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A B S T R A C T

Nanoindentation of suspended circular thin films, dubbed drumhead nanoindentation, is a
widely adopted technique for characterizing the mechanical properties of micro- or nano-
membranes, including atomically thin two-dimensional (2D) materials. This method involves
suspending an ultrathin specimen over a circular microhole and applying a precise indenting
force at the center using an atomic force microscope (AFM) probe. Classical solutions assuming
a point load and a fixed edge, which are referred to as Schwerin-type solutions, are commonly
used to estimate Young’s modulus of the membrane material out of load–deflection mea-
surements. However, given the widespread experimental evidence for adhesive and frictional
contacts between the probe tip and the membrane, as well as sliding between the membrane
and its supporting substrate, quantitative investigations of the effects of these interactions are
required. In this paper, we formulate a boundary value problem to rigorously model such
effects, ensuring relevance to experimental operations. Our numerical analyses reveal that the
adhesive effect at the tip-membrane interface diminishes as the indentation depth increases or
the tip size decreases. Furthermore, frictional interactions at this interface shift the maximum
membrane stress from the center to the tip-membrane contact line with increasing indentation
depth and interfacial shear stress. At large indentation depths, the size of the indenter tip
and the sliding of the membrane-substrate are found to have a large effect on the indentation
load–deflection relationship. Thus, we propose a new approximate formula for this relationship
assuming a non-adhesive and frictionless spherical tip of a finite radius and a slippery contact
with the supporting substrate. This formula is more accurate than the widely used Schwerin-type
solution. It can be used to simultaneously extract the in-plane stiffness of the membrane and
the shear strength at the membrane-substrate interface.

. Introduction

Drumhead nanoindentation testing, where an ultrathin membrane is suspended over a circular microhole and indented in the
enter by a sharp probe such as an atomic force microscope (AFM) tip, is a widely used experimental technique to measure the
echanical properties of micro- and nano-membranes due to its straightforward sample preparation and operation and ease of

ormulation (Maner et al., 2004; Begley and Mackin, 2004; Akinwande et al., 2017; Ozaki et al., 2018; Tu et al., 2018; Yang
t al., 2019). This method is particularly popular for testing two-dimensional (2D) materials such as graphene and MoS2 with
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atomic-level thinness, which presents challenges for conventional testing methods such as uniaxial tensile tests (Liu and Wu, 2016;
Al-Quraishi et al., 2020; Di Giorgio et al., 2022). Pioneering studies by Lee et al. (2008) and Bertolazzi et al. (2011) have shown the
efficacy of this method in estimating the Young’s modulus and the breaking strength of monolayer graphene and MoS2 through load–
deflection measurements. Furthermore, this method has been extended to investigate the mechanical characteristics of multilayer
2D materials (Ruiz-Vargas et al., 2011; Castellanos-Gomez et al., 2012a,b; Lee et al., 2013; Lin et al., 2014; Falin et al., 2017; Zhang
et al., 2020). Separately, drumhead nanoindentation is crucial for the strain engineering of 2D-material-based devices (Cartamil-
Bueno et al., 2017; Dai et al., 2019; Shi and Cheng, 2020; Han et al., 2021; Jang et al., 2022; Han et al., 2022). For instance,
precise control over the indentation parameters, such as indentation depth, allows the alteration of the band-piezoelectric effect of
graphene (Wang et al., 2015) and the band gap of MoS2 (Manzeli et al., 2015).

The mechanics analysis of indentation on freestanding membranes was first pioneered by Schwerin (1929), who identified a
cubic dependence of the indentation force on the indentation depth (i.e., 𝐹 ∝ 𝑑3) by assuming a point load and a fixed edge.
Schwerin’s solution was derived by equating the work done by the probe with the stretching energy stored in the membrane, while
neglecting its bending stiffness. Over the years, the increased precision and resolution of indentation technology have expanded
its application to characterize ultrathin specimens. Micro- and nano-membranes inherently experience prestresses due to growth or
transfer processes (Mougin et al., 2003; Zhou et al., 2013a; Cao et al., 2014), leading to a proposed linear load–deflection relation
(i.e., 𝐹 ∝ 𝑑) at small indentation depths (Wan et al., 2003; Komaragiri et al., 2005). Consequently, a widely used formulation
that combines linear and cubic behaviors has been extensively applied to fit the load–deflection data obtained in drumhead
nanoindentation tests (Lee et al., 2008; Ruiz-Vargas et al., 2011; Cao and Gao, 2019). However, this Schwerin-type approximation
faces challenges in accurately capturing the transition from linear behavior under small deflections to cubic behavior under large
deflections (Vella and Davidovitch, 2017). Furthermore, as the thickness of the membrane increases, the effect of bending stiffness
becomes significant in the analysis of drumhead nanoindentation (Castellanos-Gomez et al., 2012a; Chandler and Vella, 2020).

The point load assumption in drumhead nanoindentation analysis introduces stress singularities, posing challenges in accurately
etermining the maximum membrane stress before rupture, defined as the breaking strength. To address this, Bhatia and Nachbar
1968) provided a widely used formulation based on a non-adhesive and frictionless spherical indentation tip to estimate the
reaking strength using the fracture force (𝐹max) and the radius of the tip (𝑅). However, at the micro- or nano-scale, adhesive forces

such as van der Waals (vdW) interactions between the tip and the membrane are commonly observed, often resulting in a ‘‘pull-in’’
instability where minute interactions can form at the tip-membrane interface when the tip slowly approaches the membrane (Lee
et al., 2008; Zhou et al., 2013b,c; Jiang and Zhu, 2015; Rokni and Lu, 2020). Beyond mere adhesion in the normal direction,
tangential frictional interactions between the indenter and the membrane have also been reported for 2D materials, especially
considering the formation of mechanically activated covalent bonds at the tip-2D material interface (Deng et al., 2013; Dong et al.,
2013; Kumar and Parks, 2015; Rokni and Lu, 2020; Zhan et al., 2021; Zhang et al., 2023). Although extensive research has been
conducted on the effects of tip size and geometry (Begley and Mackin, 2004; Komaragiri et al., 2005; Vella and Davidovitch,
2017; Chandler and Vella, 2020; Segovia et al., 2021), the quantitative understanding of the effects of tip-membrane interfacial
interactions, which include both normal adhesion and tangential shear, remains a subject of ongoing research.

In addition to forming an interface with the indenter, the membrane also has an interface with its supporting substrate beyond
its circular edge. Recent experimental and theoretical investigations have reported interfacial slippage of 2D materials against their
supporting substrates during indentation or bulging (Kitt et al., 2013; Dai et al., 2018, 2020; Dai and Lu, 2021; Dai et al., 2022;
Sun et al., 2022; Rao et al., 2023). This slippage is attributed to the weak shear resistance provided by the vdW interactions at the
membrane-substrate interface. In particular, Dai and Lu (2021) demonstrated that this interfacial slippage is evidenced by the fact
that the measured cubic stiffness (i.e., 𝐹∕𝑑3) of monolayer graphene at large indentation depths is lower than that predicted by the
Schwerin-type solution. In the study by Dai and Lu (2021), prestress is neglected, as its influence is considered to diminish at large
deflections. Sun et al. (2022) provided an approximate formulation that incorporates prestress, membrane elasticity, and a sliding
edge based on the assumption of a point load. However, this approach lacks numerical validation. Thus, the effects of interfacial
slippage on drumhead nanoindentation using a spherical tip of finite radius still warrant further investigation.

To elucidate the effects of the aforementioned interfacial interactions in drumhead nanoindentation, we establish a compre-
hensive theoretical framework incorporating membrane prestress, membrane elasticity, finite tip size, adhesive and frictional
tip-membrane interactions, as well as the slippage at the membrane-substrate interface in this paper. It is structured as follows:
Section 2 introduces the problem with the corresponding experimental evidence. Section 3 outlines the model formulation,
emphasizing the various boundary conditions at the contact lines between the tip and the membrane, as well as between the
membrane and the substrate. In Section 4, we detail the numerical implementation of established models. Section 5 presents the
numerical results, including comparisons between the established and proposed approximations, and discussions of the effects of
various interfacial interactions on the load–deflection relationship and membrane stress distributions. Finally, Section 6 provides
concluding remarks.

