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THE BIGGER PICTURE Electroencephalography (EEG) is a non-invasive method that records the electrical
activity of the brain from the surface of the scalp. The integration of EEG with virtual reality (VR) offers a
unique opportunity for monitoring real-time brain activity in an immersive and interactive environment.
VR-EEG has an exciting potential to advance brain-computer interfaces (BCIs) because it opens new pos-
sibilities for howwe interact with digital environments, control avatars or virtual devices using brain signals,
and even understand how to enhance brain function. Emerging VR-EEG systems have already demon-
strated applications in gaming, cognitive training and enhancement, and neurorehabilitation. However,
there are still several challenges to maximizing the signal quality, long-term comfort, and ease of use.
This review offers a brief overview of the progress in EEG-integrated VR headsets, delves into the chal-
lenges of EEG posed by both hair and the VR headset, and explores the prospects of VR-EEG systems.
SUMMARY
This review presents an overview of the integration of virtual reality (VR) and electroencephalography (EEG),
known as VR-EEG systems, and their promising applications as brain-computer interfaces (BCIs), including
motor and cognitive rehabilitation, entertainment, and education. We outline the progress thus far and high-
light the challenges still faced, such as hair compatibility, seamless integration of EEG sensors and VR head-
sets, and limited EEG recording sites and signal quality. This review also points out areas requiring advance-
ments, such as the development of electrodes, multimodal systems, and closed-loop systems, for providing
a more tailored, immersive BCI experience.
INTRODUCTION

Electroencephalography (EEG) is a non-invasive technique that

records cumulative postsynaptic potentials in the superficial cor-

tex from the scalp. Owing to its high temporal resolution, afford-

ability, and versatility,1,2 EEG has been widely used in a variety of

applications, including sleep monitoring,3,4 cognitive and brain

function evaluation,5,6 probing of effective states of the brain,7,8

and clinical diagnosis and treatment of neurological disorders,

such as epilepsy,9–11 stroke,12,13 and attention disorders.14,15 In

addition, EEG also works as a modality for both clinical and

non-clinical brain-computer interfaces (BCIs), which allow users

to manipulate physical or virtual environments by modulating

their brain activity.16–18 As such, various EEG decoding methods
All rights are reserved, including those
have been developed, linking EEGmeasurements to human brain

activities of interest such as error perception,19,20 movement

intention,21–23 mental workload,24,25 emotional arousal,26,27 fa-

tigue,28–30 and attention.31–33Meanwhile, virtual reality (VR), while

not new, has advanced from being a niche tool to popular use in

recent years due to increased accessibility to hardware, stan-

dardization of VR application development interfaces, and

increasing interest in virtual environments for entertainment,34

education and training,35–38 and neurorehabilitation.12,39–44

The integration of EEG and VR allows for real-time monitoring

of the brain activity of a user interacting with the virtual environ-

ment. For researchers, this represents a powerful paradigm for

studying human cognition under enhanced reality, immersion,

and interactivity provided by the virtual environment, which has
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Figure 1. Examples of independent VR headset and EEG sensors worn together

(A) A schematic of the wet gel electrode application. Created with BioRender.com.

(B) An HTC Vive VR head-mounted display (HMD) combined with an EEG cap filled with wet gel electrodes. Reproduced with permission.59 Copyright 2023,

Elsevier.

(C) An image of the EMOTIV EPOC semidry electrodes. Reproduced from https://www.emotiv.com.

(D) An Oculus Quest VR headset combined with the EMOTIV’s EPOC X 14-channel wireless EEG headset with semidry sponge electrodes. Reproduced with

permission.81 Copyright 2021, IEEE.

(E) The 4-channel gold-plated dry electrodes on Muse 2 EEG headband. Reproduced from https://choosemuse.com.

