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SUMMARY

Real-time monitoring of operator cognitive states can enhance the safety and performance of human-in-the- 

loop systems. However, traditional electroencephalography (EEG) and electrooculography (EOG) devices, 

with their bulkiness, dangling wires, and time-consuming setups, are restricting or impossible for monitoring 

operators’ cognitive states while performing tasks in reality. In this study, we propose a wireless forehead 

EEG and EOG sensor designed to be as thin and conformable to the skin as a temporary tattoo sticker, which 

is referred to as a forehead e-tattoo. This e-tattoo employs adhesive poly(3,4-ethylenedioxythiophene) poly

styrene sulfonate (PEDOT:PSS) composite-coated graphite-deposited polyurethane (APC-GPU) electrodes 

laminated with a battery-powered flexible printed circuit (FPC) for data acquisition and wireless transmission. 

The forehead EEG and EOG measured by this e-tattoo are correlated with mental workload during a dual 

N-back working memory task. The results confirm the feasibility of applying the wireless, low-profile, fore

head e-tattoo for mental workload estimation.

THE BIGGER PICTURE Mental workload is a critical factor in human-in-the-loop systems, directly influencing 

cognitive performance and decision making in high-stakes environments such as aviation, healthcare, and 

robotics. While electroencephalography (EEG) and electrooculography (EOG) offer promising physiological 

markers for workload estimation, existing devices are often bulky, restrictive, and susceptible to motion ar

tifacts, limiting their practicality in real-world applications. 

This study introduces a wireless, ultra-thin forehead e-tattoo that enables high-fidelity EEG and EOG moni

toring while maintaining comfort, stability, and motion resistance. Unlike conventional systems, our e-tattoo 

leverages adhesive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite- 

coated electrodes to achieve low skin impedance, robust adhesion, and reliable signal acquisition during dy

namic tasks. Integrated with a flexible printed circuit for on-device processing and wireless transmission, this 

system provides a minimally obtrusive and long-lasting solution for ambulatory cognitive monitoring. We 

validate the e-tattoo’s capability through a dual N-back mental workload task, correlating EEG/EOG signals 

with NASA Task Load Index (NASA-TLX) self-assessments and task performance. A machine-learning model 

trained on these physiological features successfully estimates mental workload across varying task diffi

culties, demonstrating the feasibility of real-time cognitive state decoding. Our work presents a breakthrough 

in wearable neurotechnology, offering a scalable, cost-effective, and user-friendly approach to continuous 

mental workload assessment. Future applications could include real-time cognitive load monitoring in pilots, 

operators, and healthcare professionals, advancing the field of human-machine interaction and personalized 

cognitive augmentation. 

Device 3, 100781, August 15, 2025 © 2025 Elsevier Inc. 1 
All rights are reserved, including those for text and data mining, AI training, and similar technologies.
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INTRODUCTION

Human mental workload is a crucial factor in the fields of human- 

machine interaction and ergonomics due to its direct impact on 

human cognitive performance. Although its definition varies, 

mental workload can generally be described as the degree to 

which a person’s working memory capacity and cognitive pro

cesses are engaged by the ongoing task.1 In addition, mental 

workload is closely related to other cognitive components such 

as engagement2 and arousal3 that can affect task performance. 

Previous research indicates that a moderate level of mental 

workload is essential to maintain engagement and attention, 

leading to optimal performance.4 On the contrary, performance 

may decline when mental workload is too low or too high. At 

low levels of mental workload, a person can become disengaged 

and make mistakes. At high levels, a person may become over

whelmed and lose control. Therefore, managing users’ mental 

workload levels is of significant interest to designers of human- 

in-the-loop systems to optimize performance. This becomes 

particularly important in high-complexity, safety-critical tasks 

where reductions in performance can and have resulted in 

devastating losses of lives and assets.5,6 In such contexts, 

mental workload has been directly correlated with accident 

probability.7 This has motivated various studies in mental 

workload assessment for operators, particularly for vehicle 

drivers,8,9 aircraft pilots,10,11 air traffic controllers,12,13 and robot 

teleoperators.14

Although the importance of mental workload in human 

performance is well established, its measurement is not. It is 

intrinsically challenging to assess mental workload because it 

is a multidimensional and non-stationary variable that is deter

mined by a combination of factors, including the inherent nature 

and difficulty of the task, the circumstances under which a per

son performs the task, as well as the skill and fatigue level of 

the operator at that moment.15 Until today, NASA’s Task Load 

Index (NASA-TLX),16 a self-reported questionnaire, still serves 

as the gold standard for mental workload assessment.15,17 How

ever, self-assessment suffers from poor temporal resolution, 

intrusiveness to the ongoing task, and subjectivity.18 Further

more, individuals tend to report workload levels that are deemed 

suitable for their performance, rather than objectively reflecting 

their cognitive effort. Meanwhile, task performance is often 

observed after the task has been attempted,15 which does not 

allow proactive prevention of errors or failures. This limits the 

usefulness of task performance as the primary measure of 

mental workload in safety-critical contexts that require anticipa

tory measures.

Physiological indices have been proposed as a promising 

alternative to quantifying mental workload due to their temporal 

resolution, high sensitivity, and neutral bias.19,20 While easy-to- 

measure peripheral nervous system signals, such as heart 

rate8 and electrodermal activity21 have been associated with 

mental stress, these signals do not directly reflect or measure 

mental workload itself. EEG is the main signal modality for moni

toring physiological mental workload monitoring,13 but conven

tional EEG measurement systems are wired, bulky, and uncom

fortable. Ocular activities such as blinks, saccades, and pupillary 

response have also been associated with mental workload.22,23

Optical eye tracking is commonly used but has restrictive re

quirements, such as the need to fix the operator’s head direction 

toward external sensors and the absence of optical confounders 

such as certain types of eyewear,24,25 which can be unrealistic in 

real-world task scenarios. In contrast, EOG does not have such 

restrictions while recording rich blink and saccade information 

with high temporal resolution.26,27 In fact, EOG has been 

correlated with drowsiness/fatigue,28,29 vigilance,30 and mental 

workload.22

Despite the desirability and demonstrated success of electro

physiology-based mental workload assessment, recording 

hardware has limited its widespread use. Wired recording sys

tems not only physically restrict the user’s range of movement 

but also suffer from significant motion artifacts, making them 

impractical and uncomfortable to use as mobile, wearable sys

tems. Discomfort and restrictions on user movement also inher

ently modify the task environment, reducing task performance 

and undermining the purpose of mental workload assessment. 

In addition, EEG systems based on conventional gel electrodes 

require long setup times and suffer signal-quality degradation af

ter a few hours due to gel drying, limiting potential applications.31

Recent advances in wireless wearable devices based on dry 

electrodes have increased the practicality of EEG. Many of 

them are in the form factor of a headband,32–35 which is conve

nient to wear but allows relative displacement between the 

electrode and the skin. This compromises signal quality, espe

cially under facial expression or body movement.36 Emerging 

wearable EEG/EOG sensors in the form of glasses,37 earbuds,38

and headphones39 improved wearability but suffer from similar 

issues of unstable electrode-skin interfaces due to stiffness 

mismatch between sensor and skin and non-adhesive elec

trodes used. Furthermore, restricting possible recording sites 

to peripheral locations can reduce the relevance of signals to 

the intended application. Such wearables are also less compat

ible with head-worn equipment, such as helmets for aircraft 

pilots, much like in the case of traditional EEG caps.

To address these issues, alternative form factors of wearable 

electronics such as e-tattoos have been developed for EEG 

and EOG.40–46 Such systems feature stretchable and ultra-thin 

dry electrodes forming a conformable and stable contact with 

the skin. However, many EEG e-tattoos still suffer from limita

tions such as reliance on expensive materials or equipment,46

tedious45,47 and/or high-temperature43 fabrication steps, high 

contact impedance with the skin,48 lack of on-device data 

acquisition (DAQ),40,44,49 or a right-leg drive (RLD)49 for noise 

reduction.50 Furthermore, despite the thinness of tattoo-like 

electrodes in these systems, their electronic circuits and pack

ages, if any, still compromise overall system thinness (Table 1), 

making the device still obstructive to head-worn equipment 

such as helmets and virtual reality (VR) headsets. These limita

tions hinder the use of current e-tattoos as accessible solutions 

for the assessment of mental workload in real-world or dynamic 

task environments.

