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THE BIGGERPICTURE Mental workload is a critical factor in human-in-the-loop systems, directly influencing
cognitive performance and decision making in high-stakes environments such as aviation, healthcare, and
robotics. While electroencephalography (EEG) and electrooculography (EOG) offer promising physiological
markers for workload estimation, existing devices are often bulky, restrictive, and susceptible to motion ar-
tifacts, limiting their practicality in real-world applications.

This study introduces a wireless, ultra-thin forehead e-tattoo that enables high-fidelity EEG and EOG moni-
toring while maintaining comfort, stability, and motion resistance. Unlike conventional systems, our e-tattoo
leverages adhesive poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite-
coated electrodes to achieve low skin impedance, robust adhesion, and reliable signal acquisition during dy-
namic tasks. Integrated with a flexible printed circuit for on-device processing and wireless transmission, this
system provides a minimally obtrusive and long-lasting solution for ambulatory cognitive monitoring. We
validate the e-tattoo’s capability through a dual N-back mental workload task, correlating EEG/EOG signals
with NASA Task Load Index (NASA-TLX) self-assessments and task performance. A machine-learning model
trained on these physiological features successfully estimates mental workload across varying task diffi-
culties, demonstrating the feasibility of real-time cognitive state decoding. Our work presents a breakthrough
in wearable neurotechnology, offering a scalable, cost-effective, and user-friendly approach to continuous
mental workload assessment. Future applications could include real-time cognitive load monitoring in pilots,
operators, and healthcare professionals, advancing the field of human-machine interaction and personalized
cognitive augmentation.

SUMMARY

Real-time monitoring of operator cognitive states can enhance the safety and performance of human-in-the-
loop systems. However, traditional electroencephalography (EEG) and electrooculography (EOG) devices,
with their bulkiness, dangling wires, and time-consuming setups, are restricting or impossible for monitoring
operators’ cognitive states while performing tasks in reality. In this study, we propose a wireless forehead
EEG and EOG sensor designed to be as thin and conformable to the skin as a temporary tattoo sticker, which
is referred to as a forehead e-tattoo. This e-tattoo employs adhesive poly(3,4-ethylenedioxythiophene) poly-
styrene sulfonate (PEDOT:PSS) composite-coated graphite-deposited polyurethane (APC-GPU) electrodes
laminated with a battery-powered flexible printed circuit (FPC) for data acquisition and wireless transmission.
The forehead EEG and EOG measured by this e-tattoo are correlated with mental workload during a dual
N-back working memory task. The results confirm the feasibility of applying the wireless, low-profile, fore-
head e-tattoo for mental workload estimation.
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INTRODUCTION

Human mental workload is a crucial factor in the fields of human-
machine interaction and ergonomics due to its direct impact on
human cognitive performance. Although its definition varies,
mental workload can generally be described as the degree to
which a person’s working memory capacity and cognitive pro-
cesses are engaged by the ongoing task." In addition, mental
workload is closely related to other cognitive components such
as engagement” and arousal® that can affect task performance.
Previous research indicates that a moderate level of mental
workload is essential to maintain engagement and attention,
leading to optimal performance.” On the contrary, performance
may decline when mental workload is too low or too high. At
low levels of mental workload, a person can become disengaged
and make mistakes. At high levels, a person may become over-
whelmed and lose control. Therefore, managing users’ mental
workload levels is of significant interest to designers of human-
in-the-loop systems to optimize performance. This becomes
particularly important in high-complexity, safety-critical tasks
where reductions in performance can and have resulted in
devastating losses of lives and assets.>® In such contexts,
mental workload has been directly correlated with accident
probability.” This has motivated various studies in mental
workload assessment for operators, particularly for vehicle
drivers,®* aircraft pilots, ' air traffic controllers,'®'® and robot
teleoperators.'*

Although the importance of mental workload in human
performance is well established, its measurement is not. It is
intrinsically challenging to assess mental workload because it
is a multidimensional and non-stationary variable that is deter-
mined by a combination of factors, including the inherent nature
and difficulty of the task, the circumstances under which a per-
son performs the task, as well as the skill and fatigue level of
the operator at that moment.'® Until today, NASA’s Task Load
Index (NASA-TLX),'® a self-reported questionnaire, still serves
as the gold standard for mental workload assessment.’>"'” How-
ever, self-assessment suffers from poor temporal resolution,
intrusiveness to the ongoing task, and subjectivity.'® Further-
more, individuals tend to report workload levels that are deemed
suitable for their performance, rather than objectively reflecting
their cognitive effort. Meanwhile, task performance is often
observed after the task has been attempted,15 which does not
allow proactive prevention of errors or failures. This limits the
usefulness of task performance as the primary measure of
mental workload in safety-critical contexts that require anticipa-
tory measures.