(F) A VR headset worn together with the Muse 2 EEG headband with 4-channel dry electrodes. Reproduced with permission.83 Copyright 2022, MDPI.
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been shown to evoke stronger event-related potential and event-

related synchronization/desynchronization responses than us-

ing desktop monitors.45–47 For BCI research, VR can serve as

an experimental middle ground between the highly controlled

but simplified nature of traditional neuroscientific tasks and the

relatively uncontrollable and inaccessible nature of real-world

experimentation. For instance, mental workload, drowsiness,

attention, and error perception decoders can be validated by pi-

lots in VR flight simulators48–51 and drivers in VR driving simula-

tors.52–54 For designers of VR applications, VR-EEG unlocks

brain activity as a source of direct, real-time, and quantitative in-

formation about the user status, adding themental domain to the

suite of multimodal sensors already available on modern VR sys-

tems. Proposed uses include the estimation of perceived diffi-

culty for real-time modification of game content55,56 and the

detection of VR-induced motion sickness57,58 or breaks in

embodiment from the VR avatar59–61 for potential intervention.62

Moreover, motor imagery (MI) BCIs can be implemented in VR to

enable users to control avatars or objects, respectively.63–67

Therefore, the prospect of seamless integration between EEG

and VR technology is of interest to researchers,68,69 clini-

cians,42,70 VR developers, and users alike. Although this review

focuses on BCI-related applications of the VR-EEG technology,

the development of VR-EEG devices will have a far-reaching
2 Device 2, 100425, June 21, 2024
impact on immersive entertainment, such as EEG-adaptive VR

content,55 EEG for avatar control,63 and body ownership71; edu-

cation and training, including immersive education support,72

EEG adaptive training/education,56 and BCI training73; and

healthcare, such as mental state evaluation74 and cognitive

impair and stroke rehabilitation.42,70

SYSTEMS WITH SEPARATE VR HEADSET AND EEG
MONITOR

Most existing VR-EEG studies are implemented using separate

VR and EEG hardware, i.e., the EEG cap is first secured in place,

and then the VR headset is overlaid on top of the EEG sensors.

Conductive wet gel electrodes, regarded as the standard for

EEG recordings, are commonly employed due to their hair

compatibility, reliable signal integrity, and relative tolerance to

motion artifacts (Figures 1A and 1B).59,60,75,76 However, wet

gel electrodes, despite their advantages, have drawbacks such

as lengthy setup times, potential for leakage during the injection

process, risk of skin irritation, and dehydration over time. In

contrast, semidry electrodes, which utilize saline-solution-

soaked sponges, offer a quicker setup and are easier to re-

move.77,78 Semidry sponge electrode systems have been com-

bined with VR headsets, such as that from the EMOTIV EPOC

http://BioRender.com
https://www.emotiv.com
https://choosemuse.com
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EEG headset (Figures 1C and 1D).79–81 This integration has been

explored for various applications, including monitoring human

emotional responses to different visuals in VR rooms,81

measuring the mental workload of pilots in simulated suborbital

flights,80 and enabling mind-controlled VR games through

BCIs.82 A wireless configuration like the EMOTIV EPOC EEG

headset offers users the greater freedom of movement expected

for a full VR experience and practicality compared to VR-EEG

systems that use wired EEG caps. However, the headset’s plas-

tic slots that hold the electrodes are relatively rigid, which can

impede the precise montage of the EEG electrodes, especially

in areas covered by the facial padding of the VR headset. Like

wet gel electrodes, semidry electrodes also face the issue of

liquid-spreading-induced short circuits.77 Additionally, to main-

tain electrode impedance, it is necessary to periodically

replenish the saline solution in the sponge electrode, which limits

their useability in VR-EEG.77

Dry electrodes offer the advantages of an easy and quick

setup and no issues of dehydration, making them suitable for

extended use and outside-of-laboratory applications. EEG

headbands, with the Muse headband as an example, have

been worn together with VR headsets to classify emotional

states induced by VR stimuli (Figures 1E and 1F).83 However,

the Muse headband, which features planar gold electrodes for

the forehead and the region behind the ears, is tailored for hair-

less regions of the head, which significantly limits the sensing lo-

cations. In a recent work, Goh et al. developed a hair-compatible

4-channel EEG headset named WalkingWizard.84 This headset

employs gold-plated, spring-loaded pin electrodes designed to

be able to capture EEG from hairy regions, particularly the occip-

ital and parietal regions. The springs in the pins help maintain

consistent electrode-scalp impedance, thereby increasing

signal quality and minimizing motion-induced artifacts. As a

result, this electrode design enabled the stable recording of

steady-state evoked potentials (SSVEPs) under VR stimuli,

even while walking on a treadmill at 3 km/h. However, the rigidity

of the pin electrodes can cause discomfort during prolonged

use. Despite these advancements, separate VR and EEG sys-

tems suffer from inherent issues such as time-consuming setup,

user discomfort, and isolated VR and EEG computations, which

may limit their applicability and practicality.