In this work, we present a wireless forehead EEG/EOG 

e-tattoo and the corresponding algorithm for the objective 

assessment of mental workload. We hypothesize that the 

e-tattoo can record high-fidelity EEG and EOG signals from the 

forehead that are adequate for mental workload decoding, given 

Please cite this article in press as: Huh et al., A wireless forehead e-tattoo for mental workload estimation, Device (2025), https://doi.org/10.1016/j. 

device.2025.100781

2 Device 3, 100781, August 15, 2025 

Article
ll



T
a
b

le
 1

.
C

o
m

p
a
ri

s
o
n

 o
f 

fo
re

h
e
a
d

 w
e
a
ra

b
le

s
 f

o
r 

E
E

G
 a

n
d

 E
O

G

R
e
fe

re
n
c
e

C
h
a
n
n
e
ls

A
p

p
lic

a
ti
o

n
E

le
c
tr

o
d

e
 m

a
te

ri
a
ls

E
le

c
tr

o
d

e
 s

u
b

s
tr

a
te

C
o

n
ta

c
t 

im
p

e
d

a
n
c
e

S
y
s
te

m
 t

h
ic

k
n
e
s
s

S
y
s
te

m
 w

e
ig

h
t

C
u
rr

e
n
t 

d
ra

w
 a

n
d

 

b
a
tt

e
ry

 l
if
e

R
L
D

O
u
r 

w
o

rk
4
 E

E
G

 

2
 E

O
G

m
e
n
ta

l 
w

o
rk

lo
a
d

 

m
o

n
it
o

ri
n
g

P
E

D
O

T
:P

S
S

-c
o

a
te

d
 G

P
U

T
e
g

a
d

e
rm

2
.1

–
3
8
.7

 k
Ω

 
1
.3

–
2
3
.1

 k
Ω

c
m

2
 

@
 1

0
 H

z

1
1
7
 μ

m
 (
e
le

c
tr

o
d

e
) 

7
.5

 m
m

 (
s
y
s
te

m
)

4
.1

 g
 (
8
.1

 g
 

w
it
h
 b

a
tt

e
ry

)

5
.2

5
 m

A
 

2
8
.5

 h
 @

 1
5
0
 m

A
h

y
e
s

4
0

4
 E

E
G

 

2
 E

O
G

 

2
 E

M
G

s
le

e
p

-s
ta

g
e
 

m
o

n
it
o

ri
n
g

c
a
rb

o
n

te
m

p
o

ra
ry

 t
a
tt

o
o

N
/A

N
/A

 (
e
le

c
tr

o
d

e
) 

la
rg

e
a

(s
y
s
te

m
)

la
rg

e
a

N
/A

a
n
o

4
1

3
 E

O
G

e
y
e
 v

e
rg

e
n
c
e
 

tr
a
c
k
in

g

A
g

N
P

E
c
o

fl
e
x

6
.3

–
8
.4

 k
Ω

 
@

 3
0
 H

z

6
7
 μ

m
 (
e
le

c
tr

o
d

e
) 

N
/A

 (
s
y
s
te

m
)

3
.3

 g
 (
5
.5

 g
 

w
it
h
 b

a
tt

e
ry

)

<
1
0
5
 m

A
 

1
 h

 @
 1

0
5
 m

A
h

y
e
s

4
2

1
 E

E
G

e
rr

o
r-

re
la

te
d

 

p
o

te
n
ti
a
l 

d
e
te

c
ti
o

n

g
o

ld
p

a
ry

le
n
e
, 

ta
tt

o
o

 p
a
p

e
r

4
0
–
5
0
 k

Ω
 

@
 1

0
 H

z

9
0
0
 n

m
 (
e
le

c
tr

o
d

e
) 

la
rg

e
b

(s
y
s
te

m
)

8
.2

3
7
 g

N
/A

 

8
 h

y
e
s

4
3

7
 E

E
G

N
/A

 (
e
y
e
 o

p
e
n
 

v
s
. 

c
lo

s
e
 t

e
s
t 

w
it
h
 s

in
g

le
 

c
h
a
n
n
e
l 
E

E
G

 

o
n
ly

)

p
h
a
s
e
-s

e
p

a
ra

te
d

 P
E

D
O

T
: 

P
S

S
 i
n
 e

la
s
to

m
e
r 

w
it
h
 

A
g

/A
g

C
l 
p

a
rt

ic
le

s

P
U

6
4
 ±

 1
8
 k

Ω
 

@
 1

0
 H

z

7
0
 μ

m
 (
e
le

c
tr

o
d

e
) 

6
 m

m
 (
s
y
s
te

m
)

1
2
 g

2
2
.9

 m
A

c

8
.7

3
 h

 

2
0
0
 m

A
h

n
o

4
4

4
 E

E
G

 

3
 E

O
G

 

1
 E

M
G

N
/A

 (
e
y
e
 o

p
e
n
 

v
s
. 

c
lo

s
e
 t

e
s
t)

A
g

-I
n
-G

a
-S

IS
T

P
U

6
9
.9

 k
Ω

 
@

 1
0
0
 H

z

2
1
0
 μ

m
 (
e
le

c
tr

o
d

e
) 

1
0
 m

m
 (
s
y
s
te

m
)

8
 g

 (
1
3
.9

9
 g

 

w
it
h
 c

ir
c
u
it
)

<
5
0
 m

A
y
e
s

4
5

2
 E

E
G

 

2
 E

O
G

 

1
 E

M
G

s
le

e
p

-s
ta

g
e
 

m
o

n
it
o

ri
n
g

g
o

ld
P

T
F

E
, 

E
c
o

fl
e
x
, 

S
ilb

io
n
e
, 

fa
b

ri
c
, 

e
tc

.

5
 k

Ω
c
m

2
 

@
 3

0
 H

z

2
5
0
 μ

m
 (
e
le

c
tr

o
d

e
) 

N
/A

 (
s
y
s
te

m
)

N
/A

1
4
.2

m
A

 +
 9

.2
m

A
 

1
0
.5

6
 h

 @
 1

5
0
 m

A
h

y
e
s

U
n
it
s
 f

o
r 

c
o

n
ta

c
t 

im
p

e
d

a
n
c
e
 v

a
ry

 d
e
p

e
n
d

in
g

 o
n
 a

v
a
ila

b
ili

ty
 o

f 
a
re

a
-n

o
rm

a
liz

e
d

 c
o

n
ta

c
t 

im
p

e
d

a
n
c
e
. 

R
L
D

, 
ri
g

h
t-

le
g

 d
ri
v
e
; 
N

/A
, 

n
o

t 
a
p

p
lic

a
b

le
.

a
C

o
n
n
e
c
ts

 t
o

 a
 c

o
m

m
e
rc

ia
l 
a
m

p
lifi

e
r/

d
a
ta

 a
c
q

u
is

it
io

n
 b

o
x
.

b
C

o
n
n
e
c
ts

 t
o

 a
 r

ig
id

 P
C

B
 w

it
h
 3

D
 p

ri
n
te

d
 e

n
c
a
p

s
u
la

ti
o

n
.

c
R

e
p

o
rt

e
d

 i
n
 t

h
e
ir
 p

ri
o

r 
w

o
rk

.4
9

Please cite this article in press as: Huh et al., A wireless forehead e-tattoo for mental workload estimation, Device (2025), https://doi.org/10.1016/j. 

device.2025.100781

Device 3, 100781, August 15, 2025 3 

Article
ll



prior investigations on the neural correlates of mental workload 

and its decoding.9,51,52 Instead of using thin noble-metal films 

as electrodes and interconnects, we adopt the cut-and-paste 

method53 to fabricate stretchable serpentine ribbons from 

commercially available conductive graphite-deposited polyure

thane (GPU) sheets. To reduce the contact impedance of GPU 

and improve attachment to human skin, we create an adhesive 

PEDOT:PSS composite (APC) coating on GPU filamentary ser

pentines for forehead EEG and EOG measurements with 

suppressed motion artifacts. We demonstrate the thinness, con

formability, stretchability, adhesiveness, conductivity, and man

ufacturability of APC-GPU electrodes. We design a flexible 

printed circuit (FPC) with an RLD circuit that transmits low-noise 

EEG and EOG data in real-time via Bluetooth Low Energy (BLE) 

while achieving the lowest power consumption among similar re

ported wireless flexible EEG sensors. We also use the high-fidel

ity EEG and EOG signals recorded with our device to train and 

evaluate random forest models for mental workload evaluation, 

without the need for extensive offline signal processing steps. 