Physiological indices have been proposed as a promising
alternative to quantifying mental workload due to their temporal
resolution, high sensitivity, and neutral bias.'®*° While easy-to-
measure peripheral nervous system signals, such as heart
rate® and electrodermal activity”' have been associated with
mental stress, these signals do not directly reflect or measure
mental workload itself. EEG is the main signal modality for moni-
toring physiological mental workload monitoring,'® but conven-
tional EEG measurement systems are wired, bulky, and uncom-
fortable. Ocular activities such as blinks, saccades, and pupillary
response have also been associated with mental workload.?***
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Optical eye tracking is commonly used but has restrictive re-
quirements, such as the need to fix the operator’s head direction
toward external sensors and the absence of optical confounders
such as certain types of eyewear,”**> which can be unrealistic in
real-world task scenarios. In contrast, EOG does not have such
restrictions while recording rich blink and saccade information
with high temporal resolution.’®*” In fact, EOG has been
correlated with drowsiness/fatigue,”®*° vigilance,*® and mental
workload.?”

Despite the desirability and demonstrated success of electro-
physiology-based mental workload assessment, recording
hardware has limited its widespread use. Wired recording sys-
tems not only physically restrict the user’s range of movement
but also suffer from significant motion artifacts, making them
impractical and uncomfortable to use as mobile, wearable sys-
tems. Discomfort and restrictions on user movement also inher-
ently modify the task environment, reducing task performance
and undermining the purpose of mental workload assessment.
In addition, EEG systems based on conventional gel electrodes
require long setup times and suffer signal-quality degradation af-
ter a few hours due to gel drying, limiting potential applications.®’

Recent advances in wireless wearable devices based on dry
electrodes have increased the practicality of EEG. Many of
them are in the form factor of a headband,>?~°° which is conve-
nient to wear but allows relative displacement between the
electrode and the skin. This compromises signal quality, espe-
cially under facial expression or body movement.*® Emerging
wearable EEG/EOG sensors in the form of glasses,®’ earbuds,*®
and headphones® improved wearability but suffer from similar
issues of unstable electrode-skin interfaces due to stiffness
mismatch between sensor and skin and non-adhesive elec-
trodes used. Furthermore, restricting possible recording sites
to peripheral locations can reduce the relevance of signals to
the intended application. Such wearables are also less compat-
ible with head-worn equipment, such as helmets for aircraft
pilots, much like in the case of traditional EEG caps.

To address these issues, alternative form factors of wearable
electronics such as e-tattoos have been developed for EEG
and EOG."**® Such systems feature stretchable and ultra-thin
dry electrodes forming a conformable and stable contact with
the skin. However, many EEG e-tattoos still suffer from limita-
tions such as reliance on expensive materials or equipment,®
tedious®>*” and/or high-temperature® fabrication steps, high
contact impedance with the skin,*® lack of on-device data
acquisition (DAQ),*****? or a right-leg drive (RLD)* for noise
reduction.”® Furthermore, despite the thinness of tattoo-like
electrodes in these systems, their electronic circuits and pack-
ages, if any, still compromise overall system thinness (Table 1),
making the device still obstructive to head-worn equipment
such as helmets and virtual reality (VR) headsets. These limita-
tions hinder the use of current e-tattoos as accessible solutions
for the assessment of mental workload in real-world or dynamic
task environments.

In this work, we present a wireless forehead EEG/EOG
e-tattoo and the corresponding algorithm for the objective
assessment of mental workload. We hypothesize that the
e-tattoo can record high-fidelity EEG and EOG signals from the
forehead that are adequate for mental workload decoding, given



Please cite this article in press as: Huh et al., A wireless forehead e-tattoo for mental workload estimation, Device (2025), https://doi.org/10.1016/j.

device.2025.100781

0
@
o
ol
0
&)
?

o YHOM Joud sy} ur papoday,

"uonye|nsdeous pajund Qg YIm g0d PiBl € 0} sjoeuuo),
"X0q uonisinboe ejep/Jsiyijdwe [B12JaWWo9 & 0] S108UU0),
*a|qeolidde jou ‘y/N ‘eAup Ba-1ybu ‘g1y "eouepadwl 10B1U0D pazijewlou-eale Jo Ajjige|ieAe uo Buipuadap Atea aouepaduwl J0BIUOD JO) SHUN