COMMERCIALLY INTEGRATED VR-EEG SYSTEMS

Compared with separate VR and EEG setups, EEG-integrated

VR headsets offer a few advantages, such as quick setup,

improved comfort, and enhanced immersive and interactive

experience for users.65 Although nascent, several commercial

products featuring integrated VR-EEG are already showcasing

their effectiveness in areas such as gaming and healthcare. For

instance, Looxid Labs has introduced a mobile-powered VR

headset named LooxidVR, which has six gold-plated EEG elec-

trodes embedded into its facial padding, enabling EEG recording

from the forehead (Figure 2A).85 This setup can be effective for

analyzing emotional and cognitive responses in virtual environ-

ments, provided that care is taken to remove muscular and

ocular artifacts that easily contaminate EEG from the forehead.

However, it is unable to record brain activities from hair-covered
regions, which is essential for most BCI applications. Wearable

Sensing has pioneered the creation of the first active dry EEG

electrode headset designed for integration with VR headsets,

known as the DSI-VR300 (Figures 2B and 2C).86 This device fea-

tures soft pillar electrodes strategically positioned at the parietal

and occipital regions of the head, making this headset highly

suitable for BCI applications requiring visually evoked potentials,

such as P300-based spellers.

In 2018, OpenBCI launched their EEG-integrated VR headset,

known as Galea (Figure 2D).87 This device is equipped with 8

channels of active EEG electrodes in the form factor of soft pillars

and 2 channels of passive EEG electrodes. Additionally, Galea

incorporates a variety of other sensing modalities, such as elec-

tromyography (EMG) sensors for monitoring facial expressions,

electrooculography (EOG) sensors for eye movement detection,

electrodermal activity sensors for stressmeasurement, and pho-

toplethysmography sensors for heart rate monitoring. Galea has

differentiated itself from earlier VR-EEG systems by allowing for

a multimodal, real-time analysis of the user’s physical and

mental states. MindMaze is another company that has inte-

grated other biometric sensors into its VR-EEG system. Their

system includes a head mesh featuring rigid pin electrodes for

EEG recording from multiple brain regions (Figure 2E).88 Addi-

tionally, they have incorporated gold electrodes into the facial

padding to capture facial expressions, allowing for a more

comprehensive understanding of a user’s reactions and emo-

tions while they interact with virtual environments. A similar

design was employed by Cognixion One, which integrated 6 oc-

cipital-placed pillar electrodes with the VR headset (Figure 2F).89

However, the pillar electrodes in Cognixion One generally require

additional wet gel to assist the EEG recording.

Distinct from the aforementioned EEG electrodes that are inte-

grated with specific VR headsets, Next Mind has developed the

Next Mind Dev Kit, which features 9 comb-shaped dry elec-

trodes (Figure 2G).90 This versatile Dev Kit can be clipped onto

any VR headset, effectively recording EEG signals from the oc-

cipital regions, even through dense hairs.91 The SSVEP patterns

captured by this device enabled the control of VR games.

From these examples, it is evident that most current commer-

cially integrated VR-EEG systems adopt dry electrodes for their

ease of setup. Conductive polymer-based pillar electrodes are

particularly favored for recording EEG signals from hair-covered

regions, owing to their ability to penetrate through the hair and

their compatibility with the scalp. However, these dry electrodes

often exhibited high contact impedance, reducing the signal-to-

noise ratio and often requiring on-site amplifiers connected to

the electrodes to reduce the noise to acceptable levels for

EEG analysis. This active amplification requirement, while is

also used in many standard EEG recording equipment, works

against VR-EEG system design priorities by increasing the

weight, power, and number of wires (at least two additional wires

for power and ground for each active electrode). Additionally, the

interfaces formed between these dry electrodes and the skin are

not consistently stable, making them susceptible to motion arti-

facts, which is a concern because moderate motions are ex-

pected during most VR applications, with quick head move-

ments being especially common, as the user needs to looks

around the virtual environment.
Device 2, 100425, June 21, 2024 3



Figure 2. Commercially integrated VR-EEG systems

(A) Looxid VR headset with 6 gold-plated EEG electrodes facing the forehead. Reproduced from https://looxidlabs.com. Copyright Looxid Labs.