2. Problem description

In drumhead nanoindentation tests, interfacial interactions are consistently manifest. Various contributing factors, including vdW
interactions and covalent bonds, govern the adhesion and friction between the AFM tip and the suspended specimen (Dong et al.,
2013; Kumar and Parks, 2015; Rokni and Lu, 2020). The tip is often simplified as a spherical cap with a finite radius 𝑅 (Lee et al.,
2008). Meanwhile, the slippage of the membrane against its supporting substrate is facilitated by the limited fixation at the periphery
2

of the cavity, mainly due to the relatively weak vdW interactions at the interface between the membrane and the substrate (Dai
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Fig. 1. (a) Schematic illustration and notations for drumhead nanoindentation using an atomic force microscope (AFM) probe with a spherical tip, considering
the sliding between the membrane and the supporting substrate, as well as the adhesive and/or frictional contact between the tip and the indented membrane
as illustrated in the magnified view in (b). (c) A typical indentation load–deflection curve with the red cross indicating the maximum force (𝐹max) and deflection
(𝑑max) right before membrane rupture. This paper assumes constant adhesion energy (𝛤tm [J∕m2]) and shear stress (𝜏tm [N∕m2]) at the tip-membrane interface,
as well as constant shear stress (𝜏ms [N∕m2]) at the membrane-substrate interface. Furthermore, the BVP assumes that the contact radii at the tip-membrane
interface (𝑎in) and the membrane-substrate interface (𝑎out ) are unknown a priori.

and Lu, 2021; Sun et al., 2022). Figure 1a illustrates the nanoindentation of a membrane suspended on a cylindrical cavity of
radius 𝑎 formed on a rigid substrate, taking into account these prestress, finite tip size, and various interfacial interactions. To
assess the amount of energy gained during the tip-membrane attachment, we assume a constant adhesion energy per unit area
(𝛤tm [J∕m2]) in the contact area between the tip and the membrane (refer to Fig. 1b). To assess shear resistance, we assume
constant shear stress (traction) (𝜏tm [N∕m2]) at the tip-membrane interface, as well as constant shear stress (traction) (𝜏ms [N∕m2])
at the membrane-substrate interface during drumhead nanoindentation, respectively. Changes in adhesion energy at the membrane-
substrate interface can be disregarded, as the edge of the cavity inhibits the normal detachment of the membrane during indentation.
Different normal and tangential traction-separation laws, beyond the constant ones adopted here, can be incorporated and discussed
in future research (Jiang and Park, 2015; Yuan and Wang, 2021; Rao et al., 2023). It should be noted that, due to adhesive and
frictional contacts, the contact radii at the tip-membrane interface (𝑎in) and the membrane-substrate interface (𝑎out) are unknown
a priori, causing complexity in the formulation of the boundary value problem (BVP). Additionally, the membrane prestress (𝑇pre
[N∕m]) is considered uniform and isotropic in this paper. We assume a neglected bending rigidity as this paper focuses on ultrathin
materials, particularly monolayer 2D materials like monolayer graphene.

The relationship between the indentation force and depth (i.e., 𝐹 (𝑑)) (see Figure 1c) provides a means to extract the mechanical
properties of the ultrathin specimen from drumhead nanoindentation measurements. For example, the most widely used formula,
the Schwerin-type solution, for extracting the in-plane Young’s modulus (𝐸2D) is

𝐹 = 𝜋𝑇pre𝑑 + 𝛼(𝜈)
𝐸2D

𝑎2
𝑑3, (1)

where 𝛼(𝜈) ≈ (1.05 − 0.15𝜈 − 0.16𝜈2)−3 and 𝜈 is Poisson’s ratio (Lee et al., 2008). This approximate formula is based on the assumptions
of a point load and a fixed edge, where the prestress dominates the small deflections (see the linear term) while membrane elasticity
dominates the large deflections (see the cubic term). Using this formula to fit the measured indentation load–deflection curves,
researchers extracted 𝐸2D and 𝑇pre for a specific specimen.

Furthermore, the breaking strength of the material (𝜎max
2D ) is determined by measuring the fracture force (𝐹max) and then extracting

it using the formula

𝜎max
2D =

√

𝐹max𝐸2D
4𝜋𝑅

. (2)

This formula is derived based on the assumptions of a non-adhesive and frictionless spherical tip and a fixed edge (Bhatia and
Nachbar, 1968).

However, the estimated values of 𝐸2D and 𝜎max
2D for the same material (e.g., monolayer graphene) using Eqs. (1) and (2) exhibit

diversity (see Table 1 for details). One potential factor contributing to this variability is the influence of adhesive and frictional
3
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Table 1
A summary of geometric and mechanical parameters given by previous drumhead nanoindentation experiments (Bertolazzi et al.,
2011; Cooper et al., 2013; Liu et al., 2014; Manzanares-Negro et al., 2021; Sun et al., 2022; Lee et al., 2008, 2013; Suk et al.,
2015; López-Polín et al., 2015; Falin et al., 2017). 𝐸2D and 𝜎max

2D are estimated using Eqs. (1) and (2).

Fig. 2. Cross-sectional sketch of a suspended membrane with prestress being indented by an adhesive and frictional spherical tip of finite radius 𝑅, taking into
account a sliding edge. The red dashed line indicates the neutral plane of the membrane in its undeformed state.

contacts on these relationships, which are the main focus of this paper. To address this question, we begin by analyzing the force
equilibrium in the suspended membrane under indentation. It should be noted that all the parameters discussed throughout this
article are based on previous nanoindentation experiments performed on monolayer 2D materials, as documented in Table 1.

3. Model formulation

3.1. Force equilibrium

Figure 2 illustrates the cross-sectional view of the deformed configuration of the suspended membrane, resembling an axisym-
metric tent, with a polar coordinate system (𝑟, 𝑧) established at the neutral plane of its undeformed configuration. We first define
the radial and vertical displacements of an arbitrary material point on the neutral plane as 𝑢(𝑟) and 𝑤(𝑟), respectively. A stress
function 𝜓(𝑟) is defined such that the radial and hoop 2D membrane stresses are 𝑁𝑟 = 𝜓

𝑟2
and 𝑁𝜃 = 𝜓 ′

𝑟 − 𝜓
𝑟2

, respectively. In the
suspended region (𝑟 ∈ [𝑎in, 𝑎]), the out-of-plane force balance and strain compatibility are described by the Föppl–von Kármán (FvK)
equations (Mansfield, 2005):

⎧

⎪

⎨

⎪

𝜓𝑤′ − 𝐹𝑟
2𝜋 = 0

𝜓 ′′ − 𝜓 ′
+ 𝐸2D𝑤′2 = 0

at 𝑟 ∈ [𝑎in, 𝑎], (3)
4

⎩

𝑟 2
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where ()′ denotes d()∕d𝑟. Note that 𝑎in is unknown a priori and depends on the adhesive and frictional contacts between the indenter
tip and the membrane during the indentation process.

Table 1 summarizes the geometric and mechanical parameters obtained from previous nanoindentation tests on monolayer
graphene and MoS2. Based on the ground, we adopt the conventional assumptions of small deformation (𝜖int ≲ 0.25) and moderate
central deflection (𝑑max∕𝑎 ≲ 0.4) in modeling. Thus, a linear constitutive law is adopted to describe the material behavior, which is

⎧

⎪

⎨

⎪

⎩

𝑁𝑟 =
𝐸2D
1−𝜈2 (𝜖𝑟 + 𝜈𝜖𝜃)

𝑁𝜃 =
𝐸2D
1−𝜈2 (𝜖𝜃 + 𝜈𝜖𝑟)

, (4)

where 𝜖𝑟 and 𝜖𝜃 are radial and hoop membrane strains, respectively. Furthermore, the kinematics of deformation is described by
{

𝜖𝑟 = 𝑢′ + 1
2𝑤

′2

𝜖𝜃 =
𝑢
𝑟

. (5)

The in-plane displacement, according to Eqs. (4)–(5), can be expressed in terms of the stress function, which is given by

𝑢(𝑟) =
𝜓 ′(𝑟)
𝐸2D

− 1 + 𝜈
𝐸2D

𝜓(𝑟)
𝑟
. (6)

Now, let us consider the in-plane force equilibrium in the supported region (i.e., 𝑟 ∈ [𝑎, 𝑎out ]) where 𝑤 = 0. This can be represented
s (Dai et al., 2018)

𝑟𝑢′′ + 𝑢′ − 𝑢
𝑟
+

(1 − 𝜈2)𝜏ms
𝐸2D

𝑟 = 0 at 𝑟 ∈ [𝑎, 𝑎out ]. (7)

It is crucial to note that 𝑎out evolves during indentation and is unknown a priori, satisfying the initial condition that the 2D membrane
tresses return to their prestress state at this contact edge (i.e., 𝑁𝑟(𝑎out ) = 𝑁𝜃(𝑎out ) = 𝑇pre).