Our hardware-software system is an all-in-one user-friendly so

lution for decoding mental workload, with a thin form factor 

compatible with other headgears (Figure S1). Its capability is 

demonstrated by successfully estimating mental workload levels 

in six human subjects performing a dual N-back task with the 

ground truth of mental workload provided by both task perfor

mance and NASA-TLX self-assessment.

RESULTS

Wireless forehead e-tattoo design

Figures 1A–1E present front, side, and close-up views of our 

wireless forehead e-tattoo. It records four channels of EEG 

(AF7, Fp1, Fp2, AF8) on the forehead and two channels of 

EOG across the eyes (vertical EOG, horizontal EOG). The 

e-tattoo comprises a disposable tattoo-like electrode layer and 

a reusable FPC layer. As the electrode layer must cover the entire 

forehead, it is designed with filamentary serpentine-shaped 

electrodes and interconnects made of commercially available 

low-cost, conductive GPU, compared to expensive gold thin 

films. Cut-and-paste approach53 enables the time- and cost- 

effective fabrication of the filamentary serpentine GPU on a 

transparent Tegaderm tape (see methods). An APC is developed 

to coat only the electrode regions of the GPU to reduce the con

tact impedance and enhance the adhesion to the skin. The FPC 

for data acquisition and wireless data transmission (Figure 1F) is 

designed with a two-layer circuit of thickness 117 μm to achieve 

a footprint of 8.58 cm2 and a total weight of 8.1 g including a 

150-mAh battery. The island-serpentine structural design54 in

creases the stretchability and flexibility of the FPC, allowing it 

to accommodate facial expressions. The FPC stacks on top of 

the Tegaderm-supported GPU electrode layer and connects to 

the electrodes through z axis conductive anisotropic cohesive 

films (ACFs) (Figure S2). This simple FPC-to-electrode via 

connection works due to the double-sided conductivity and 

the thickness of the GPU interconnects (50 μm).55 The fully 

assembled wireless sensor conforms to and stays attached to 

the forehead without mechanical perception to the user. Only 

the electrode layer directly contacts the skin and therefore 

should be disposed after use. The ACF allows easy disassembly 

of the FPC from the electrode layer, allowing the disposal of the 

electrode layer and the reuse of the FPC with a new electrode 

layer.56 Our system stands out in comparison with previously re

ported forehead EEG and EOG sensing systems, as summarized 

in Table 1, particularly excelling in terms of low contact imped

ance and current draw, making it highly suitable for long-term 

mental workload-monitoring applications. The following results 

validate the capability of the wireless forehead e-tattoo and 

demonstrate mental-work assessment from prefrontal EEG 

and EOG during dual N-back task (Figure 1G).

Figure 2 presents the composition as well as the mechanical 

and electrical properties of the APC-GPU electrodes. As a 

large-area, disposable e-tattoo is required for EEG and EOG 

acquisition over the forehead, GPU provides a cost-effective so

lution, with an estimated cost of less than $20 for each tattoo. 

However, unlike conventional gold-nanomembrane-based fila

mentary serpentines,45,47 which can self-conform to skin micro

topography without added adhesive, 50-μm-thick commercial 

GPU cannot form microscale conformability to skin57 even with 

filamentary serpentine patterns and adhesion provided by the 

supporting Tegaderm tape. As a result, the filamentary serpen

tines of the bare GPU suffer from high contact impedance and 

susceptibility to relative motion with the skin. To address these 

issues, we have adapted an APC to coat the GPU electrodes 

(but not the GPU interconnects). The APC, first introduced by 

Tan et al.,58 consists of PEDOT:PSS, β-cyclodextrin, citric acid, 

and glutaraldehyde-crosslinked polyvinyl alcohol (PVA) to 

achieve low modulus, high stretchability, and stable interface 

adhesion (Figure 2A). It is well known that the ionic conductivity59

and the self-adhesiveness60 of PEDOT:PSS can both signifi

cantly reduce contact impedance with the skin. Although the 

APC is not our original development, we have optimized its 

composition for the GPU electrode coating, which effectively im

proves both adhesion and EEG sensing from the skin.

A cross-sectional view of a scanning electron microscopy 

(SEM) image shows that APC can be uniformly blade-coated 

and dries on GPU, resulting in a 30 ± 4-μm-thick layer 

(Figure 2B). The surface profiles of the electrodes before and af

ter APC coating are compared in Figure S3. APC coating 

decreased the average surface roughness (Sa) from 0.527 to 

0.421 μm. The supramolecules formed by β-cyclodextrin and cit

ric acid in APC can enhance the hydrogen bonding between the 

APC and the surface of the skin, which is covered by stratum cor

neum consisting of keratin and lipids,61,62 enabling conformal 

and stable contact of the electrode on the skin (Figures 2C 

and S4).

Additionally, the PEDOT:PSS content of the APC-GPU elec

trodes can be tuned to balance softness and conductivity. Due 

to the relatively high stiffness (Young’s modulus, E > 500 MPa) 

and the small strain to failure of PEDOT:PSS (2%),63 increasing 

the mass ratio of PEDOT:PSS in the APC enhances conductivity 

but compromises the softness and stretchability of the elec

trodes. Therefore, we compared the mechanical properties of 

the GPU and APC-GPU with PEDOT:PSS mass ratios of 1.8%, 

3.6%, 7.1%, 13.2%, and 23.3% in the APC. As shown in 

Figure 2D, the fracture strain decreased from 138% for 1.8% 

APC-GPU to 82% for 23.3% APC-GPU, while the effective 
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Young’s modulus increased from 108 MPa to 147 MPa. 

Figure 2E shows that APC-GPU with a PEDOT:PSS mass ratio 

of 3.6% has the strongest adhesion of 80 N/m, while the APC- 

GPU with PEDOT:PSS concentration of 23.3% has the weakest 

adhesion of 10 N/m. In particular, the APC-GPU exhibited an 

adhesion force 12 times larger than that of the commercial liquid 

gel EEG electrode (6 N/m), suggesting its higher stability under 

motion. Furthermore, Figure S5 shows that the APC layer with 

3.6% PEDOT:PSS functions as both an adhesive and a mechan

ically compatible interface, achieving perfect conformability to 

the skin even in the absence of an adhesive substrate. In 

contrast, bare GPU cannot fully conform to the skin even if sup

ported by an adhesive Tegaderm substrate. Thus, results show 

that APC-GPU is clearly superior to GPU and gel electrode in 

adhesion.

In terms of electrical properties, the sheet resistances of bare 

GPU and APC-GPU are nearly identical, around 50 Ω/sq 

(Figure 2F). This suggests that the thin APC has little effect on 

Figure 1. Wireless forehead EEG and EOG e-tattoo 

(A and B) (A) Front- and (B) side-view photos of the e-tattoo worn on the forehead of a participant. 

(C) Stretchable EEG electrodes laminated with encapsulated flexible printed circuit (FPC) on the forehead. 

(D) Three e-tattoo electrodes for EOG. 

