently large while main-
taining the slender aspect ratio of the laminated beam, we change
𝐸2 to 0.1 MPa and ℎ2 to 50 nm and keep the remaining parameters
unchanged. Fig. 11 illustrates the maximum membrane strain and the
maximum flexural rigidity of the proposed theory in comparison to the
Euler–Bernoulli beam theory. Interestingly, the maximum membrane
strain reaches a plateau as the layer number increases, in contrast
to the linear increase predicted by the Euler–Bernoulli beam theory.
This observation indicates that, with careful design consideration, the
multilayer laminated beam can be scaled up without the risk of brittle
functional members failing due to bending.

Here, we present a mathematical proof that 𝜖𝑚𝑎𝑥 is bounded. The
membrane strains are written as:

𝝐 =
ℎ1 + ℎ2

𝑅

𝑁+1
∑

𝑖=2

[

1 −
cosh

(

�̂�𝑖𝛱�̂�
)

cosh
(

�̂�𝑖𝛱
)

]

�̂�𝑖 ⋅ �̂�
�̂�2𝑖

�̂�𝑖 (29)

Let

𝐕 = [�̂�1, �̂�2, �̂�3,… , �̂�𝑁+1] (30)

be the matrix formed by the unit eigenvectors of �̂��̂�. Notice that 𝐕
is orthogonal because 𝐂𝐀 is symmetric for the case considered. Let

𝜖0 = ℎ1+ℎ2
𝑅 , 𝑘𝑖 =

[

1 − 1
cosh

(

�̂�𝑖𝛱
)

]

1
�̂�2𝑖

. Easy to show, 0 < 𝑘𝑖 < 𝛱2, and
we have:
𝜖𝑚𝑎𝑥 = |𝜖𝑁+1(0)|

=
|

|

|

|

|

|

𝜖0
𝑁+1
∑

𝑖=2
𝑘𝑖�̂�𝑖 ⋅ �̂�𝑉𝑖,𝑁+1

|

|

|

|

|

|

=
|

|

|

|

|

|

𝜖0
𝑁+1
∑

𝑖=2
𝑘𝑖

(

𝑉 2
𝑖,𝑁+1 − 𝑉𝑖,𝑁+1𝑉𝑖,1

)

|

|

|

|

|

|

≤ 𝜖0
𝑁+1
∑

𝑖=2
𝑘𝑖

(

𝑉 2
𝑖,𝑁+1 + |

|

𝑉𝑖,𝑁+1
|

|

|

|

𝑉𝑖,1||
)

≤ 𝜖0𝛱2
𝑁+1
∑

𝑖=2

(

𝑉 2
𝑖,𝑁+1 + |

|

𝑉𝑖,𝑁+1
|

|

|

|

𝑉𝑖,1||
)

≤ 2𝛱2𝜖0

(31)

Consistent with the constant maximum membrane strain at a large
layer number, the flexural rigidity scales linearly with the layer number
instead of following the cubic relationship predicted by the Euler–
Bernoulli beam theory (Fig. 11). This is especially important for appli-
cations like neural probes where both softness and the channel numbers
are desired.
9

5. Conclusions

In this study, we formulated a comprehensive framework to an-
alyze multilayer laminated beams with extreme modulus mismatch
under various bending conditions. We validated our theory through
FEA. We discerned a unique control parameter that reflects the in-
terplay between modulus mismatch and the aspect ratio, which in
turn determines the deviations from the Euler–Bernoulli beam theory.
Furthermore, we introduced a position and deformation-dependent
equivalent flexural rigidity. We discovered that while the flexural
rigidity exhibits a power-law dependence on the number of layers, the
membrane strain approaches a plateau and its upper bound is revealed.
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Appendix A. Eigenvalues of matrix �̂��̂�

It is easy to check that �̂� and �̂�−1 are positive-definite symmetric
matrices and that �̂� is a symmetric matrix. Moreover, it can be shown
that �̂� is a positive semi-definite matrix. Let 𝐰 =