We then move on to the contact region (i.e., 𝑟 ∈ [0, 𝑎in]) where 𝑤(𝑟) = 𝑤(0) +𝑅 −
√

(𝑅2 − 𝑟2) ≈ 𝑤(0) + 𝑟2

2𝑅 at 𝑟 ≪ 𝑅. The in-plane
force equilibrium is given by (Dai et al., 2018)

𝑟𝑢′′ + 𝑢′ − 𝑢
𝑟
+ 1 − 𝜈

2
𝑤′2 + 𝑟𝑤′𝑤′′ −

(1 − 𝜈2)𝜏tm
𝐸2D

𝑟 = 0 at 𝑟 ∈ [0, 𝑎in]. (8)

he in-plane equilibrium equations, Eqs. (7) and (8), can be derived from the calculus of variations based on the principle of
inimum free energy (see Appendix A for details).

.2. Boundary conditions at 𝑟 = 𝑎

Considering 𝑁𝑟(𝑎out ) = 𝑁𝜃(𝑎out ) = 𝑇pre, the in-plane displacement at 𝑟 ∈ [𝑎, 𝑎out ] can be derived from Eq. (7), written as

𝑢(𝑟) =
(1 − 𝜈)𝑇pre

𝐸2D
𝑟 +

(1 − 𝜈2)𝜏ms
𝐸2D

(
𝑎out𝑟
2

−
𝑎3out
6𝑟

− 𝑟2

3
). (9)

Furthermore, according to Eqs. (6) and (9), the stress function at 𝑟 ∈ [𝑎, 𝑎out ] is written as

𝜓(𝑟) = 𝑇pre𝑟
2 + 𝜏ms𝑟

2( 1 + 𝜈
2

𝑎out +
1 − 𝜈
6

𝑎3out
𝑟2

− 2 + 𝜈
3

𝑟). (10)

We consider continuous displacements and 2D membrane stresses in 𝑟 = 𝑎, i.e., [[𝑢]] = [[𝑤]] = [[𝑁𝑟]] = [[𝑁𝜃]] = 0, where
[[𝑓 ]] = 𝑓− − 𝑓+ (Dai and Lu, 2021). These lead to the following three boundary conditions,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤(𝑎−) = 0

𝑢(𝑎−) =
(1−𝜈)𝑇pre
𝐸2D

𝑎 + (1−𝜈2)𝜏ms
𝐸2D

( 𝑎out𝑎2 − 𝑎3out
6𝑎 − 𝑎2

3 ),

𝑁𝑟(𝑎−) = 𝑇pre + 𝜏ms(
1+𝜈
2 𝑎out +

1−𝜈
6

𝑎3out
𝑎2

− 2+𝜈
3 𝑎),

(11)

where 𝑎− indicates the inner side of 𝑟 = 𝑎.
As 𝜏ms → ∞, 𝑎out → 𝑎, and the sliding edge between the membrane and the supporting substrate behaves as a fixed one, so that

Eq. (11) simplifies to
{

𝑤(𝑎−) = 0
𝑢(𝑎−) =

(1−𝜈)𝑇pre
𝐸2D

𝑎
. (12)

The force continuity condition, part of Eq. (11), is omitted since the displacement at the contact line (i.e., 𝑟 = 𝑎) is prescribed (Majidi
and Adams, 2009).

As 𝜏ms → 0, the edge behaves as a frictionless one, and Eq. (11) simplifies to (Rao et al., 2023)
{

𝑤(𝑎−) = 0
𝑁𝑟(𝑎−) +𝑁𝜃(𝑎−) = 2𝑇pre

, (13)
5

as the displacement and force continuities are both preserved across 𝑟 = 𝑎.



Journal of the Mechanics and Physics of Solids 192 (2024) 105828Y. Rao and N. Lu
Table 2
Illustration of force balances at the contact line (yellow dots) between the spherical tip and the indented membrane with three different
boundary conditions at 𝑟 = 𝑎in. 𝑁−

𝑟 and 𝑁+
𝑟 represent the radial 2D membrane stress at the inner and outer sides of the contact line,

respectively.

3.3. Boundary conditions at 𝑟 = 𝑎in

Considering 𝑢(0) = 0 due to the axisymmetry, the in-plane displacement at 𝑟 ∈ [0, 𝑎in] can be derived from Eq. (8), written as

𝑢(𝑟) = 𝐶𝑟 − 3 − 𝜈
16𝑅2

𝑟3 +
(1 − 𝜈2)𝜏tm

3𝐸2D
𝑟2, (14)

where 𝐶 is an unknown constant. Therefore, according to Eqs. (6) and (14), the stress function at 𝑟 ∈ [0, 𝑎in] is written as

𝜓(𝑟) =
𝐸2D
1 − 𝜈

𝐶𝑟2 −
𝐸2D

16𝑅2
𝑟4 + 2 + 𝜈

3
𝜏tm𝑟

3. (15)

When considering a non-adhesive and frictionless tip (i.e., 𝛤tm = 𝜏tm = 0), there are continuous displacements and 2D membrane
stresses across 𝑟 = 𝑎in, i.e., [[𝑢]] = [[𝑤]] = [[𝑁𝑟]] = [[𝑁𝜃]] = 0 (Majidi and Adams, 2009). These lead to the following two boundary
conditions,

⎧

⎪

⎨

⎪

⎩

𝜓(𝑎+in) =
𝐹𝑅
2𝜋

2𝜓(𝑎+in)

𝑎2in
−

𝜓 ′(𝑎+in)
𝑎in

=
𝐸2D𝑎2in
8𝑅2

, (16)

where 𝑎+in indicates the outer side of 𝑟 = 𝑎in. The same boundary conditions are observed in Chandler and Vella (2020). In particular,
the second equation of Eq. (16) represents membrane tension continuity across 𝑟 = 𝑎in, which is obtained from [[𝑁𝑟 −𝑁𝜃]]𝑟=𝑎in = 0
with the aid of Eqs. (14) and (15). According to the force balance at the contact line (see the force balance diagram provided in
the first column of Table 2), there is a continuous slope across 𝑟 = 𝑎in, as represented by the first equation of Eq. (16).

When considering an adhesive and frictionless tip (i.e., 𝛤tm ≠ 0 & 𝜏tm = 0), the boundary conditions at 𝑟 = 𝑎in are expressed as

⎧

⎪

⎨

⎪

⎩

[𝜓(𝑎+in)−
𝐹𝑅
2𝜋 ]2

2𝑅2𝜓(𝑎+in)
= 𝛤tm

2𝜓(𝑎+in)

𝑎2in
−

𝜓 ′(𝑎+in)
𝑎in

=
𝐸2D𝑎2in
8𝑅2

. (17)

The upper equation implies a slope jump across 𝑟 = 𝑎in induced by the adhesion energy (𝛤tm) at the tip-membrane interface, resulting
in a tangential force balance at the contact line, as depicted in the second column of Table 2. The same force balance at the contact
line for bulging (inverse indentation under pressure) can be found in Rao et al. (2021), validating the findings.