(E) Reference or ground e-tattoo electrode attached to the mastoid. 

(F) Exploded view of the multilayer FPC. The island-serpentine-bridge design and the soft silicone encapsulation increase the stretchability and conformability of 

the FPC. 

(G) Experimental setup for mental workload monitoring while taking the dual N-back task. The wireless forehead e-tattoo captures real-time EEG and EOG 

signals. The relationships between extracted physiological features and behavioral performance metrics were thoroughly analyzed.
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the overall resistance of the GPU because the GPU is more 

electrically conductive than the thin APC layer, whose sheet 

resistance was measured to be 68.34 ± 38.12 Ω/sq. Therefore, 

uncoated GPU serpentine ribbons served as stretchable, low- 

resistance interconnects, which are also low cost and easy to 

manufacture. Although APC coating does not affect the sheet 

resistance of GPU, it can significantly reduce contact impedance 

with the skin due to the simultaneous electrical and ionic con

ductivity of PEDOT:PSS, which can facilitate the conversion of 

ionic current to electronic current.59 The contact impedance of 

the APC-GPU electrode at different PEDOT:PSS mass ratios is 

presented in Figure S6, showing that APC-GPU outperforms 

gel-based electrodes, with a PEDOT:PSS mass ratio of 3.6% 

showing the lowest contact impedance. Given its high stretch

ability, strong adhesion, and low contact impedance, APC- 

GPU with a 3.6% PEDOT:PSS mass ratio was used in all the 

following experiments.

To further evaluate the performance of APC-GPU under dy

namic conditions, impedance hysteresis and cyclic loading tests 

were conducted up to 30% strain.64 The impedance responses 

during loading and unloading are presented in Figure S7, 

showing that impedance variations remained within 300 Ω, 

with a hysteresis of 59 Ω. Additionally, Figure S8 illustrates 

impedance changes over 1,800 cycles, where the impedance 

stabilized after 500 cycles, remaining between 0.86 kΩ and 1 kΩ.

Figure 2G compares the contact impedance of the APC-GPU 

electrodes with that of the bare GPU electrodes and the gel elec

trodes (Kendall disposable surface electrode, USA). APC-GPU 

electrode achieved a remarkably low contact impedance of 

8.03 kΩ ⋅ cm2 at 10 Hz, which was even lower than that of the 

A B C

D E F

G H I

Figure 2. APC-GPU electrodes 

(A) Molecular structures and interactions of the chemical components in the APC, including PEDOT, PSS, citric acid, polyvinyl alcohol (PVA), and β-cyclodextrin 

(β-CD). 

(B) Cross-sectional SEM image showing conformable coating of APC on GPU. 

(C) Cross-sectional SEM image showing APC-GPU electrode seamlessly adhering to the pig skin due to the APC coating. 

(D) Stress-strain curves of GPU and APC-GPU films with various PEDOT:PSS mass ratios (1.8%, 3.6%, 7.1%, 13.2%, and 22.3%). 

(E) Comparison of the skin adhesion forces of gel and APC-GPU films measured by the 90◦ peel test. 

(F) Sheet resistance of the GPU and APC-GPU films. 

(G) Area-specific skin contact impedance of conventional gel electrode and APC-GPU electrodes (with PEDOT:PSS mass ratio of 3.6%) right after application. 

(H) Area-specific skin-electrode contact impedance sweep of the APC-GPU electrode at 0, 1, and 5 h after application. 

(I) Change in average contact impedance of bare GPU and APC-GPU electrodes on human skin over 5 h with confidence interval set at 95% (shadowed area).
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commercial gel electrode (12.06 kΩ ⋅ cm2). The contact imped

ance of the APC-GPU electrode decreased over time in a typical 

EEG bandwidth of 1–100 Hz as shown in Figure 2H. At 10 Hz, the 

contact impedance of the APC-GPU electrode gradually 

decreased from 8.03 kΩ ⋅ cm2 to 2.53 kΩ ⋅ cm2 after 5 h due to 

slight sweat secretion. The reduction in contact impedance after 

exercise (Figure S9) further confirmed the effect of sweat on 

reducing the contact impedance. Despite excessive sweating 

during exercise, the adhesion of the APC-GPU is still sufficient 

to maintain good contact with the skin, which is important for 

monitoring EEG under dynamic motion. Figure 2I shows that 

the average contact impedance of APC-GPU electrodes always 

remained under 25 kΩ during the test period, ensuring high EEG 

and EOG signal quality. In contrast, the contact impedance of 

the bare GPU electrodes increased with time as sweat plays little 

role with non-ionically conductive GPU but sebum secretion 

worsened the mechanical and electrical contacts between the 

electrode and the skin. In conclusion, the APC coating signifi

cantly enhances the performance of GPU-based filamentary 

serpentine electrodes by improving adhesion and reducing elec

trode-skin contact impedance. These innovations ensure reli

able, high-quality EEG and EOG signal acquisition even under 

dynamic movements, making APC-GPU electrodes a promising 

solution for large-area, accessible, and disposable forehead 

e-tattoos.

We custom designed an FPC (Figure 3A) for low-power, high- 

fidelity EEG/EOG data acquisition and wireless transmission. 

The exploded view of the double-layer FPC is offered in 

Figure 1F. The island-serpentine-bridge design provides both 

mechanical isolation to rigid IC chips to maximize conformability 

to the curved forehead and electrical isolation between power, 

analog, and digital modules to improve circuit stability. The total 

FPC footprint is only 858.37 mm2. The power-management 

module has a serpentine extension that can simply slide into a 

low-profile FPC connector mounted on a small rechargeable 

lithium polymer (LiPo) battery (Figure 3A, inset). The central 

analog front-end island is connected to three signal-input termi

nals containing 10 copper pads (four EEG electrodes, one com

mon EEG reference electrode, one RLD ground electrode, and 

four EOG electrodes forming two bipolar channels). The copper 

pads on the FPC layer are connected to the GPU terminals in the 

e-tattoo layer via ACF tape. Figure 3B offers a block diagram of 

the wireless forehead e-tattoo system. The EEG and EOG sig

nals are low-pass filtered (LPF) for antialiasing and then amplified 

A B

C D

Figure 3. Design of the FPC 

(A) Photo of the FPC consisting of a power-management module, an analog front-end (AFE) and analog-to-digital converter (ADC) module, and a Bluetooth (BLE) 

module. The inset shows the FPC serpentine extension connecting to a rechargeable LiPo battery. 

(B) Block diagrams of the FPC and the workload-estimation pipeline. 

(C) Comparison of EEG power spectra between closed-loop and open-loop RLD implementations in the presence of 60-Hz powerline noise. 

(D) Current draw of the e-tattoo under normal advertising and data-transmitting periods over 60 s. The inset shows instantaneous current draw in between two 

packet transmissions (40-ms period).
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and converted to digital signals by a 24-bit analog-to-digital con

verter (ADC; Texas Instruments ADS1299). For EEG data 

acquisition, closed-loop RLD configuration (Figure S10A) was 

implemented after comparing its stability and common mode 

rejection ratio with other popular configurations in an SPICE 

simulation (Figure S10B). This configuration achieved an 

85.7% reduction in the body-coupled 60-Hz powerline noise 

(Figure 3C) compared to the open-loop alternatives. Powerline 

contaminations are ubiquitous in ambulatory settings. The 

ADS1299 communicates via a serial peripheral interface (SPI) 

with the Nordic nRF52832 BLE system on a chip, which was pro

grammed via a serial wire debug (SWD) interface. A custom 

Android application marks every wirelessly acquired sample 

with a unique timestamp based on the Lab Streaming Layer ar

chitecture.65 This allowed the EEG and EOG data to be tempo

rally synchronized with each other and with external data or 

event timing information such as in our dual N-back task study. 