030 ONT |
Uvyw 051 ® Y 9501 (weysAs) w/N ZH 0E @ ‘oliqey ‘auolqIs Bunoyuow D03 2
soh YWwz'6 + YWz vl V/N  (epososie) wrl pgg SO G ‘x91§003 ‘341d piob obejs-des|s OEERA S
ONT L
(Hnoao yum (weishs) ww o1 ZH 00} ©® (¥s0} 950J0 "SA o3 €
soh yw 05> Be6cl) b8 (eponosje) wrplg Y 6'69 NdL SIS-eD-ul-By uado ofe) v/N 933 ¥ 144
(Ajuo
537 [puuEyD
yvyw 002 se|oped |DBy/Oy 8|Buls yum
yelg (weysAs) ww 9 ZH Ol ® YlM Jswolseld ul SSd 1S9} 8S0|9 'SA
ou oYW 6'¢e Bzl  (eponosie) wr oL A 8L F 9 Nd :10Qa3d psyesedss-aseyd uado o£8) v/N 533 2 54
uolnoelep
us (weyshs) jobuel ZH Ol ® Jaded ooyel jenuajod
soh V/N 6 ,e2'8 (eponose) wWu 006 UM 05-0F ‘aus|Aied plob paje|ei-104i9 D33 | a4
Uvw oL @ Y | (Aioneq yum (wesshs) /N ZH 0E ® Bunyoesy
soh YW 60> Bgg)bee  (oponosie) wr /9 BN 1°8-€°9 X8)093 dNBY sousbien ake o3 € %
ONI ¢
(weshs) obue| Buoyuow [STe =R
ou V/N Lobue| (epou30919) W/N V/N ooyel Aesodwsl uogJed obe)s-dea|s SEERZ o
ZHOL @
Uvw 0S| ® U §'8¢ (Aieneq yum (weyshs) wwi G/ JWOBY L'e—€' L Burioyuow D03 ¢
soh YW G6z'g 61'9)6 Ly (eponosie) wr z|| UM L'8e-1"¢ wiepeBe]  NdD Peye0d-SSd:LlOddd  PEOPUOM [ElUSW D33  WominQ
ad o)l AMeneq  ybBrom welsAs SSOUXOIY} WBISAS  aouepaduwl 10BIJUCD  81BJISONS 9P0JI09|] s|elsjew apoJ1os|g uoieolddy  sjpuuey)  9oudaIsleYy

pue meip LNy

503 pue H3J 10} Sd|geieam peayao} Jo uosuedwod | djqeL

Device

3

Device 3, 100781, August 15, 2025



device.2025.100781

Please cite this article in press as: Huh et al., A wireless forehead e-tattoo for mental workload estimation, Device (2025), https://doi.org/10.1016/j.

¢? CellPress

prior investigations on the neural correlates of mental workload
and its decoding.”*"*? Instead of using thin noble-metal films
as electrodes and interconnects, we adopt the cut-and-paste
method®® to fabricate stretchable serpentine ribbons from
commercially available conductive graphite-deposited polyure-
thane (GPU) sheets. To reduce the contact impedance of GPU
and improve attachment to human skin, we create an adhesive
PEDOT:PSS composite (APC) coating on GPU filamentary ser-
pentines for forehead EEG and EOG measurements with
suppressed motion artifacts. We demonstrate the thinness, con-
formability, stretchability, adhesiveness, conductivity, and man-
ufacturability of APC-GPU electrodes. We design a flexible
printed circuit (FPC) with an RLD circuit that transmits low-noise
EEG and EOG data in real-time via Bluetooth Low Energy (BLE)
while achieving the lowest power consumption among similar re-
ported wireless flexible EEG sensors. We also use the high-fidel-
ity EEG and EOG signals recorded with our device to train and
evaluate random forest models for mental workload evaluation,
without the need for extensive offline signal processing steps.
Our hardware-software system is an all-in-one user-friendly so-
lution for decoding mental workload, with a thin form factor
compatible with other headgears (Figure S1). Its capability is
demonstrated by successfully estimating mental workload levels
in six human subjects performing a dual N-back task with the
ground truth of mental workload provided by both task perfor-
mance and NASA-TLX self-assessment.