(B and C) DSI-VR300 EEG headset with 7 pillar electrodes integrated with the HTC VR HMD and the EEG headset in the DSI-VR300. Reproduced from https://

wearablesensing.com/dsi-vr300. Copyright Wearable Sensing.

(D) Galea VR-EEG system with 8-channel pillar electrodes integrated with the Varjo VR HMD. Reproduced from https://galea.co/. Copyright Open BCI.

(E) MindMaze with the head mesh. The inset shows the installed pin electrodes. Reproduced from https://fortune.com/2016/02/22/mindmaze-treats-amputee-

veterans-with-vr. Copyright MindMaze.

(F) The Cognixion One headset with 6 pillar electrodes contacting the occipital. The inset shows the installed pillar electrodes. Reproduced from https://one.

cognixion.com/Copyright Cognixion.

(G) Next Mind Dev Kit attachable to the rear of a VR headset. Reproduced from https://www.roadtovr.com/ces-2020-nextmind-400-brain-computer-interface-

developer-kit. Copyright Next Mind.
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INTEGRATED VR-EEG SYSTEMS IN DEVELOPMENT

Research VR-EEG systems can lay the groundwork for future

commercial VR-EEG products, particularly through electrode

material innovations. Unlike gold, conductive textiles offer the ad-

vantages of greater flexibility, cost effectiveness, and enhanced

compatibility with the foam padding used in VR headsets.92 As

such, Zhang et al. developed an EEG-integrated VR headset

with 3 conductive textile electrodes embedded into the facial

foam padding (Figure 3A).74 These electrodes consist of Ni/Cu

nanoparticle-coated polyester fibers wrapped around a Ni nano-

particle-coated polyurethane foam.93 This textile EEG-integrated

VR headset was applied in emotion classification94,95 andmental

relaxation evaluation across different VR environments.74,96

However, these textile electrodes cannot access the scalp

through hair, restricting their capability to target hair-covered

scalp regions.

Cassani et al. developed an 11-channel EEG-integrated VR-

EEG system.97 The system features Ag/AgCl-coated conduc-

tive polymer electrodes in a pillar shape for targeting hairy

scalp areas, along with planar metal electrodes on the facial

padding for hairless regions (Figure 3B). Additionally, their

system incorporates four EOG electrodes to track eye move-

ments, offering comprehensive physiological data collection

within a VR environment. Li et al. (and other authors of this re-

view) developed a type of soft and conductive sponge elec-

trode composed of poly(3,4-ethylenedioxythiophene):polys-
4 Device 2, 100425, June 21, 2024
tyrene sulfonate (PEDOT:PSS) coated on melamine sponges

(Figure 3C and the inset image).98 The softness of the sponge

allows them to deform to partially contact with the scalp skin

covered by relatively thin hairs for reliable EEG recording.

These sponges were integrated onto a Meta Quest 2 VR head-

set using a flexible connector array, ensuring a non-destruc-

tive integration of the EEG electrodes with the commercial

VR headset. This setup enabled contingent negative variation

recording during a custom-designed VR driving game, with a

classification accuracy of 66%.

In addition to VR-integrated EEG electrodes, VR-compatible

electrodes were developed. For instance, Mahmood et al. devel-

oped a portable, wireless, soft scalp electronics (SSE) platform

that can be combined with a VR headset to capture MI signals.

The SSE comprises 6 microneedle array EEG electrodes,

stretchable and flexible interconnects, and flexible circuits (Fig-

ure 3D).73 The microneedle array can penetrate the stratum cor-

neum layer and offer reduced and more stable contact imped-

ance for reliable EEG recordings. However, microneedle arrays

are limited in practical applications due to infection risks. On-

skin-formed hydrogels provide another promising candidate

for hair-compatible VR-EEG systems due to the fluidity of their

liquid precursors before they solidify into a gel. Additionally,

these hydrogels have matched softness with the skin, making

them almost imperceptible to wear. Gelatin is a highly biocom-

patible material, which is widely used in both wearable and

implantable electronics.99 Wang et al. therefore developed a

https://looxidlabs.com
https://wearablesensing.com/dsi-vr300
https://wearablesensing.com/dsi-vr300
https://galea.co/
https://fortune.com/2016/02/22/mindmaze-treats-amputee-veterans-with-vr
https://fortune.com/2016/02/22/mindmaze-treats-amputee-veterans-with-vr
https://one.cognixion.com/Copyright
https://one.cognixion.com/Copyright
https://www.roadtovr.com/ces-2020-nextmind-400-brain-computer-interface-developer-kit
https://www.roadtovr.com/ces-2020-nextmind-400-brain-computer-interface-developer-kit


Figure 3. VR-EEG systems reported in literature

(A) 3-channel conductive textile EEG electrode-integrated VR headset for recording from the forehead. Reproduced with permission.74 Copyright 2021, Frontiers

Media.