The stability of the wireless transmission was characterized by 

the low mean packet loss of 0.07% at distances below 1 m 

and 0.5% at distances below 10 m (Figure S11). Overall, the 

data acquisition system had several favorable performance 

characteristics such as low self-noise of 0.079 μVrms and 

0.634 μVpp, as shown in Figures S12A and S12B. Additionally, 

it had a low-noise corner frequency of 10− 1 Hz (Figure S12C), 

which is well below the frequencies of interest in EEG and EOG 

signals. The accuracy of the physiological signals collected by 

our device is demonstrated through comparisons with a gold- 

standard device, as described in the next section. Given our sys

tem average current draw of 5.25 mA (5.23 mA in advertising 

phase, 5.26 mA in active data transmission) (Figure 3D), a 

3.7-V, 150-mAh LiPo battery (which was seamlessly integrated 

into the device via a modified connector; see Methods for details) 

can last more than 28 h without interruption. The current draw 

was measured in the recording configuration used for all mea

surements in the study (closed-loop RLD enabled, sampling 

rate = 250 Hz, 25 packets transmitted per second, 10 six-chan

nel data samples per packet). Table 1 highlights the low power 

consumption and long-term operation when comparing our de

vice with existing wireless forehead EEG systems.

Signal-quality validation

We adopted a commercially available, widely used wireless EEG 

system, the Brain Vision actiCAP active electrodes with LiveAmp 

32 amplifier (Brain Products, Germany), as the gold standard for 

the validation of our signal quality. Figure 4 compares the signal 

quality and motion artifacts between the two. All EEG electrodes 

were applied to AF7, Fp1, Fp2, and AF8. In this comparison, solid 

gel-based active electrodes (actiCAP, Brain Products, Germany) 

were placed right above the APC-GPU electrodes with an offset 

of 1 cm. The reference and ground electrodes were also placed 

adjacent to each other on the mastoids. The gel electrodes were 

connected to the LiveAmp amplifier through standard DIN 1.5- 

mm EEG cables. The Brain Vision system and the forehead 

e-tattoo were configured to record signals simultaneously at a 

sampling rate of 250 Hz.

To assess the ability of the forehead e-tattoo to record basic 

neural activities, we measured the synchronization and desynch

ronization of the alpha EEG band (8–12 Hz) during open and 

closed eyes. Alpha synchronization (i.e., elevated EEG alpha 

band power) is expected when eyes are closed.66 Alpha band

pass-filtered EEG signals from both the Brain Vision system 

(Figure 4A) and the forehead e-tattoo (Figure 4C) indicated 

similar levels of alpha activity during closed and open eyes. Simi

larly, Figures 4B and 4D show the average spectrograms across 

all four EEG channels obtained by the Brain Vision system and 

the e-tattoo, respectively. The EEG signals and the average 

spectrograms are virtually indistinguishable, validating the EEG 

sensing capabilities of the wireless e-tattoo. Figure S13 also 

shows that our e-tattoo captured the apparent alpha synchroni

zation during eye closing in all subjects. By accurately measuring 

the visual stimuli-modulated changes in alpha activity, we vali

dated the feasibility of using the e-tattoo for applications 

requiring accurate neural spectra information.

Our e-tattoo also clearly distinguishes horizontal EOG (hEOG) 

and vertical EOG (vEOG) during eye movements and blinks 

(Figure 4E). During vertical eye movements, there was a lack of 

hEOG signals and vice versa, which can be attributed to the pre

cise placement of the hEOG and vEOG electrodes owing to the 

high customizability of the e-tattoo to fit an individual user’s face. 

Distinctive orthogonal EOG measurements enable a wider range 

of EOG analysis than combined EOG measurements in other 

wearable platforms.67,68 Weak and strong blinks were also 

captured accurately by the e-tattoo as evident in the vEOG chan

nel. They are important for regression-based EOG artifact 

removal from the forehead EEG signals.

Many motion artifact removal methods for ambulatory EEG 

rely on a considerable number of EEG channels, which can be 

impractical for wearable form factors.69,70 Additionally, these ap

proaches often incorporate external sensing modalities, such as 

accelerometers, which can add complexity to the system. On the 

other hand, a significant advantage of cable-free wireless EEG 

sensing is suppression of motion artifacts without extensive 

signal processing. Figure 4F compares the EEG measured by 

the Brain Vision system (red) and the forehead e-tattoo (blue) 

during head rotations (looking up/down/left/right), facial muscle 

movements (raising eyebrows, smiling, swallowing), and outdoor 

activities (walking and running). EEG signals recorded by the 

Brain Vision system were significantly corrupted by dynamic 

movements such as head rotations, walking, and running, while 

the e-tattoo EEG remained unaffected. Figure S14 shows that 

the average root-mean-square (RMS) values of the EEG signals 

under different motion conditions were 1,847.26 and 68.04 μV for 

the Brain Vision and forehead e-tattoo, respectively. The RMS 

value of the forehead e-tattoo EEG falls within the typical EEG 

amplitude range of 10–100 μV. Only during eyebrow raising did 

the e-tattoo EEG fluctuate more than the Brain Vision EEG due 

to the relative proximity of the e-tattoo electrodes to the eye

brows. Other subtle facial expressions, such as smiling and 

swallowing, did not induce significant motion artifacts in either 

system. The relative immunity to motion artifacts indicates that 

the wireless forehead e-tattoo holds promise for real-life mental 

workload monitoring.

Dual N-back task design and behavioral analysis

The N-back task has been widely adopted to parametrically 

evoke different levels of working memory load by adjusting the 
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N value, directly taxing the prefrontal cortex, which is a key brain 

region associated with cognitive control and mental effort.52,71

We, therefore, designed a dual N-back task in which the subjects 

need to memorize a sequence of the stimuli: the positions of the 

cells shown and the alphabet characters within them. It is called 

dual N-back task because it forces the subject to maintain a 

A B

C D

E

F

Figure 4. Signal quality validation against Brain Vision EEG device using gel electrodes 

(A–D) Alpha band-filtered EEG and spectrograms from (A and B) Brain Vision and (C and D) forehead e-tattoo simultaneously measured during eye open- 

closed test. 

(E) Horizontal and vertical EOG measured from forehead e-tattoo under various eye movements and blinks. 

(F) Brain Vision (red) and e-tattoo (light blue) measured EEG under various head movements, facial expressions, and ambulatory movements.
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constantly updating short-term working memory of two different 

pieces of information: alphabet (visual) and cell position (spatial). 

The visuospatial trial’s difficulty level escalates as the load factor 

N increases from 0-back to 3-back. Figure 5A illustrates our 

experimental paradigm and the sequence of our dual N-back 

task. Each experimental session comprises three runs with 

5-min breaks between them. Within each run, 16 N-back trials 

are evenly distributed across four difficulty levels (0-, 1-, 2-, 

and 3-back) in randomized order. During each N-back trial, sub

jects are presented with 20 stimuli, each consisting of a visual 

display of an alphabet character inside a highlighted cell lasting 

0.6 s, followed by a black screen for 1.4 s, totaling 2.0 s per stim

ulus. When a stimulus is repeated either in cell position or char

acter N stimuli after its previous appearance, subjects need to 

respond by clicking a mouse button (left for a character match, 

right for a position match). In the 0-back scenario, subjects are 

pre-assigned a target character and a cell position before the 

stimulus cycle begins. After each run, subjects were asked to 

evaluate their task load and performance using the NASA-TLX 

questionnaire.

Under Institutional Review Board (IRB) approval, we recruited 

six healthy adults to perform the aforementioned dual N-back 

task. We examined NASA-TLX ratings, behavioral performance, 

and physiological indices together to analyze the effects of N and 

to validate that the N-back task design can successfully induce 

mental workload that increases with N. Figure 5B shows that the 

averaged self-assessed total TLX increased with task difficulty, 

indicating statistically significant perceived difficulty levels be

tween N = 1, 2, 3 with p 〈 0.001. However, the difference in total 

TLX between 0-back and 1-back did not achieve statistical sig

nificance at α = 0.05 (p = 0.053). The average NASA-TLX ratings 

for six subjective subscales shown in Figure S15 indicate that 

increasing N from N = 0 to N = 1 did not increase the physical de

mand to accomplish the tasks, allowing us to correlate our 

downstream analysis of EEG and EOG features with mental 

workload, not physical workload. We also examined the accu

racy and response time to assess subjects’ behavioral perfor

mance differences between the N levels, which are also used 

as indicators to characterize changes in mental workload in 

earlier works.72 Figure 5C compares the average N-back perfor

mance assessed by the normalized performance subscale of 

TLX (100 − TLX performance rating/100) and task accuracy. 