RESULTS

Wireless forehead e-tattoo design

Figures 1A-1E present front, side, and close-up views of our
wireless forehead e-tattoo. It records four channels of EEG
(AF7, Fp1, Fp2, AF8) on the forehead and two channels of
EOG across the eyes (vertical EOG, horizontal EOG). The
e-tattoo comprises a disposable tattoo-like electrode layer and
areusable FPC layer. As the electrode layer must cover the entire
forehead, it is designed with filamentary serpentine-shaped
electrodes and interconnects made of commercially available
low-cost, conductive GPU, compared to expensive gold thin
films. Cut-and-paste approach®® enables the time- and cost-
effective fabrication of the filamentary serpentine GPU on a
transparent Tegaderm tape (see methods). An APC is developed
to coat only the electrode regions of the GPU to reduce the con-
tact impedance and enhance the adhesion to the skin. The FPC
for data acquisition and wireless data transmission (Figure 1F) is
designed with a two-layer circuit of thickness 117 pm to achieve
a footprint of 8.58 cm? and a total weight of 8.1 g including a
150-mAh battery. The island-serpentine structural design®* in-
creases the stretchability and flexibility of the FPC, allowing it
to accommodate facial expressions. The FPC stacks on top of
the Tegaderm-supported GPU electrode layer and connects to
the electrodes through z axis conductive anisotropic cohesive
films (ACFs) (Figure S2). This simple FPC-to-electrode via
connection works due to the double-sided conductivity and
the thickness of the GPU interconnects (50 pm).°® The fully
assembled wireless sensor conforms to and stays attached to
the forehead without mechanical perception to the user. Only
the electrode layer directly contacts the skin and therefore

4 Device 3, 100781, August 15, 2025
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should be disposed after use. The ACF allows easy disassembly
of the FPC from the electrode layer, allowing the disposal of the
electrode layer and the reuse of the FPC with a new electrode
layer.®® Our system stands out in comparison with previously re-
ported forehead EEG and EOG sensing systems, as summarized
in Table 1, particularly excelling in terms of low contact imped-
ance and current draw, making it highly suitable for long-term
mental workload-monitoring applications. The following results
validate the capability of the wireless forehead e-tattoo and
demonstrate mental-work assessment from prefrontal EEG
and EOG during dual N-back task (Figure 1G).

Figure 2 presents the composition as well as the mechanical
and electrical properties of the APC-GPU electrodes. As a
large-area, disposable e-tattoo is required for EEG and EOG
acquisition over the forehead, GPU provides a cost-effective so-
lution, with an estimated cost of less than $20 for each tattoo.
However, unlike conventional gold-nanomembrane-based fila-
mentary serpentines,*>*” which can self-conform to skin micro-
topography without added adhesive, 50-pm-thick commercial
GPU cannot form microscale conformability to skin®” even with
filamentary serpentine patterns and adhesion provided by the
supporting Tegaderm tape. As a result, the filamentary serpen-
tines of the bare GPU suffer from high contact impedance and
susceptibility to relative motion with the skin. To address these
issues, we have adapted an APC to coat the GPU electrodes
(but not the GPU interconnects). The APC, first introduced by
Tan et al.,*® consists of PEDOT:PSS, p-cyclodextrin, citric acid,
and glutaraldehyde-crosslinked polyvinyl alcohol (PVA) to
achieve low modulus, high stretchability, and stable interface
adhesion (Figure 2A). It is well known that the ionic conductivity®®
and the self-adhesiveness®® of PEDOT:PSS can both signifi-
cantly reduce contact impedance with the skin. Although the
APC is not our original development, we have optimized its
composition for the GPU electrode coating, which effectively im-
proves both adhesion and EEG sensing from the skin.

A cross-sectional view of a scanning electron microscopy
(SEM) image shows that APC can be uniformly blade-coated
and dries on GPU, resulting in a 30 * 4-pm-thick layer
(Figure 2B). The surface profiles of the electrodes before and af-
ter APC coating are compared in Figure S3. APC coating
decreased the average surface roughness (Sa) from 0.527 to
0.421 um. The supramolecules formed by B-cyclodextrin and cit-
ric acid in APC can enhance the hydrogen bonding between the
APC and the surface of the skin, which is covered by stratum cor-
neum consisting of keratin and lipids,®"®*> enabling conformal
and stable contact of the electrode on the skin (Figures 2C
and S4).

Additionally, the PEDOT:PSS content of the APC-GPU elec-
trodes can be tuned to balance softness and conductivity. Due
to the relatively high stiffness (Young’s modulus, E > 500 MPa)
and the small strain to failure of PEDOT:PSS (2%),°® increasing
the mass ratio of PEDOT:PSS in the APC enhances conductivity
but compromises the softness and stretchability of the elec-
trodes. Therefore, we compared the mechanical properties of
the GPU and APC-GPU with PEDOT:PSS mass ratios of 1.8%,
3.6%, 7.1%, 13.2%, and 23.3% in the APC. As shown in
Figure 2D, the fracture strain decreased from 138% for 1.8%
APC-GPU to 82% for 23.3% APC-GPU, while the effective
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(A and B) (A) Front- and (B) side-view photos of the e-tattoo worn on the forehead of a participant.
C) Stretchable EEG electrodes laminated with encapsulated flexible printed circuit (FPC) on the forehead.