(B) 11-channel flat and pillar EEG electrode-integrated VR headset for recording from both the forehead and hairy regions. Reproduced with permission.97

Copyright 2020, IEEE.

(C) Conductive PEDOT:PSS-melamine sponge electrode-integrated VR headset for recording from both hairless and hairy sites. Reproduced with permission.98

Copyright 2023, OAE Publishing.

(D) Soft scalp electronics with 6 microneedle EEG electrodes for recording from hairy sites. Reproduced with permission.73 Copyright 2021, Wiley-VCH.

(E) Hair-compatible hydrogel electrodes capable of recording EEG signals for long periods of time. Reproduced with permission.100 Copyright 2022, AAAS.

(F–H) Reverse-curve-arch-shaped silver electrodes (F), PEDOT:PSS-coated PDMS micropillars (G), and carbon nanotube (CNT)/PDMS conical microstructure

array (H) for EEG recording on hairy sites. Reproduced with permission.101–103 Copyright 2015, Institution of Engineering and Technology, 2020, Springer Nature,

2023, Wiley-VCH.
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gelatin-based biogel electrode, which forms in situ on the skin af-

ter cooling (Figure 3E, left).100 The biogel is adhesive and can be

directly connected to an external recording system using flexible

Ag/AgCl wires (Figure 3E, right). Moreover, the biogel dopedwith

glycerol has excellent water retention properties, demonstrating

stable SSVEP recording in a VR environment even after 48 hours.

Besides EEG electrodes that have been directly applied to VR

headsets, several innovative hair-compatible electrodes have

shown promising material properties and EEG recording perfor-
mance, making them potential candidates for VR-EEG systems.

For instance, a 3D-printed sterling silver electrode with a

reverse-curve-arch shape offers an increased contact area and

enhanced comfort compared to those of traditional pillar-shaped

electrodes (Figure 3F).101 Additionally, electrodes made from ad-

hesive PEDOT:PSS-coated polydimethylsiloxane (PDMS) pillars

are more flexible than their metal-based counterparts (Figure

3G).102 Furthermore, this adhesivecoatinghas led toamorestable

electrode-skin interface and, consequently, more consistent EEG
Device 2, 100425, June 21, 2024 5
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recordings. Another innovative design involves a conical micro-

structure array made from carbon nanotube-doped PDMS, which

excels in both adhesionandcontact area (Figure 3H), representing

another promising option for integrated VR-EEG systems.103

The above discussions demonstrate that research-focused

EEG electrodes are diverse in their structure designs and have

enhanced electrode-skin interfaces. They have been success-

fully implemented as primarily passive electrodes, eliminating

the need for amplification due to their superior electrode-skin

interface contact impedance and stability. A notable limitation

of these electrodes is their reliance on either complex fabrication

processes or costly materials. Additionally, the discomfort

caused by the skin-penetrating microneedle or non-invasive

but stiff protruding pillars also hinders the wide adoption of these

electrodes. Therefore, when developing these electrodes, it is

crucial to strike a balance between performance, ease of

manufacturing, and overall cost effectiveness of the materials.

VR-EEG SYSTEMS FOR BCIs

Following an analysis of the VR-EEG hardware, we delve into the

key components and aspects of their applications in BCIs. VR-

EEG-based BCIs control the VR system by decoding either

endogenous EEG patterns like sensorimotor rhythms, which can

be volitionally modulated by subjects imagining movements,62,73

or exogenous EEG responding to external stimuli that give rise to

evoked potentials like P30065,104 or SSVEPs.67,84,100 In addition,

the BCI can modify some parameters of the VR experience after

detecting some brain states of the user like workload, task diffi-

culty,55 or error awareness.60

Early examples of EEG-based BCIs in VR navigation relying on

MI,105–108 SSVEPs,109 and P300.104 MI studies have included

tetraplegic106 and paraplegic subjects.108 BCIs also have al-

lowed subjects to interact with smart homes in VR using

P300.110,111 In the case of MI BCIs, VR can enable the avatar

to execute more complex or a larger number of motor com-

mands than those the user can reliably deliver via MI. Once the

BCI decodes a basic MI command (e.g., right hand movement),

the avatar performs a functional movement appropriate to the

current task (e.g., reaching and grasping an object with the right

arm or opening a door by turning the handle with the right hand).