Both metrics showed that performance decreased as the diffi

culty level N increased. However, N-back performance cannot 

be solely represented by a single metric such as stimuli response 

accuracy due to different mental priorities adopted by each sub

ject and the nature of the N-back task. For instance, subjects 

may focus on correctly identifying the matching stimuli more 

than correctly ignoring non-matching stimuli, or vice versa, 

although they were not rewarded either way. Other subjects 

may focus on responding to a stimulus quickly. Therefore, it is 

typical to evaluate N-back performance through an array of per

formance metrics. We evaluated the effects of N-back difficulty 

on average detection rates, false-alarm rates, and reaction times 

for correct responses, which are shown in Figure 5D. As ex

pected, in addition to decreases in accuracy and detection 

rate, false-alarm rate increased with N. In addition, subjects re

acted faster to stimuli at lower difficulties on average, although 

there were no incentives or penalties based on reaction time. 

This trend is consistent with the observations made in prior 

work.73 Interestingly, although the total TLX for 1-back was not 

significantly higher than that of 0-back (Figure 5B), behavioral 

performance metrics indicated a difference (Figures 5C and 

5D). Starting from 1-back, the total TLX ratings were significantly 

higher as N increased (Figure 5B), and the behavioral perfor

mance, especially the detection rate, is inversely correlated 

with this. In contrast, behavioral performance in terms of task 

accuracy, reaction time, and false-alarm rate had already pla

teaued at 2-back and did not worsen significantly at 3-back 

(Figures 5B, 5C, and 5D). These observations suggest that N rep

resents the overall evoked mental workload that can be 

described by not one but a combination of metrics, some of 

which may become less or more relevant depending on the N 

level in question and presumably the nature of the N-back 

task. This result is consistent with the general understanding 

that each of these metrics, including NASA-TLX, covers different 

aspects of mental workload and its effects, as briefly explored in 

the Introduction. However, these are not the focus of this 

research and hence not fully studied. In summary, varying N 

from 0 to 3 in our N-back task had successfully evoked differen

tial levels of mental workload experienced by subjects, as char

acterized by their NASA-TLX ratings, task accuracy, detection 

rate, false-alarm rate, and reaction time.

Forehead EEG and EOG features relevant to mental 

workload

We analyzed the EEG and EOG signals collected on six subjects 

using our wireless forehead e-tattoo during the dual N-back 

tasks. EEG band powers for delta (1–4 Hz), theta (4–8 Hz), alpha 

(8–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz) bands were 

extracted. These measures were calculated from flattened 

power spectra to account for the aperiodic EEG activities across 

trials and subjects. In addition to EEG band powers, we also 

examined their various combinations, such as the beta/(alpha + 

theta) ratio, which is known as the engagement index.74 EOG 

features we extracted include the number of eye blinks and sac

cades, the average blink peak (ABP), the average blink duration 

(ABD), and the average saccade duration (ASD). The signal-pro

cessing and feature-extraction procedures are described in 

detail in the Methods section and Figure S16. The correlation 

matrix among EEG band powers and EOG features is offered 

in Figure S17.

Figure 5E plots the averaged physiological features based on 

the N level. When N increased, frontal delta- and theta-band 

powers increased while alpha-, beta-, and gamma-band powers 

decreased. These correlations between mental workload and 

EEG band powers are in line with the following neuroscience 

studies. An increase in theta-band power has been associated 

with an increase in working memory load9,51,75,76 and was 

most clearly observed in the frontal brain region. Increasing 

mental workload has been associated with a decrease in alpha 

power77,78 and an increase in frontal theta power.51,79 Impor

tantly, increased memory load during visual information mainte

nance has been associated with decreases in beta power,80,81

which is highly relevant for visuospatially evoked mental work

load in our study. The beta/(alpha + theta) ratio decreased as 

Please cite this article in press as: Huh et al., A wireless forehead e-tattoo for mental workload estimation, Device (2025), https://doi.org/10.1016/j. 

device.2025.100781

10 Device 3, 100781, August 15, 2025 

Article
ll



A

B C D

E

Figure 5. Dual N-back experiment paradigm and result analysis 

(A) Diagrams of the experiment paradigm and dual N-back trial design. 

(B) Average total NASA-TLX ratings across all trials/subjects. Perceived difficulty differs significantly between N = 1, 2, and 3, but not between N = 0 and 1 (p = 

0.0503). 

(C) Comparison of TLX-based self-assessed performance and N-back task accuracy. 

(D) Average behavioral performances, including detection rate (blue), false-alarm rate (red), and reaction time (black), were observed across all trials and subjects 

changing with the N level. 

(E) Average EEG band powers and EOG features (ABP and ASD) across N levels, with statistically significant differences marked (p 〈 0.05). Error bars indicate 95% 

bootstrap confidence intervals. Significance was tested using two-sided Mann-Whitney U tests. Ns, p ≥ 0.05; *p 〈0:05; **p 〈0:01; ***p 〈0:001.
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N increased, which indicates that states of disengagement and 

low attention correlate with increased mental workload.74,82 In 

our case, EOG features such as ABP and ASD did not show a 

strong correlation with N, despite the relevance of eye activity 

to mental workload suggested in literature.22 This result is 

corroborated by some studies in which EOG measures of such 

activity could not be used to distinguish between levels of mental 

workload.39,83

Among all features, frontal theta (p 〈0:01) and alpha (p 〈0:05) 

band powers were significantly different between low (0- and 

1-back) and high (2- and 3-back) mental workload conditions. 

Unlike NASA-TLX ratings, which increased gradually with N, 

the physiological features did not show a consistent trend with 

N, as each reflects different aspects of cognitive processes 

and mental workload. However, there were similarities between 

behavioral performance and physiological features. For 

instance, delta, theta, and beta powers and ASD plateaued after 

2-back, similar to false-alarm rate and reaction time. Addition

ally, the engagement index, the beta/(alpha + theta) ratio, 

showed a similar decrease as N increased. These findings 

further support using physiological sensing alongside other met

rics to develop an objective means for workload estimation.

Estimating mental workload based on forehead EEG and 

EOG

To evaluate the viability of mental workload estimation using the 

e-tattoo, we built a random forest model to predict the level of 

mental workload experienced by subjects during N-back tasks. 

We chose to use random forests for its robustness against over

fitting and its non-parametric nature, which allows for easy appli

cation across different subjects without explicit calibration. In 

addition, the random forest framework has native support for 

both classification and regression, which we utilize in our model 

evaluation approach. For this evaluation, we used the known N 

label as the ground truth for mental workload. Figure 6A shows 

the structure of the entire dataset recorded during this study, 

which was divided into either 16 epochs of 40 s for trial-level 

regression or further divided into 16 × 20 epochs of 2 s for stim

ulus-level classification (see Methods). Figure 6B shows the 

confusion matrix of the stimulus-level classification summed 

across all subjects. To verify that the mental workload classifier 

achieved above-chance accuracy (1) for every subject and (2) for 

every N level, we plotted the micro-averaged one-versus-rest 

(OvR) receiver operating characteristic (ROC) curves of each 

subject and compared them to that of a random unskilled classi

fier (Figure 6C). We found that the model can successfully esti

mate the mental workload for all N levels for all six subjects. 