When considering an adhesive and frictional tip (i.e., 𝛤tm ≠ 0 & 𝜏tm ≠ 0), the boundary conditions are expressed as

⎧

⎪

⎨

⎪

[𝜓(𝑎+in)−
𝐹𝑅
2𝜋 ]2

2𝑅2𝜓(𝑎+in)
= 𝛤tm − 𝜏tmΔ𝑢𝑠

2𝜓(𝑎+in)
2 −

𝜓 ′(𝑎+in) =
𝐸2D𝑎2in

2 + (1−𝜈)𝜏tm𝑎in
, (18)
6

⎩ 𝑎in 𝑎in 8𝑅 3
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Where Δ𝑢𝑠 = 𝑢(𝑎in) −
(1−𝜈)𝑇pre
𝐸2D

𝑎in represents the difference in radial displacement at 𝑟 = 𝑎in, compared to a reference state where
the membrane fully sticks to the tip during indentation. Although the indentation process modifies the radial displacement below
the tip, this modification is minor and independent of the indentation depth, as has been demonstrated in the indentation of a half
space (Zhupanska, 2009; Borodich et al., 2014). Therefore, we neglect this modification and preserve radial displacement induced
by prestress (i.e., 𝑢(𝑟) = (1−𝜈)𝑇pre

𝐸2D
𝑟), within the range of 𝑟 ∈ [0, 𝑎in] for the full stick case, considering experimental observations for

mall deformation and small tip size (see Table 1 for details). As seen in the third column of Table 2, the adhesive and shear forces
t the tip-membrane interface play contrasting roles in the force balance at the tip-membrane contact line: adhesion facilitates the
lope jump, while friction prohibits it.

When considering an adhesive and non-slip tip (i.e., 𝛤tm ≠ 0 & 𝜏tm → ∞), the boundary conditions are expressed as

⎧

⎪

⎨

⎪

⎩

[𝜓(𝑎+in)−
𝐹𝑅
2𝜋 ]2

2𝑅2𝜓(𝑎+in)
+ (1−𝜈2)

2𝐸2D
[
𝜓(𝑎+in)

𝑎2in
− 𝑇pre −

𝐸2D𝑎2in
2(1−𝜈2)𝑅2 ]2 = 𝛤tm

𝜓 ′(𝑎+in)
𝐸2D

−
(1+𝜈)𝜓(𝑎+in)
𝐸2D𝑎in

=
(1−𝜈)𝑇pre𝑎in

𝐸2D

. (19)

The upper equation implies a discontinuity of radial membrane stress across the tip-membrane contact line due to the non-slip
condition, similar to what occurs at the contact line during bulging (Rao et al., 2021). This equation provides the upper bound
of the friction effects on nanoindentation and can also be derived using approaches in fracture mechanics, such as the 𝐽 -integral
method (Majidi and Adams, 2009; Lee et al., 2018). The lower equation suggests a continuity of radial displacement across the
contact line.

The derivation of the boundary equations in this subsection, using an energy approach, is detailed in Appendix A.

4. Numerical implementation

We introduce nondimensionalization below to facilitate the numerical solutions for the BVPs organized in this paper. A
characteristic length in the vertical direction, 𝐿 =

√

𝑇pre∕𝐸2D𝑎, is then identified here, which leads to

𝜌 = 𝑟
𝑎 , 𝜌in =

𝑎in
𝑎 , 𝜌o =

𝑎out
𝑎 , 𝑈 = 𝑢

𝑎 , 𝛿 =
𝑑
𝐿 ,𝑊 = 𝑤

𝐿 ,

 = 𝐹
𝑇pre𝐿

, 𝜓̄ = 𝜓
𝑇pre𝑎2

,𝑟 =
𝑁𝑟
𝑇pre

,𝜃 =
𝑁𝜃
𝑇pre

,

s =
𝑅𝐿
𝑎2
, = 𝛤tm𝐸2D

𝑇 2
pre

, = 𝜏tm𝑎
𝑇pre

,  = 𝜏ms𝑎
𝑇pre

,

(20)

here s is the dimensionless radius of the spherical tip,  and  are the adhesion and friction numbers at the tip-membrane
nterface, respectively; and  is the shear number at the membrane-substrate interface. These controlling parameters govern the
ndentation load–deflection relationship when considering the effects of adhesive and frictional contacts.

According to Eq. (20), the governing equations in the suspended region (𝑟 ∈ [𝑎in, 𝑎]), Eq. (3), are rewritten as

⎧

⎪

⎨

⎪

⎩

𝜓̄𝑊 ′ − 𝜌
2𝜋 = 0

𝜓̄ ′′ − 𝜓̄ ′

𝜌 + 𝑊 ′2

2 = 0
at 𝜌 ∈ [𝜌in, 1]. (21)

Five boundary conditions are required to solve this equation numerically since 𝜌in and 𝜌o are unknown parameters a priori.
According to Eqs. (6), (11), and (20), the sliding boundary conditions at 𝜌 = 1 are given by

⎧

⎪

⎨

⎪

⎩

𝑊 (1) = 0

𝜓̄ ′(1) − (1 + 𝜈)𝜓̄(1) = 1 − 𝜈 + (1 − 𝜈2) ( 𝜌o2 − 𝜌3o
6 − 1

3 )
𝜓̄(1) = 1 +  ( 1+𝜈2 𝜌o +

1−𝜈
6 𝜌3o −

2+𝜈
3 )

. (22)

We further consider two limiting cases of the boundary condition at 𝜌 = 1: the fixed edge with boundary conditions given in
q. (12), which can be rewritten as

{

𝑊 (1) = 0
𝜓̄ ′(1) − (1 + 𝜈)𝜓̄(1) = 1 − 𝜈

; (23)

he frictionless edge with boundary conditions given in Eq. (13), which can be rewritten as
{

𝑊 (1) = 0
𝜓̄ ′(1) = 2

. (24)

To formulate the closed form of the BVP relevant to the assumption of the non-adhesive and frictionless tip, we rewrite the two
dditional boundary conditions at 𝜌 = 𝜌in, given by Eq. (16), as

⎧

⎪

⎨

⎪

𝜓̄(𝜌in) =
s
2𝜋

2𝜓̄(𝜌in) − 𝜌in𝜓̄ ′(𝜌in) =
𝜌4in
82

. (25)
7
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Table 3
A summary of controlling parameters identified by our model but obtained from previous drumhead nanoindentation experiments or
simulations. The pink-highlighted columns, which relate to adhesion and friction numbers, are assessed using vdW interactions, while
the green columns are based on chemical bonds (Bertolazzi et al., 2011; Cooper et al., 2013; Liu et al., 2014; Manzanares-Negro et al.,
2021; Sun et al., 2022; Lee et al., 2008, 2013; Suk et al., 2015; López-Polín et al., 2015; Falin et al., 2017; Kumar and Parks, 2015).

Similarly, to formulate the closed form of the BVP relevant to the assumption of adhesive and frictionless tip, we rewrite the
two additional boundary conditions at 𝜌 = 𝜌in, given by Eq. (17), as

⎧

⎪

⎨

⎪

⎩

(𝜓̄(𝜌in) −
s
2𝜋 )2 = 22

s 𝜓̄(𝜌in)

2𝜓̄(𝜌in) − 𝜌in𝜓̄ ′(𝜌in) =
𝜌4in
82

s

. (26)

Notably, it simplifies to Eq. (25) when  = 0.
To formulate the closed form of the BVP relevant to the assumption of adhesive and frictional tip, we rewrite the two additional

boundary conditions at 𝜌 = 𝜌in, given by Eq. (18), as

⎧

⎪

⎨

⎪

⎩

(𝜓̄(𝜌in) −
s
2𝜋 )2 = 22

s 𝜓̄(𝜌in)[ −(𝜓̄ ′(𝜌in) − (1 + 𝜈) 𝜓̄(𝜌in)𝜌in
− (1 − 𝜈)𝜌in)]

2𝜓̄(𝜌in) − 𝜌in𝜓̄ ′(𝜌in) =
𝜌4in
82

s
+

(1−𝜈)𝜌3in
3

. (27)

Notably, it simplifies to Eq. (26) when  = 0, and further simplifies to Eq. (25) when  = 0 and  = 0.
Finally, to formulate the closed form of the BVP relevant to the adhesive and non-slip tip assumption, we rewrite the two

additional boundary conditions at 𝜌 = 𝜌in, given by Eq. (19), as

⎧

⎪

⎨

⎪

⎩

(𝜓̄(𝜌in)−
s
2𝜋 )2

22
s 𝜓̄(𝜌in)

+ 1−𝜈2
2 ( 𝜓̄(𝜌in)

𝜌2in
− 1 −

𝜌2in
2(1−𝜈2)2

s
)2 = 

𝜓̄ ′(𝜌in) − (1 + 𝜈) 𝜓̄(𝜌in)𝜌in
= (1 − 𝜈)𝜌in

. (28)

All the BVPs formulated above are numerically solved using the BVP4C package in MATLAB.