This possibility is relevant for not only gaming and entertainment

but also motor rehabilitation interventions that exploit the princi-

ples of mirror therapy.112

Although VR is increasingly deployed in entertainment34 as

well as in education and training,35,36 it is expected that VR-

EEG-based BCI systemswill also have an impact on these areas.

Nevertheless, this is not yet the case, and only a limited number

of studies have been conducted. In the case of entertainment,

the potential of VR-EEG-based BCI applications has been

partially shown in the popular multiuser gameWorld of Warcraft,

where the BCI decoded the user’s affective state that made the

avatar adopt either a ‘‘positive’’ or a ‘‘negative’’ animal form in

the fantasy world.113 BCI proof of concept has also been re-

ported in education and training,37,38 where the BCI detects a

user’s attention and provides feedback to help them remain

focused. Another distinctive feature of learning and consolida-

tion of skills is a decrease in the involvement of the cerebral
6 Device 2, 100425, June 21, 2024
attention system since those skills are transferred from cortical

to subcortical areas and executed automatically. A BCI, then,

could assess real-time users’ cognitive efforts to determine

learning progress. This information will be critical in disentan-

gling whether behavioral improvement (performance and speed

increases) is truly due to the acquisition of the skill, and so the

user has freed cortical resources that could be eventually

engaged in tackling other concurrent tasks. In this respect, initial

evidence shows EEG markers correlated with skill learning pro-

gression.114 As a final example, the theory of challenge point115

states that the optimal performance resides at a task difficulty

level that is neither too high nor too low. This is also the point

that promotes learning. Thus, a BCI that assesses the user’s

workload/task difficulty55 can automatically adapt the level of

difficulty of the task to enhance the user’s experience and facil-

itate the acquisition of the necessary skills.

Apart from entertainment and education, VR-EEG and MI BCIs

have demonstrated their benefits in neurorehabilitation.42,43 Such

work includes clinical trials, where subacute stroke patients

controlled the opening and closing of a virtual hand by imagining

the movements of their paretic hand.116 At the more basic level,

different studies have provided support for the potential benefits

of the combination of VR-EEG and MI BCIs. In one of those

studies, the authors reported that BCI training in an immersive

VR setup allowed healthy subjects to better modulate sensori-

motor rhythms, which were more similar to actual motor execu-

tion, than without the VR component.117 Another study found

that anMI BCI coupledwith an immersive VR setup and functional

electrical stimulation significantly improvesMI classification accu-

racy.118 Both components, stronger electrophysiological patterns

and higher accuracy, are directly related to functional motor re-

covery after stroke.43,119 VR-EEG and BCIs have also been com-

bined beyond motor rehabilitation. For instance, a study has re-

ported that a BCI that detects a subject’s attention and controls

a VR cognitive training program increased attention levels in chil-

dren suffering from attention-deficit hyperactivity disorder.120

Finally, VR-EEG and MI BCIs have been combined to investigate

cognitive neuroscience questions such as body ownership and

agency over a virtual hand, which subjects control by imagining

opening and closing their own hand.121,122 VR-EEG and BCIs

have also been used to embody virtual humanoid robots.71 A

case study with a VR-EEG and MI BCI was shown to reduce

pain in a patient with chronic dystonia who imagined movements

of his own hand to control that of an avatar.123

REMAINING CHALLENGES

Despite emerging efforts and advancements in integrating EEG

with VR technologies and imaginative uses of VR-EEG systems,

there are several remaining challenges obstructing their practical

adoption.