(

𝑤1, 𝑤2,… , 𝑤𝑁+1
)𝑇

be a random N + 1 dimensional non-zero vector, we have:

𝐰𝑇 �̂�𝐰 =
𝑁+1
∑

𝑖=1
𝑤2

𝑖 �̂�𝑖,𝑖 +
𝑁
∑

𝑖=1
𝑤𝑖𝑤𝑖+1

(

�̂�𝑖,𝑖+1 + �̂�𝑖+1,𝑖
)

=
ℎ2
𝐺2

𝑁
∑

𝑖=1

𝐺2𝑖
ℎ2𝑖

[

𝑤𝑖 −𝑤𝑖+1
]2

≥0,

(32)

he equal sign only holds when 𝐰 is colinear with (1, 1, 1,… , 1)𝑇 ,
i.e., the nullity of �̂� is 1. Utilizing the rank-nullity theorem and the
act that �̂� is full rank, we have �̂��̂� has only one zero eigenvalue.

Let 𝜆 be an arbitrary nonzero eigenvalue of �̂��̂� and 𝐯 be the
corresponding eigenvector, we have:

𝜆𝐯∗�̂�−1𝐯 = 𝐯∗�̂�−1�̂��̂�𝐯 = 𝐯∗�̂�∗𝐯 = 𝐯∗�̂�∗�̂�∗�̂�∗−1𝐯
= 𝜆∗𝐯∗�̂�−1𝐯.

(33)

Therefore,

(𝜆 − 𝜆∗)𝐯∗�̂�−1𝐯 = 0. (34)

Notice that 𝐯∗�̂�−1𝐯 > 0 because �̂�−1 is positive definitive, we have
𝜆 = 𝜆∗, i.e., any eigenvalue of �̂��̂� are real.

Now, let 𝜆�̂�𝑖 , 𝑖 = 1, 2,… , 𝑛 be the eigenvalues of �̂� in ascending order
and 𝐯�̂�𝑖 be the corresponding unit eigenvectors. 𝐯�̂�𝑖 forms an orthogonal
base because �̂� is symmetric. Therefore, 𝐯 =

∑𝑖=𝑁+1
𝑖=1 (𝐯 ⋅ 𝐯�̂�𝑖 )𝐯

�̂�
𝑖 . And we

have:

𝜆 = �̂�𝐯 ⋅ �̂��̂�𝐯
�̂�𝐯 ⋅ 𝐯

=

(

�̂�𝐯
)𝑇

�̂�
(

�̂�𝐯
)

∑𝑖=𝑁+1
𝑖=2 (𝐯 ⋅ 𝐯�̂�𝑖 )2𝜆

�̂�
𝑖

> 0. (35)

which concludes the proof that �̂��̂� has one zero eigenvalue and 𝑁
ositive eigenvalues.

ppendix B. Decomposition of �̂�𝐛 in the eigenspace of �̂��̂�

Let 𝜆�̂�𝑖 be the eigenvalues of �̂� in ascending order and 𝐯�̂�𝑖 be the
corresponding unit eigenvector. As shown in Appendix A, 𝜆�̂�1 = 0,
𝜆�̂�2 > 0, 𝐯�̂�𝑖 ⋅ 𝐯�̂�𝑗 = 𝛿𝑖𝑗 . We can decompose �̂� in the eigenspace of �̂�
s:

=
𝑁+1
∑

𝑖=1
(�̂� ⋅ 𝐯�̂�𝑖 )𝐯

�̂�
𝑖

t can be shown that 𝐯�̂�1 = 1
√

𝑁+1
(1, 1, 1,… , 1)𝑇 and that 𝐯�̂�1 ⋅ �̂� = 0.