5. Results and discussions

The relevant controlling parameters for this study, as determined by previous drumhead nanoindentation experiments, are
summarized in Table 3. The range of these values will guide the subsequent numerical studies and discussions. Additionally, we
adopt Poisson’s ratio of monolayer graphene (e.g., 𝜈 = 0.165) in what follows as a demonstration.

5.1. Effects of the tip/membrane adhesion

Fig. 3a presents the numerical results for the dimensionless indentation load–deflection relationship derived from the model with
an adhesive and frictionless spherical tip, along with a fixed edge between the membrane and the substrate (i.e., numerical solutions
to the BVP given by Eqs. (21), (23), and (26)). The results cover a range of assumed sphere radii and adhesion numbers, with the
8
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typical maximal indentation depth used in previous drumhead nanoindentation experiments indicated (see Table 3 for details).
Notably, when the adhesive forces between the tip and the membrane are considered, a significant observation emerges: the load–
deflection relationship exhibits instabilities. These instabilities manifest as approaching spherical tips ‘‘jumping in’’ to contact, while
separated tips ‘‘jump out’’ at a ‘‘pull-off force’’ (see dashed curves in Fig. 3a). This behavior differs from the model with non-adhesive
and frictionless spherical tips (exhibited by solid curves in Fig. 3a) but aligns with previous experimental observations (Lee et al.,
2008; Rokni and Lu, 2020). However, discussing these instabilities under force control falls beyond the scope of this paper and will
be explored in future research. This paper focuses on drumhead nanoindentation under displacement control, starting from 𝛿 = 0

ith an initial negative (upward) force.
In Fig. 3b, we depict the force discrepancy between an adhesive tip case (i.e.,  when  = 104) and a non-adhesive tip case

(i.e.,  when  = 0) at the same indentation depth. Specifically, we define the force discrepancy as Discr = |1 − ∕ |. We observe
hat the force discrepancy decreases as the indentation depth increases. The reduced impact of tip/membrane adhesion on the load–
eflection relationship is further confirmed by the convergence of numerical solutions for the two scenarios at large deflections, as
hown in Supplementary Fig. B.1. Meanwhile, the force discrepancy also decreases as the tip size shrinks. This observation suggests
hat to mitigate undesired adhesive effects when extracting 𝐸2D by fitting measured load–deflection curves using Eq. (1), we should
elect smaller tip sizes (e.g., s ≲ 10−3) during testing. Furthermore, numerical studies suggest that excluding measurement data
ith 𝛿 ≤ 1 also effectively reduces the influence of tip/membrane adhesion on the load–deflection relationship, with Discr ≤ 10%

observed for most tip sizes and adhesion numbers involved in experiments (see Supplementary Fig. B.2).
In addition to studying the indentation load–deflection relationship, understanding the influence of tip/membrane adhesion on

membrane stress is crucial for thin membrane strain engineering and determining breaking strengths. Figure 4 displays dimensionless
radial and hoop 2D membrane stress distributions, along with normalized profiles of the indented membrane near the spherical tip,
under various  when s = 10−3. The adhesive effect notably increases the maximum 2D membrane stress (which consistently
ccurs in the center of the suspended membrane), particularly at intermediate indentation depths (e.g. 𝛿 = 5), and this influence
iminishes as 𝛿 increases. This trend is confirmed by the decrease in the discrepancy in the maximum 2D membrane stresses between
he adhesive and non-adhesive tip cases with increasing 𝛿, as illustrated in Supplementary Fig. B.3.

In Fig. 5, we present the relative error resulting from the use of Eq. (2) instead of the numerically determined maximum
D membrane stress, to estimate the breaking strength of the material. Specifically, we define the relative error as Err =
1 −

√

max∕4𝜋s∕max
2D |, where max

2D is the numerically obtained maximum 2D membrane stress under max. We observe that
within the experimental range, the error of the adhesive tip case is larger than that of the non-adhesive tip case, regardless of
the tip size, and it decreases as the tip size decreases for both cases. Therefore, we conclude that a sharper tip provides a better
prediction of the breaking strength using Eq. (2).

Figure 5b and c display the lower thresholds of the desired indentation depth before rupture, which account for the adhesive
forces between the tip and the membrane, to ensure that the error remains within 10% and 5%, respectively. We observe that these
thresholds are comparable to the maximum indentation depth measured in the experiments (see Table 3 for details). Therefore,
for enhanced accuracy in determining the breaking strength of the material via drumhead nanoindentation, future research should
explore new formulations that consider tip-membrane interfacial interactions, rather than rely solely on Eq. (2).

5.2. Effects of an adhesive and frictional spherical tip

In addition to the scenario characterized by vdW interactions at the tip-membrane interface (see Section 5.1), where relatively
large normal tractions and negligible tangential tractions are observed, the frictional behavior becomes particularly intriguing in
scenarios where chemical bonds coexists alongside vdW interactions at this interface (refer to Table 3 for details) (Kumar and Parks,
2015).

Figure 6 presents the numerical results for the dimensionless indentation load–deflection relationship obtained from the model
featuring an adhesive and frictional spherical tip, along with a fixed edge (i.e., numerical solutions to the BVP given by Eqs. (21),
(23), and (27)). We set the dimensionless radius of the sphere as s = 10−3 and the adhesion number as  = 105, while varying the
friction number  across four orders of magnitude to incorporate both lubricant and stick tip-membrane interfaces. Additionally,
the numerical solutions for two limiting cases, a frictionless tip (i.e.,  → 0, for the BVP given by Eqs. (21), (23), and (27)) and a
on-slip tip (i.e.,  → ∞, for the BVP given by Eqs. (21), (23), and (28)), are presented in the same figure. Comparison of these
umerical results reveals that indenting a lubricated membrane is slightly easier than indenting a sticky membrane to the same
ndentation depth. Furthermore, this discrepancy diminishes as the tip size shrinks, as validated by the convergence of numerical
olutions at  → 0 and  → ∞ when s = 10−5 (see Supplementary Fig. B.4).

In Fig. 7, the distribution of dimensionless radial and hoop 2D membrane stresses is illustrated, along with normalized profiles of
he indented membrane near the spherical tip. Notably, compared to the non-adhesive and frictionless tip, the adhesive and frictional
ip induces a compressive zone along the hoop direction near the contact line between the tip and the membrane (see Fig. 7a)
t an intermediate deflection (e.g., 𝛿 = 5). Because ultrathin membranes barely sustain compressive stresses, we anticipate the
ccurrence of radial wrinkles across the tip-membrane contact lines due to their adhesive and frictional contacts. As the indentation
epth increases, the effects of an adhesive and frictional tip on the distribution of membrane stress diminish, as evident in Fig. 7b.
owever, a significant observation, differing from the previous cases of adhesive or non-adhesive but frictionless tips, is that the
osition of the maximum 2D membrane stress is no longer at the center of the suspended membrane but shifts to the contact line
etween the tip and the membrane. To confirm this, we plot the radial 2D membrane stresses at both 𝑟 = 0 (denoted as  tc

2D) and
te te tc te tc
9

= 𝑎in (denoted as 2D) in Fig. 8. As shown, 2D < 2D at small  regardless of the indentation depth, while 2D > 2D at
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Fig. 3. (a)  vs. 𝛿 under various dimensionless sphere radii (s) and adhesion numbers (). (b) The force discrepancy (Discr) between the adhesive tip case
(i.e.,  when  = 104) and the non-adhesive tip case (i.e.,  when  = 0) at the same indentation depth.

large . Therefore, our prediction suggests that membrane breakage is more likely to occur in the center of a lubricated membrane,
whereas in the case of a sticky membrane, it is more probable to occur in the peripheral region between the tip and the membrane
contacts as the indentation depth increases. A similar observation has been previously reported by simulation studies (Kumar and
Parks, 2015).