Hair compatibility
EEG signals from hair-covered regions are vital for numerous

BCI applications. Presently, hair-compatible EEG electrodes

include wet gel, semidry, and dry pillar electrodes, each with

their own particular benefits and disadvantages. Wet gel elec-

trodes allow optimum skin contact on hairy areas and mitigate



Figure 4. Future opportunities of VR-EEG devices

Reprinted with permission.100,103 Copyright 2022, AAAS, 2023, Wiley-VCH.
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motion-induced anomalies, but they pose problems such as

time-consuming application, drying, and undesirable leftover

gel in the hair after use. Semidry electrodes provide better skin

contact than dry electrodes due to saline solution bridging and

are simpler to remove than gel electrodes, but they also dry

with time. Additionally, semidry electrodes may mold or leave

saltwater on the skin after use. Dry pillar electrodes are preferred

for their user-friendly aspects, hence their popularity in commer-

cial VR-EEG systems. However, they cause discomfort for the

users, especially if worn for a long time. Additionally, dry elec-

trodes exhibit high contact impedance with the skin, necessi-

tating on-site amplification, and fall prey to motion-induced arti-

facts, necessitating more intrusive signal processing including

heavier removal or modification of original data, which directly

impacts downstream BCI performance or neural data ana-

lyses.124 There is currently no electrode type that encapsulates

all the ideal characteristics for stable, long-term EEG recording

on hairy regions with easy installation and removal.

Seamless integration between EEG sensors and VR
headsets
Hair-compatible VR-EEG systems require EEG sensors built into

VR headsets. Although some EEG electrodes are soft, their sup-

porting layers often lack adequate flexibility. Therefore, the VR

headset causes extra scalp pressure and decreased user com-

fort. However, if the pressure is eliminated, then the electrodes

may not establish a steady interface with the scalp. EEG elec-

trodes designed for hairless areas can be integrated into the

VR headset’s facial padding but often include rigid connectors

or are rigid themselves. Consequently, the original functions of

the facial padding—to conform to the head shape, isolate

external light, and provide comfort—may be compromised.
Wireless VR-EEG systems
Most VR-EEG systems are wired due to better recording stability

and compatibility with existing EEG amplifiers and provide pre-

cise time triggers for VR events to evoke different types of EEG

potentials. However, considering that VR interactions often

involve user mobility without being aware of cables, these cables

can pose safety hazards and degrade immersion. Wireless VR-

EEG systems are desired for this reason. In principle, a success-

ful VR-EEG integration should reach a compromise between the

design priorities of VR and those of EEG systems. As such,

although simply adding a wired EEG system to a VR setup may

be ideal for eliminating issues with power, signal integrity, and

trigger recording, doing so goes against the priorities of VR

users. Therefore, we believe that a successful VR-EEG device

would be completely wireless. To achieve this, wireless VR-

EEG system developers should contemplate a low-power circuit

design to match the increasing battery lives of VR systems;

include reference and ground electrodes to match the usability

and common mode rejection capabilities expected from a

high-fidelity EEG system; reduce EEG packet loss by optimizing

data buffering, transmission power and frequency, and antenna

placement to match the robustness of wired systems; and

enhance the precision of wirelessly recordable triggers to match

EEG samples with events in the VR environment, which may be

managed on a separate computer.

Limited EEG recording sites
Most VR-EEG systems feature a restricted set of channel loca-

tions, commonly positioned in the parietal, prefrontal, and occip-

ital regions. This limitation primarily arises from differing priorities

in designing a conventional VR headset and a full-head EEG sys-

tem. As a consequence, all current VR-EEG system designs have

limited capabilities to comprehensively measure whole-head

brain activity, which is necessary for complex neurofeedback ap-

plications that are based on the analysis and modification of EEG

patterns in several brain regions.125,126 Low and uneven channel

coverage also restricts the use of traditional EEG spatial filtering

or channel interpolation techniques and source imaging methods

fundamental for advanced decoders or neuroscientific studies.

FUTURE DIRECTIONS AND OUTLOOK

Here, we discuss the future directions and outlook for VR-EEG

systems (see Figure 4).

New type of electrodes
Presently, VR-EEG systems’ challenges revolve around EEG

electrodes, especially how to effectively target hair-covered re-

gions. To counter this, it is crucial to devise new electrodes that

blend the close contact and steady performance of wet gel elec-

trodes with the skin with the convenient setup of dry electrodes.