Finally, to validate mental workload estimation of a given subject 

over time, we performed trial-level regression of N using a 

random forest regression model. Figure 6D shows the 3-fold 

cross-validated predictions of subject 6’s mental workload 

throughout the 2.5-h experimental session, which showed a 

Pearson’s correlation coefficient of 0.89 with the actual N levels 

that the subject experienced. Together, these results show that 

the EEG and EOG data collected by the e-tattoo system con

tained sufficient information for a reliable estimation of the 

mental workload evoked by the dual N-back task in each of 

the six subjects.

DISCUSSION

This study introduces a wireless forehead wearable e-tattoo that 

integrates EEG and EOG sensors to assess mental workload. 

The e-tattoo platform consists of disposable large-area e-tat

toos with adhesive electrodes and reusable small-footprint 

FPC, connected through ACF. The APC-GPU electrodes 

achieved remarkably low contact impedance and strong adhe

sion with the forehead skin, enabling long-term stable wear 

and high-fidelity EEG/EOG measurements, even during dynamic 

activities such as walking and running. This is a significant 

advantage compared to state-of-the-art wearables with exoge

nous form factors such as glasses and headbands or other de

vices that include bulky components and cables. Compared to 

commercial EEG systems that use gel electrodes, the wireless 

e-tattoo system demonstrated comparable signal fidelity and 

the ability to capture equivalent neural spectra from the fore

head. We conducted dual N-back experiments on six subjects 

wearing the wireless e-tattoo in a controlled laboratory setting 

and obtained NASA-TLX-based self-assessment, task perfor

mance metrics, and physiological features. A random forest- 

based workload estimation model, trained on forehead EEG 

and EOG features evaluated from minimally processed raw sig

nals from the e-tattoo, indicates the potential of the e-tattoo as a 

robust ambulatory cognitive-state-monitoring platform.

While many previous studies have explored individual as

pects, such as electrode materials or manufacturing techniques, 

our key innovation lies in the successful decoding of mental 

workload using a wireless, low-power, low-noise, and ultra-thin 

EEG/EOG e-tattoo device. It addresses the unique challenges 

of monitoring forehead EEG and EOG, where wearability, non- 

obstructiveness, and signal stability are critical to assessing 

mental workload in the real world. By combining material innova

tion, cost-effective fabrication, custom circuit design, and reus

able FPC configuration, our work offers an accessible and user- 

friendly solution that is distinct from both conventional rigid/ 

semi-rigid EEG systems as well as reported peer e-tattoos for 

wearable neurotechnology.

Despite its promising capabilities, the current forehead 

e-tattoo system can be further improved. Long-term wearability 

of the e-tattoo depends on both stable skin contact and effective 

sweat management. Although our results show that sweating re

duces the contact impedance by enhancing the ionic conductiv

ity, excessive sweat could still compromise adhesion and reduce 

comfort. Studies have shown that molecules containing catechol 

groups, such as tannic acid84 and polydopamine,85 can form 

stable bonds with the skin even under sweating conditions 

through multiple interactions, including hydrogen bonding, π-π 
stacking, and covalent bonding. Furthermore, more liquid- 

permeable86 or sweat-wicking87 substrates can be employed 

to enhance long-term wearability.

In addition to limited breathability, APC-GPU electrodes are 

not compatible with hair, restricting the e-tattoo to the hairless 

area of the forehead. Although the prefrontal regions provide 

valuable information about cognitive engagement and attention, 

other brain regions, such as the frontocentral, temporal, and oc

cipital regions, also contain information relevant to monitoring 

various neural activities related to emotional processing, 
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contextual attention, and working memory beyond the frontal re

gions. The absence of EEG recordings from these locations 

potentially limits the comprehensive assessment of mental work

load in complex operational environments. Future research 

could benefit from integrating hair-compatible ultra-thin elec

trodes or e-tattoos46,88,89 to extend the coverage area without 

impeding other headgear such as helmets or VR headsets.

In addition, in this study, we validated the ability of the device 

to assess mental workload in laboratory settings. Future work 

needs to be done to explore the feasibility of using the forehead 

e-tattoo platform for online estimation of mental workload during 

real-world human-machine interaction tasks that require optimal 

performance. One area needing improvement is to reduce the 

error of mental workload classification as well as address the 

potential mismatch between the experimental task used (dual 

N-back) and the realistic application. Although the presented 

system achieved an above-chance four-class classification in 

the N-back task, the performance of the predictive model could 

be potentially improved by additional feature engineering, 

increased training dataset size through a larger number of sub

jects or a data-generative model, and the use of less-explainable 

but higher-performing models (e.g., deep learning). While feature 

fusion between different modalities could improve accuracy, our 

study used EEG and EOG features separately. The presented 

system could also be expanded and validated to monitor other 

mental states and disorders, such as vigilance, stress, and sleep 

disorders. The multimodal approach, which integrates both EEG 

and EOG, could provide more detailed insight into the neuro

physiological correlates of these conditions, opening avenues 

for early detection, warning, and personalized intervention. 

Although the proposed e-tattoo system is thin and helmet or 

VR headset compatible, further miniaturization and system 

A B

C

D

Figure 6. Mental workload estimation 

(A) Overall N-back dataset structure and approach for mental workload estimation. The dataset is split into either trials for trial-level regression or further into 

individual stimuli for stimulus-level classification. Extracted EEG and EOG features are listed. All evaluations are based on a 3-fold cross-validation. 

(B) Confusion matrix for all subjects from the four-class stimulus-level classification of N. 

(C) Micro-averaged one-versus-rest (OvR) receiver operating characteristic (ROC) curves of each subject compared to that of a random unskilled classifier, 

defined as the chance level. 

(D) Predicted mental workload over time (trials) by the random forest regression model for the best-performing subject (subject 6).
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integration would improve its practicality in real-world long-term 

monitoring and data collection, overcoming the current limita

tions of traditional laboratory-based studies and equipment. 

This could in turn pave the way for larger-scale studies and lon

gitudinal investigations, ultimately advancing human-machine 

interfaces based on EEG and EOG in everyday life.

METHODS

Materials and fabrication of the wireless forehead 

e-tattoo

The wireless forehead e-tattoo consists of two components: a 

soft sensor patch and a flexible DAQ module. The tattoo-like 

soft sensor patches were designed to fit each study subject’s 

facial proportions. The soft sensor patch comprises a carrying 

top 3M Tegaderm layer (3M, USA), an electrode layer, and an 

insulating bottom Tegaderm layer (Figure S2). The stretchable 

filamentary-serpentine-shaped electrode layer made of GPU 

(Mineral Seal Corporation, China) was fabricated using our 

established cut-and-paste method. According to a previous 

report,58 APC was made by adding supramolecular solvents 

(citric acid and β-cyclodextrin) and elastic polymer networks 

(chemically crosslinked PVA networks with glutaraldehyde) to 

the aqueous solution of PEDOT:PSS (Heraeus, USA). The 

detailed process of APC solution preparation is illustrated in 

Figure S18. A homogeneous mixture of APC was obtained by 

DAC 330-100SE (FlackTek Speed Mixer, USA). APC solution 

was blade coated on GPU at the active sensing locations and 

evaporated water in an oven at 70◦ C for 2 h. Then, the electrode 

layer was transferred to the carrying Tegaderm layer and encap

sulated by the bottom Tegaderm layer while only exposing the 

APC-coated sensing locations and connecting pads to the 

DAQ circuits. The detailed fabrication process of the sensor 

patch is illustrated in Figure S19.