The vdW interactions are the most universal interactions present at the tip-membrane interface, which has been shown to have
a slight influence on the indentation load–deflection relationship and maximum 2D membrane stress, according to the numerical
analysis above. Therefore, in the following subsection, we assume a non-adhesive and frictionless spherical tip of finite radius and
focus on investigating the sliding behavior of the membrane against the supporting substrate during drumhead nanoindentation.

5.3. Effects of a sliding edge

In their study, Chandler and Vella (2020) provided asymptotic expressions for drumhead nanoindentation at small deflections
employing a non-adhesive and frictionless spherical tip of finite radius, alongside a fixed edge. These formulas are represented as

𝛿


∼

⎧

⎪

⎨

⎪

1
2𝜋 log

√

2𝜋e
s

when  ≪ s ≪ 1
1 log 8𝜋 when s ≪  ≪ 1

. (29)
10
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Fig. 4. The dimensionless radial and hoop membrane stress distributions at (a) 𝛿 = 5 and (b) 𝛿 = 15, respectively, for varying  when s = 10−3. Inset: The
corresponding normalized profiles of the indented membrane near the spherical tip. The yellow and blue colors indicate the contact and noncontact regions,
respectively.

Figure 9a compares the numerical solutions for the model with a sliding edge (i.e., the BVP given by Eqs. (21), (22), and (25)) under
various shear numbers  to this asymptote within the range of  ≪ s ≪ 1. The figure illustrates that, despite employing spherical
tips with different radii for indentation, the numerical results consistently converge to the asymptote at small indentations. This
implies that the indentation load–deflection behavior at the small deflection remains consistent, regardless of the fixed or sliding
interface between the membrane and the supporting substrate.

Figure 9b further demonstrates the agreement of the numerical results under various s and  with the asymptote within the
range of s ≪  ≪ 1. Consequently, it is deduced that the load–deflection relationship at small indentations remains unaffected by
varying shear resistances at the membrane-substrate interfaces. Additionally, the linear compliance (i.e., 𝛿∕) at small indentations
depends on the tip size, where the system is dominated by the effect of tip size, followed by a phase independent of tip size where
the system is dominated by prestress. Overall, instead of the linear term given by the widely used formulation in Eq. (1), the
load–deflection relationship is nonlinear in the initial phase of tent formation.

Figure 9 suggests that adopting a linear 𝐹 -𝑑 relationship is doomed to fail to accurately capture the small indentation behaviors.
For practical purposes, instead of using the logarithmic form in Eq. (29), we perform a power law fitting of the numerical results
within the purple regime in Fig. 9b to describe these behaviors. We vary s and  to capture the experimental range (see
Table 3 for details). The least squares fitting yields the following approximate load–deflection relationship at small indentations
(i.e., (10−1) ≲  ≲ (1))

 ≈ 2𝛿1.2. (30)

As shown in Fig. 9b, this approximate formula closely matches the numerical solutions for small indentations across various
experimentally relevant s and  . Finally, the good agreement between our numerical results and the asymptotes provided by
previous research validates the accuracy of numerical calculations.

Chandler and Vella (2020) also presented the asymptote for large indentations (i.e.,  ≫ 1) with a fixed edge. Additionally, Dai
and Lu (2021) presented another asymptote for large indentations at the limit of a frictionless edge. Based on their work, we infer
the asymptote at large indentations, considering both the fixed and the frictionless edge limits, as

𝛿
1∕3

∼

⎧

⎪

⎨

⎪

⎩

1.05 − 0.15𝜈 − 0.16𝜈2 − 2(
√

2−1)
√

𝜋

√

s1∕3 when  → ∞

( 𝜋2 )
1∕3 − 2(

√

2−1)
√

𝜋

√

s1∕3 when  → 0
. (31)

Figure 10a compares the numerical solutions at  → ∞ (i.e., solutions for the BVP given by Eqs. (21), (23), and (25)), and at  → 0
(i.e., solutions for the BVP given by Eqs. (21), (24), and (25)) with these asymptotes. The good agreement validates our inference
to establish the asymptotic formulation Eq. (31) and underscores the accuracy of our numerical calculations.

Figure 10b illustrates the dependence of cubic compliance (𝛿∕1∕3) on s1∕3 under varying  when s = 10−3. In particular, as
 decreases, there is a transition in the load–deflection behavior at large indentations from the asymptote at  → ∞ to the asymptote
11
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Fig. 5. (a) The error (Err) induced by using Eq. (2) to determine the breaking strength of the material, rather than relying on numerical solutions. The orange
zone indicates experimentally accessible ranges of 𝛿. The lower thresholds of the desired indentation depth before rupture (𝛿critmax) to ensure the error remains
within (b) 10% and (c) 5%, respectively.

at  → 0. Specifically, the case with finite shear resistance (i.e.,  = 10) collapses to the frictionless limit at large deflections within
the experimental range (refer to Table 3 for details). To understand this behavioral transition, we further investigate the size of the
shear zone in the peripheral region of the membrane/supporting substrate contacts.

Figure 11a shows the evolution of the dimensionless size of the shear zone (𝜌o) with 2∕3∕ with varying  when s = 10−3.
The asymptotic solution for 𝜌o, modified from Dai and Lu (2021)’s work, is written as,

𝜌o ∼ [1 + 62∕3

(1 − 𝜈)(2𝜋2)2∕3
]1∕3. (32)

This expression aligns with the numerical solutions at  > 1, which is the range of shear resistances observed in the experiments
(see Table 3 for details). Figure 11b compares the numerical results with this asymptote to vary s when  = 10, showing good
agreement and further validating the precision of this expression.

To extract the 2D Young’s modulus (𝐸2D) from load–deflection measurements, it is crucial to establish a load–deflection
relationship that considers both the sliding effect ( ) and the tip size (s). We begin with a scaling analysis: the work done by
the indentation force is 𝑊 ∼ 𝐹𝑑, and the energy dissipated by the interfacial slippage is 𝑈 ∼ 𝜏ms𝜖𝑎3(𝜌o −1), with the typical strain 𝜖
being 𝑑2∕𝑎2. Balancing these terms leads to  ∼  𝛿(𝜌 − 1), capturing the behaviors transitioning from small to large indentations.
12
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Fig. 6.  vs. 𝛿 for various friction numbers  when s = 10−3 and  = 105 are fixed.

Fig. 7. The dimensionless radial and hoop membrane stress distributions at (a) 𝛿 = 5 and (b) 𝛿 = 15, respectively. Inset: The corresponding normalized profiles
of the indented membrane near the spherical tip. The yellow and blue colors indicate the contact and noncontact regions, respectively.
13
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Fig. 8. The dimensionless membrane stress at the center,  tc
2D, vs. 𝛿 (blue), and the dimensionless membrane stress at the tip-membrane contact line,  ec

2D, vs.
𝛿 (red).

Fig. 9. (a) 𝛿∕ vs. s for various s and shear numbers  . The asymptotic solutions are given by Eq. (29) when  ≪ s ≪ 1. (b) 𝛿∕ vs.  for various s
and shear numbers  . The asymptotic solutions are given by Eq. (29) when s ≪  ≪ 1. The approximate solutions, given by Eq. (30), are obtained through
power law fitting of the numerical data (indicated by markers) within the fitting range indicated by the purple background.
14
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Fig. 10. (a) 𝛿∕1∕3 vs. s1∕3 for various s at the two limits: the fixed edge ( → ∞) (black) and the frictionless edge ( → 0) (red). (b) 𝛿∕1∕3 vs. s1∕3

for various  when s = 10−3. Here, the asymptotic solutions to the two limiting cases are given by Eq. (31).