Therefore,

𝐛 =
𝑁+1
∑

𝑖=2
(�̂� ⋅ 𝐯�̂�𝑖 )𝐯

�̂�
𝑖 = �̂�

𝑖=𝑁
∑

𝑖=2

𝐛 ⋅ 𝐯�̂�𝑖
𝜆�̂�𝑖

𝐯�̂�𝑖 = �̂�𝐲

Let 𝜆𝑖 be the eigenvalues of �̂��̂� in ascending order and 𝐯𝑖 be the
corresponding unit eigenvectors. As shown in Appendix A, 𝜆1 = 0,
𝜆2 > 0. Decompose 𝐲 in the eigenspace of �̂��̂� as:

𝐲 =
𝑁+1
∑

𝑖=1
ℎ𝑖𝐯𝑖.

Utilizing �̂� = �̂�𝐲 and 𝜆1 = 0, we have:

�̂��̂� = �̂��̂�𝐲 = �̂��̂�
𝑁+1
∑

𝑖=1
ℎ𝑖𝐯𝑖 =

𝑁+1
∑

𝑖=2
𝜆𝑖ℎ𝑖𝐯𝑖

̂ ∑𝑖=𝑁+1
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This completes the proof that 𝐂𝐛 = 𝑖=1 𝑔𝑖𝐯𝑖, 𝑔1 = 0
Appendix C. Convergence of proposed theory with the Euler–
Bernoulli theory at large 𝜫

It suffices to show that the membrane strains converge with the
Euler–Bernoulli beam theory at large 𝛱 . Combining Eq. (1) with
Eq. (11), we have:

𝝐 =(ℎ1 + ℎ2)
𝑁+1
∑

𝑖=2

𝛱 �̂� ⋅ 𝐯𝑖
�̂�𝑖

[

∫

�̂�

0
𝜅𝑆 (𝑠)

(

sinh𝛱�̂�𝑖(1 − �̂� + 𝑠)
2 cosh𝛱�̂�𝑖

+
sinh𝛱�̂�𝑖(1 − 𝑥 − 𝑠)

2 cosh𝛱�̂�𝑖

)

𝑑𝑠 + ∫

�̂�

0
𝜅𝐴(𝑠)

(

cosh𝛱�̂�𝑖(1 − 𝑥 + 𝑠)
2 sinh𝛱�̂�𝑖

−
cosh𝛱�̂�𝑖(1 − 𝑥 − 𝑠)

2 sinh𝛱�̂�𝑖

)

𝑑𝑠 + ∫

1

�̂�
𝜅𝑆 (𝑠)

(

sinh𝛱�̂�𝑖(1 − 𝑠 + 𝑥)
2 cosh𝛱�̂�𝑖

+
sinh𝛱�̂�𝑖(1 − 𝑥 − 𝑠)

2 cosh𝛱�̂�𝑖

)

𝑑𝑠 + ∫

1

�̂�
𝜅𝐴(𝑠)

(

cosh𝛱�̂�𝑖(1 − 𝑥 + 𝑠)
2 sinh𝛱�̂�𝑖

−
cosh𝛱�̂�𝑖(1 − 𝑥 − 𝑠)

2 sinh𝛱�̂�𝑖

)

𝑑𝑠

]

�̂�𝑖

(36)

Utilizing the fact that:

∀𝑎 > 0, lim
𝑘−>∞∫

𝑎

0
𝑓 (𝑥)𝑘𝑒

𝑘(𝑎−𝑥)

𝑒𝑘
𝑑𝑥 = 𝑓 (𝑎) (37)

We have:

lim
𝛱−>∞

𝝐 =(ℎ1 + ℎ2)𝜅
𝑁+1
∑

𝑖=2

�̂� ⋅ �̂�
�̂�2𝑖

�̂�𝑖

=(ℎ1 + ℎ2)𝜅
[−𝑁 − 1

2
, −𝑁 + 1

2
,… , 𝑁 + 1

2

]𝑇
.

(38)

which is the membrane strain predicted by the Euler–Bernoulli beam
theory.
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