The FPC is divided into several islands connected by serpen

tine traces to improve stretchability and also for isolation be

tween power, analog, and digital signals. The FPC is powered 

by a 150-mAh LiPo battery modified with an FPC connector 

(5034800400, Molex, USA), into which the FPC is directly in

serted. For power management, we used low-noise, low- 

dropout regulators TPS7A2025 and LM27761 (both from Texas 

Instruments, USA) to create 2.5- and 5-V rails. The analog front 

end consists of the ADS1299 24-bit ADC (Texas Instruments, 

USA), which is connected via the SPI to the nRF52832 BLE sys

tem on a chip (Nordic Semiconductor, Norway). The nRF52832 

was programmed with a low-power design firmware with the 

SWD interface. All the components were mounted on a 0.1- 

mm-thick double-layer FPC with electroless nickel immersion 

gold treatment for exposed copper. The thickness of the FPC 

was brought to 0.3 mm at select areas by a polyimide stiffener 

(for the battery input terminal) or an FR-4 stiffener (for under 

the large ICs). All chip components were hand soldered on the 

FPC (manufactured by PCBWay, China). The circuit components 

(Figure S20) include the ADS1299 24-bit ADC (Texas Instru

ments, USA) for signal amplification and conversion and 

nRF52832 BLE SoC (Nordic Semiconductor, Norway) for wire

less transmission of data. The circuit features a low-noise design 

with the use of signal isolation, shielding, and low-noise compo

nents. All components were encapsulated in silicone compound 

(Silbione, Elkem, Norway) for better strain isolation and electrical 

shielding. An anisotropic conductive film (9703, 3M, USA) was 

used to bind and electrically connect the electrode layer to the 

channel pads on the FPC. A skin-safe medical adhesive was 

applied under the silicon casing to fix the circuits on the patch.

Characterization of APC-GPU electrodes

The SEM images of APC-GPU electrodes were obtained by 

Quanta 650 environmental scanning electron microscope (FEI 

Company, USA). The surface profile images and roughness 

were obtained using the VK-X1100 optical profilometer (Key

ence, Japan) and the Multi File Analyzer application (Keyence, 

Japan). The stress-strain data and adhesion force of electrode 

films were measured by RSA-G2 solids analyzer (TA Instru

ments, USA). The sheet resistance of the films (n = 5 per film 

type) was measured by a DM3065 digital multimeter (RIGOL, 

China). Lastly, the skin-electrode contact impedance of the elec

trodes was measured with Autolab PGSTAT204 electrochemical 

workstation (Metrohm, Switzerland). Solid gel, GPU, and APC- 

GPU electrodes were applied to the forehead of study subjects 

(n = 4), and their contact impedance data were recorded every 

10 min for the first hour after application and every 30 min 

afterward.

Characterization of DAQ module

Current-draw measurements were made with the Power Profiler 

Kit II (Nordic Semiconductor, Norway) on source mode. The RLD 

performance in different configurations was compared in both 

simulation and actual measurements with the e-tattoo. Simula

tions were conducted on QSPICE (Qorvo, USA) using the test cir

cuit shown in Figure S5. To measure packet loss, we made re

cordings at various device-phone distances of below 1 or 10 m 

with no physical obstacles and calculated the packet loss by 

counting missing increments in the packet ID included in each 

data packet.

Study subjects and experiment setups

Six study subjects (four males and two females, age 20–33 years) 

were recruited. All subjects were required to perform two simple 

tests: eye open-closed and dual N-back. All experimental proto

cols were approved by the IRB of the University of Texas at Aus

tin (STUDY00002937-MOD02). All study subjects were given a 

comprehensive set of instructions regarding the experiment pro

tocol and provided written consent to agree on their voluntary 

participation in the study. Proper skin preparation was per

formed on the participants’ mastoids and forehead area with Nu

prep Skin Prep Gel (Weaver and Company, USA) and alcohol 

wipes before applying the wireless forehead e-tattoos and acti

CAP active electrode with Brain Vision LiveAmp 32-ch amplifier 

(Brain Products, Germany). The biosignals were recorded simul

taneously from both systems at AF7, Fp1, Fp2, and AF8 with a 

sampling rate of 250 Hz. In addition, hEOG and vEOG were 

collected from the e-tattoo. Sampled data from two systems 

and task event markers were transmitted to a computer via 

BLE and synchronized by the lab streaming layer (LSL) library.65

The forehead e-tattoo attachment procedure begins with the 

EEG electrodes on the forehead, followed by the EOG 

Please cite this article in press as: Huh et al., A wireless forehead e-tattoo for mental workload estimation, Device (2025), https://doi.org/10.1016/j. 

device.2025.100781

14 Device 3, 100781, August 15, 2025 

Article
ll



electrodes. Once these electrodes are secured, the reference 

and ground electrodes are placed on the mastoid bone behind 

the ears. Finally, the battery is attached and positioned in the 

designated pocket above the FPC module.

EEG/EOG pre-processing and feature extraction

All physiological data collected for this study were post-pro

cessed offline for evaluation and machine learning. First, EEG 

signals were bandpass filtered from 0.1 to 50 Hz. The following 

bands were defined to extract band power features: delta 1– 

4 Hz, theta 4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz, and gamma 

30–50 Hz. Ratios of band powers were also of particular interest 

in our study due to their popular use in related studies. Specif

ically, these ratios were evaluated: alpha/theta, which has 

been associated with mental workload90; theta/beta and (alpha + 

theta)/(alpha + beta), which have been associated with fa

tigue91,92; and beta/(alpha + theta), also known as the engage

ment index, which has been associated with task workload.93

However, recent work has suggested that raw band powers 

and their ratios may not accurately represent oscillatory activity 

modulation information that is intended to be captured by the 

use of such measures.94 In light of this, we incorporated a 

method of neural spectra parameterization proposed by Donog

hue et al.,95 which extracts periodic and aperiodic components 

from a given EEG power spectrum. The power spectrum with 

the aperiodic component removed, also referred to as a flattened 

spectrum, was used to calculate band power and band-power 

ratio measures in this study to ensure an accurate evaluation 

of oscillatory activity modulation.

EOG signals were bandpass filtered from 0.02 to 50 Hz. EOG 

features were extracted by an offline implementation of the algo

rithm proposed by Toivanen et al.,96 which takes horizontal and 

vertical EOG inputs to estimate blink and saccade timings and 

durations based on an expectation maximization algorithm. 

From this output, the number of blinks, saccades, their durations 

and the ABP amplitude were collected as features. The model 

also outputs the probability of an extracted event indeed being 

an event of that type (possible types are blink, saccade, or fixa

tion), the sum of which was also used as a feature to represent 

blink/saccade frequency weighted by the model’s confidence.

Random forest model training and evaluation for mental 

workload prediction

Each channel-run-subject block containing approximately 

20–25 min of e-tattoo data (with variable duration due to 

NASA-TLX administration) was divided into either 16 epochs of 

40 s for trial-level regression or further divided into 16× 20 

epochs of 1.8 s for stimulus-level classification (Figure 6A). The 

latter approach provides a more systematic evaluation of the 

predictive power of the extracted EEG features through a four- 

class classification of subject data collected during thousands 

of individual N-back stimulus presentations. The former 

approach provides a more reliable and continuous estimate of 

mental workload by using longer data segments, which allowed 

for a meaningful inclusion of EOG features, as opposed to the 

stimulus-level approach where the majority of the 1.8-s data seg

ments were lacking blinks or saccades, resulting in a sparse 

feature matrix. Both approaches were evaluated with subject- 

specific 3-fold cross-validation, in which the model was always 

predicting the task difficulty N only based on unseen training 

data. To further reduce the risk of overfitting, the number of trees 

in the random forest classifier was increased to 500, which de

creases the generalization error.

The stimulus-level classification was evaluated by an all-sub

ject confusion matrix (Figure 6B) and subject-specific ROC 

curves (Figure 6C). To best capture the model’s performance 

in predicting each class, we plotted the micro-averaged OvR 

ROC curves. This approach reflects the model’s performance 

in predicting in each of the four N levels while accounting for 

class imbalance arising from rejected epochs due to significant 

motion. In this approach, each ROC curve in Figure 6C is a 

weighted average of four ROC curves for that subject (N = 

0 vs. N = 1 or 2 or 3, N = 1 vs. N = 0 or 2 or 3, and so on). To clarify, 

the OvR paradigm is used only for the purpose of visualizing the 

two-dimensional ROC curves; the actual classification results 

presented in Figure 6B are the results of a true four-class classi

fication without an OvR constraint.
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