Fig. 11. The dimensionless size of the shear zone, 𝜌o, vs. 2∕3∕ for (a) various  when s = 10−3, and (b) various s when  = 10. The asymptotic solutions
are given by Eq. (32).
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Fig. 12. (a)  vs. 𝛿 obtained from numerical solutions, Eq. (1) (Schwerin-type approximation), Eq. (33) (our implicit approximation), and Eq. (34) (our explicit
approximation) when s = 10−3 and  = 10. (b) Comparison of the errors of the three approximations relative to the numerical solutions.

By combining the small (Eq. (30)), intermediate, and large (Eq. (31)) indentation regimes through a superposition method, we
derive the following new approximation of the 𝐹 -𝑑 relationship which accounts for the effects of interfacial sliding and tip size

 ≈ 2𝛿1.2 + (1−𝜈)
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, (33)

where 𝜌o is given by Eq. (32). The coefficients in the second and third terms on the right-hand side are determined by the following
criteria: when  → ∞, Eq. (33) reduces to  ≈ 2𝛿1.2 + 𝛿3∕[1.05 − 0.15𝜈 − 0.16𝜈2 − 2(

√

2−1)
√

𝜋

√

s1∕3]3, representing the limiting case

of a fixed edge; when  → 0, Eq. (33) reduces to  ≈ 2𝛿1.2 + 𝛿3∕[( 𝜋2 )
1∕3 − 2(

√

2−1)
√

𝜋

√

s1∕3]3, representing the limiting case of a
frictionless edge.

Furthermore, we propose an explicit formula to address the difficulties encountered with the implicit formula given by Eq. (33)
during the fitting procedure. This explicit formula is derived by substituting  ∼ 2𝛿3∕𝜋 into the right-hand side of Eq. (33), and is
written as

 ≈ 2𝛿1.2 + (1−𝜈)𝜋2
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, (34)

where 𝜌o ∼ [1 + 6𝛿2
(1−𝜈)𝜋2 ]1∕3.

Figure 12a compares the numerical solutions with the conventional approximation given by Eq. (1), as well as the implicit
and explicit approximations given by Eqs. (33)–(34), respectively. As illustrated, the proposed solution demonstrates much better
agreement with numerical solutions than the conventional approximation within the experimental range when s = 10−3 and
 = 10. Figure 12b presents the relative error percentage (denoted as Err(%) = |1 −  ∕ | × 100) for both implicit and
16
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Fig. 13. The error (Err) in the maximum membrane stress induced by Eq. (2) relative to the numerical solutions for varying  when s = 10−3 is fixed.

explicit approximations compared to numerical results. As shown, the error for both approximations remains within 10% regardless
of the indentation depth when s = 10−3 and  = 10, which are parameters commonly observed in experiments (see Table 3
for details). Therefore, Eq. (34) shows promise for simultaneously extracting the in-plane stiffness of the membrane and the shear
strength at the membrane-substrate interface from load–deflection measurements, achieving higher accuracy compared to the widely
used formulation Eq. (1).

Figure 13 demonstrates the negligible influence of sliding contacts between the membrane and the substrate on the maximum
2D membrane stress when s = 10−3, with varying  . This observation suggests that Eq. (2) remains applicable for extracting
the breaking strength from the measurements of the fracture force, even when considering sliding contacts with different shear
resistances.

5.4. Applicability of our model

When employing the proposed formulation in Eq. (34) to simultaneously evaluate 𝐸2D and 𝜏ms based on load–deflection
measurements in indentation tests, several factors can affect the applicability of our model. The first factor is the bending stiffness
of the suspended film as its thickness increases. To address this, we perform a scaling analysis comparing the stretching and bending
energies during drumhead nanoindentation. With typical film strain 𝜖 ∼ 𝑑2∕𝑎2 and curvature 𝜅 ∼ 𝑑∕𝑎2, we estimate the pre-
stretching energy as 𝑈pre ∼ 𝑇pre𝜖𝑎2 ∼ 𝑇pre𝑑2, the stretching energy as 𝑈s ∼ 𝐸2D𝜖2𝑎2 ∼ 𝐸2D𝑑4∕𝑎2, and the bending energy as
𝑈b ∼ 𝐵𝜅2𝑎2 ∼ 𝐵𝑑2∕𝑎2, where 𝐵 is the bending stiffness. The ratio 𝑈pre∕𝑈s ∼ 𝑇pre𝑎2∕𝐸2D𝑑2 indicates that prestress dominates
within small deflections (i.e., 𝑑 ≪ 𝐿 =

√

𝑇pre∕𝐸2D𝑎), while membrane stretching dominates within large deflections (i.e., 𝑑 ≫ 𝐿)
if bending stiffness is negligible, validating the above numerical analysis. For small deflections, comparing the bending energy to
the pre-stretching energy, 𝑈b∕𝑈pre ∼ 𝐵∕𝑇pre𝑎2, gives a dimensionless parameter 𝛼 = 𝐵∕𝑇pre𝑎2 to access bending effects. For large
deflections, comparing the bending energy to the stretching energy, 𝑈b∕𝑈s ∼ 𝐵∕𝐸2D𝑑2, gives another parameter 𝛽 = 𝐵∕𝐸2D𝑑2.
Bending stiffness can be considered negligible if 𝛼 ≪ 1 for small deflections and 𝛽 ≪ 1 for large deflections, as satisfied by
nanoindentation experiments on monolayer 2D materials listed in Table 1. Otherwise, bending dominates, leading to 𝐹𝑑 ∼ 𝑈b, with
𝐹 ∼ 𝐵𝑑∕𝑎2, suggesting a linear relationship between the indentation force and depth. It should be noted that for multilayer 2D
materials, including heterogeneous 2D materials, the actual bending stiffness tends to be lower than predicted by Euler–Bernoulli
beam theory due to interlayer shear (Huang et al., 2023; Wang et al., 2024b).

Another factor is associated with the challenge of determining the starting point (the zero displacement point) of the load–
deflection curve 𝐹 (𝑑), where the indentation force 𝐹 is defined as zero when 𝑑 = 0 (see Fig. 1c). In reality, the force 𝐹 applied
to the membrane is non-zero when 𝑑 = 0 if there are tip-membrane interactions as discussed in this paper. This discrepancy arises
because the suspended membrane is already subjected to some load when it appears to be flat (i.e., 𝑑 = 0) in the measurement.
This issue has been shown to significantly affect the accuracy of the estimation of the Young’s modulus of 2D materials 𝐸2D using
Eq. (1) (Lin et al., 2013).

Our proposed formulation, Eq. (34), introduces an additional unknown parameter, 𝜏ms, into the fitting process. This inclusion
potentially exacerbates the impact of inaccuracies in determining the zero displacement point on the extraction of mechanical
and interfacial properties. Moreover, the precision of the estimated properties might decrease since Eq. (34) requires fitting three
unknowns (i.e., 𝑇pre, 𝐸2D, and 𝜏ms) instead of two (i.e., 𝑇pre and 𝐸2D) as in Eq. (1). To overcome this challenge, it is essential to explore
advanced data-driven and model-driven methods, such as solution-guided machine learning (Wang et al., 2024a). These methods
17
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offer promising avenues for improving the efficiency and accuracy of extraction of properties from drumhead nanoindentation.
Given these considerations, in a follow-up research, we intend to focus on extensive experimental data analysis rather than attempt
to resolve all the limitations of the current theoretical framework.

6. Concluding remarks

In this study, we have explored the effects of tip-membrane and membrane-substrate interfacial interactions on the nanoin-
entation of drumhead specimens, focusing on 2D materials suspended over a circular microhole. Our boundary value problem
ncorporates key factors such as prestress, membrane elasticity, finite tip size, adhesion, and friction at the tip-membrane interface,
s well as the slippage at the membrane-substrate interface.