Innovative conductive and adhesivematerials for coating on rela-

tively soft dry electrodes could be the solution. Alternatively,

design or structure enhancements to improve the skin-electrode

interface are useful. For example, micropillar and microcrater

structures have shownpromising results in increasing the contact

area and skin adhesion.102,103 They also maneuver well through

hairs, making them suitable candidates for hair-compatible dry
Device 2, 100425, June 21, 2024 7
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electrodes. Additionally, integrating these electrodes seamlessly

into the VR headset is paramount for creating a comfortable and

effective EEG and VR interface. This integration can enhance

user comfort and may improve the signal recording quality in

VR-EEG systems. Also, recently reported EEG electrodes

around127,128 or in the ear4,129 have attracted particular attention

with their advantages of non-gel EEG recording, wearability,

and successful use in some applications that do not always

require high channel density or neural activity from hairy regions

including sleep monitoring,4,130 seizure detection,131 and visually

evokedpotentials.132,133 In-ear EEGsensors donot overlapphys-

ically with conventional VR headsets, making them easy to use

simultaneously with VR systems based on separate hardware.

But it is difficult to seamlessly integrate them into one VR-EEGde-

vice. In contrast, around-the-ear EEGelectrodes could potentially

be integrated into theheadstrapsofVRheadsets. Thus, theyhave

the potential to be integrated as a VR-EEGdevice capable of EEG

recordings from the temporal and/or mastoid process regions.

Multimodal VR-EEG systems
Current VR-EEG systems are primarily focused on monitoring

brain activity. However, user interaction with VR is multifaceted

and includes factors like eyemovement, heartbeat, stress levels,

and facial expressions. Incorporating the recording of these

factors along with EEG data can provide a comprehensive un-

derstanding of human mental and physical states.87,97 This

multimodal approach can complement the many types of non-

physiological human activity sensing that VR headsets typically

provide such as gyroscopes, accelerometers, cameras, depth

sensors, and microphones. Companies like OpenBCI and

MindMaze have advocated for this approach by integrating mul-

tiple modalities, such as EOG and EMG, alongside EEG in VR-

EEG systems. For brain activity alone, it is beneficial to consider

incorporating other modalities. While EEG offers high temporal

resolution, it has limited spatial resolution, making it difficult to

precisely pinpoint brain activity regions. EEG’s limitation in as-

sessing prefrontal cortex function (critical for cognition) due to

contamination by facial and ocular movements can be overcome

using functional near-infrared spectroscopy (fNIR).134 When

incorporating multimodality in VR-EEG systems, designers

should take particular care to ensure temporal synchronization

between the multimodal sensors and the VR elements. Delays

between sensors can be acceptable if known, but jitters are un-

acceptable, as they make any multimodal analysis significantly

less meaningful. The integrated hardware should use a crystal

with sufficient frequency stability for the intended operating con-

ditions and a timed signal to control andminimize intersensor de-

lays. As for synchronization with VR, a wirelessmethod based on

software is preferable considering interoperability with VR devel-

opment application programming interfaces such as Unity or

OpenVR and also the fact that VR applications commonly run

on external computers. In this case, a careful review of the hard-

ware sampling configuration is still required to supply accurate

local sampling times to the software layer.

Closed-loop VR-EEG systems
The field of BCI represents a significant application area for

VR-EEG systems, where closed-loop decoding of brain activity
8 Device 2, 100425, June 21, 2024
dictates VR feedback. BCIs and VR can profoundly enhance

interactive experiences in neurorehabilitation and entertainment

scenarios. Here, VR amplifies BCI feedback by immersing sub-

jects in ecological, challenging, and rewarding environments.

In neurorehabilitation, VR neurofeedback can be complemented

with closed-loop neurostimulation,135 enhancing brain plasticity

and recovery.43,119 VR-EEG systems’ success rate in BCIs will

also depend on the control level that subjects have over VR ele-

ments. The clinical application of using VR-EEG systems could

be farfetched. Such systems can help clinicians to better under-

stand the underlyingmechanism ofmotor recovery after stroke43

and develop patient-centered neurorehabilitation programs.

They could also advance remote rehabilitation programs through

telehealth44 by monitoring the real-time change in brain function

remotely and subsequently refine the interventions. Future artifi-

cial intelligence advancements are poised to enhance BCI per-

formance,136 with potential customization of BCI results driving

the VR experience.137 Developers of closed-loop VR-EEG sys-

tems should focus on making the online EEG decoder outputs

user friendly and timely for the VR application through dedicated

programming interfaces.
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