The primary findings of this investigation are summarized as follows:

• Tip-Membrane Interactions: The adhesion and friction at the tip-membrane interface slightly influence the load–deflection
relationship during indentation, while significantly modifying the membrane stress distribution, particularly under moderate
deflections (i.e., 𝛿 ∼ (1)). Our analysis shows that the adhesive effects decrease with increasing indentation depth or
decreasing tip size. Furthermore, as the indentation depth and the interfacial shear stress increase, the frictional interaction
shifts the maximum membrane stress from the center to the contact line between the tip and the membrane. To mitigate
undesired adhesive and frictional effects when extracting in-plane Young’s modulus and breaking strength from load–deflection
measurements, smaller tip sizes (e.g., s ≲ 10−3) should be selected, and measurement data with 𝛿 ≤ 1 should be excluded
from data analysis if using the widely used Schwerin-type formulations (Eqs. (1)–(2)).

• Membrane-Substrate Slippage: The slippage of the membrane against its supporting substrate induces a transition under large
deformation from one limiting case, characterized by a fixed edge, to another limiting case, characterized by a frictionless edge.
Furthermore, our findings suggest that within the experimental ranges of tip radius and shear resistance, membrane-substrate
slippage have a negligible impact on the maximum 2D membrane stress. This indicates that the simplified expression, Eq. (2),
remains effective in accurately predicting the breaking strength from fracture force measurements if the adhesion and friction at
the tip-membrane interface are both negligible. Additionally, to facilitate more accurate extraction of the mechanical properties
out of drumhead indentation tests, we have proposed an approximate solution, Eq. (34), for the load–deflection relation. This
solution accounts for membrane-substrate interfacial slippage and the finite tip size, providing a means to simultaneously
and accurately extract crucial material and interfacial properties, such as modulus and shear strength, by fitting the proposed
models to experimentally measured data.

In summary, this study provides a more comprehensive understanding of the mechanical behaviors of ultrathin membranes under
anoindentation, with implications for the metrology and design of such membranes in various applications.
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Fig. B.1. 𝛿∕1∕3 vs. s1∕3 under various s and . The asymptotic solutions are given by Eq. (31) at  → ∞ (i.e., the asymptote for drumhead nanoindentation
with a fixed edge using a non-adhesive and frictionless spherical tip of finite radius).

Fig. B.2. Contour curves for the critically dimensionless indentation depth (𝛿critical) with Discr = 10% in  ∼ s parametric space for drumhead nanoindentation
under an adhesive and frictionless spherical tip of finite radius.
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Fig. B.3. The discrepancy of the maximum 2D membrane stresses (Discr) between the adhesive tip case (i.e., −max
2D when  = 104) and the non-adhesive tip

case (i.e., max
2D when  = 0) at the same indentation depth.

Fig. B.4. 𝛿∕1∕3 vs. s1∕3 under various s when considering a fixed edge and two types of tip/membrane contacts: the non-adhesive and frictionless contact
( = 0 &  → 0) and the adhesive and non-slip contact ( = 105 &  → ∞). The asymptotic solutions are given by Eq. (31) at  → ∞ (i.e., the asymptote for
drumhead nanoindentation with a fixed edge using a non-adhesive and frictionless spherical tip of finite radius).

Appendix A. Derivation of boundary conditions at 𝒂 = 𝒂𝐢𝐧

The total free energy of a suspended membrane indented by an adhesive and frictional spherical tip can be expressed as a
functional of the form

𝛱 = ∫

𝑎in

0
£𝛼𝑑𝑟 + ∫

𝑎

𝑎in
£𝛽𝑑𝑟 + ∫

𝑎out

𝑎
£𝛾𝑑𝑟, (A.1)

where
⎧

⎪

⎨

⎪

£𝛼 = 2𝜋𝑟[𝜙𝛼 − 𝛤tm − 𝑝(𝑟)𝑤(𝑟) + 𝜏tm(𝑢(𝑟) − 𝑢inref (𝑟))]
£𝛽 = 2𝜋𝑟𝜙𝛽

£ = 2𝜋𝑟[𝜙 − 𝜏 (𝑢(𝑟) −
(1−𝜈)𝑇pre 𝑟)]

. (A.2)
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Here, 𝜙𝑖(𝑖 = 𝛼, 𝛽, 𝛾) is the stretching energy density of the indented membrane, defined as 𝜙𝑖 =
𝐸2D

2(1−𝜈2) [(𝑢
′+ 𝑤′2

2 )2+ 𝑢2

𝑟2
+2𝜈(𝑢′+ 𝑤′2

2 ) 𝑢𝑟 ],
𝑝(𝑟) represents the contact pressure between the tip and the membrane, and 𝑢inref (𝑟) represents the distribution of the radial
displacement at 𝑟 ∈ [0, 𝑎in] for a reference state where the membrane fully sticks to the tip during indentation. We assume
𝑢inref (𝑟) =

(1−𝜈)𝑇pre
𝐸2D

𝑟 in this work.
At equilibrium, the variation 𝛿𝛱 must be zero with respect to arbitrary but kinematically admissible variables 𝛿𝑎in, 𝛿𝑎out , 𝛿𝑢,

and 𝛿𝑤, which leads to

𝛿𝛱 = ∫

𝑎in

0
𝛿£𝛼𝑑𝑟 + ∫

𝑎

𝑎in
𝛿£𝛽𝑑𝑟 + ∫

𝑎out

𝑎
𝛿£𝛾𝑑𝑟 + £𝛼𝛿𝑎in − £𝛽𝛿𝑎in + £𝛾𝛿𝑎out = 0. (A.3)

Since 𝑤 is prescribed in the contact (i.e., 𝑟 ∈ [0, 𝑎in]) and the supported (i.e., 𝑟 ∈ [𝑎, 𝑎out ]) regions, 𝛿𝑤 = 0. Applying the
fundamental lemma of calculus of variations, we obtain the Euler–Lagrange equation

𝜕£ 𝑖
𝜕𝑢

− d
d𝑟

(
𝜕£ 𝑖
𝜕𝑢′

) = 0, (A.4)

for 𝑖 = 𝛼, 𝛾. Substituting Eqs. (A.1) and (A.2) in Eq. (A.4), we derive the in-plane equilibrium Eqs. (7) and (8), which are the in-plane
equilibrium equations for these two regions.

Additionally, for frictional contacts between the spherical tip and the membrane (i.e., the value of 𝜏tm is finite), varying 𝑎in
results in a variation of 𝛱 that satisfies

𝛿𝛱𝑎in = [£𝛼(𝑎−in) − £𝛽 (𝑎
+
in) −

𝜕£𝛽 (𝑎+in)
𝜕𝑤′ (𝑤′(𝑎−in) −𝑤

′(𝑎+in))]𝛿𝑎in = 0. (A.5)

Similarly, infinitesimal variations in 𝑢(𝑎in) yield

𝛿𝛱𝑢 = [
𝜕£𝛼(𝑎−in)
𝜕𝑢′

−
𝜕£𝛽 (𝑎+in)
𝜕𝑢′

]𝛿𝑢(𝑎in) = 0. (A.6)

Boundary conditions Eqs. (16)–(18) are derived to satisfy them as 𝛿𝑎in ≠ 0 and 𝛿𝑢(𝑎in) ≠ 0.
For a non-slip tip (𝜏tm → ∞), 𝑢(𝑟) = 𝑢inref (𝑟) in Eq. (A.2). Meanwhile, 𝛿𝑢(𝑎in) = 0 leads to a discontinuity in radial membrane stress

at 𝑎 = 𝑎in. In this case, varying 𝑎in results in a variation of 𝛱 that satisfies

𝛿𝛱𝑎in = [£𝛼(𝑎−in) − £𝛽 (𝑎
+
in) −

𝜕£𝛽 (𝑎+in)
𝜕𝑤′ (𝑤′(𝑎−in) −𝑤

′(𝑎+in)) −
𝜕£𝛽 (𝑎+in)
𝜕𝑢′

(𝑢′(𝑎−in) − 𝑢
′(𝑎+in))]𝛿𝑎in = 0, (A.7)

which leads to the first equation of Eq. (19) as 𝛿𝑎in ≠ 0. Detailed derivations of these equations can be found in Refs. Majidi and
Adams (2009) and Rao et al. (2021, 2023).

Appendix B. Supplementary figures

See Figs. B.1–B.4.
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