(

(D) Three e-tattoo electrodes for EOG.

(E) Reference or ground e-tattoo electrode attached to the mastoid.
(

F) Exploded view of the multilayer FPC. The island-serpentine-bridge design and the soft silicone encapsulation increase the stretchability and conformability of

the FPC.

(G) Experimental setup for mental workload monitoring while taking the dual N-back task. The wireless forehead e-tattoo captures real-time EEG and EOG
signals. The relationships between extracted physiological features and behavioral performance metrics were thoroughly analyzed.

Young’s modulus increased from 108 MPa to 147 MPa.
Figure 2E shows that APC-GPU with a PEDOT:PSS mass ratio
of 3.6% has the strongest adhesion of 80 N/m, while the APC-
GPU with PEDOT:PSS concentration of 23.3% has the weakest
adhesion of 10 N/m. In particular, the APC-GPU exhibited an
adhesion force 12 times larger than that of the commercial liquid
gel EEG electrode (6 N/m), suggesting its higher stability under
motion. Furthermore, Figure S5 shows that the APC layer with
3.6% PEDOT:PSS functions as both an adhesive and a mechan-

ically compatible interface, achieving perfect conformability to
the skin even in the absence of an adhesive substrate. In
contrast, bare GPU cannot fully conform to the skin even if sup-
ported by an adhesive Tegaderm substrate. Thus, results show
that APC-GPU is clearly superior to GPU and gel electrode in
adhesion.

In terms of electrical properties, the sheet resistances of bare
GPU and APC-GPU are nearly identical, around 50 Q/sq
(Figure 2F). This suggests that the thin APC has little effect on

Device 3, 100781, August 15, 2025 5
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Figure 2. APC-GPU electrodes

(A) Molecular structures and interactions of the chemical components in the APC, including PEDOT, PSS, citric acid, polyvinyl alcohol (PVA), and p-cyclodextrin

(p-CD).

(B) Cross-sectional SEM image showing conformable coating of APC on GPU.

(C) Cross-sectional SEM image showing APC-GPU electrode seamlessly adhering to the pig skin due to the APC coating.

(D) Stress-strain curves of GPU and APC-GPU films with various PEDOT:PSS mass ratios (1.8%, 3.6%, 7.1%, 13.2%, and 22.3%)).

(E) Comparison of the skin adhesion forces of gel and APC-GPU films measured by the 90° peel test.

(F) Sheet resistance of the GPU and APC-GPU films.

(G) Area-specific skin contact impedance of conventional gel electrode and APC-GPU electrodes (with PEDOT:PSS mass ratio of 3.6%) right after application.
(H) Area-specific skin-electrode contact impedance sweep of the APC-GPU electrode at 0, 1, and 5 h after application.

() Change in average contact impedance of bare GPU and APC-GPU electrodes on human skin over 5 h with confidence interval set at 95% (shadowed area).

the overall resistance of the GPU because the GPU is more
electrically conductive than the thin APC layer, whose sheet
resistance was measured to be 68.34 + 38.12 Q/sq. Therefore,
uncoated GPU serpentine ribbons served as stretchable, low-
resistance interconnects, which are also low cost and easy to
manufacture. Although APC coating does not affect the sheet
resistance of GPU, it can significantly reduce contactimpedance
with the skin due to the simultaneous electrical and ionic con-
ductivity of PEDOT:PSS, which can facilitate the conversion of
ionic current to electronic current.®® The contact impedance of
the APC-GPU electrode at different PEDOT:PSS mass ratios is
presented in Figure S6, showing that APC-GPU outperforms
gel-based electrodes, with a PEDOT:PSS mass ratio of 3.6%
showing the lowest contact impedance. Given its high stretch-
ability, strong adhesion, and low contact impedance, APC-

6 Device 3, 100781, August 15, 2025

GPU with a 3.6% PEDOT:PSS mass ratio was used in all the
following experiments.

To further evaluate the performance of APC-GPU under dy-
namic conditions, impedance hysteresis and cyclic loading tests
were conducted up to 30% strain.® The impedance responses
during loading and unloading are presented in Figure S7,
showing that impedance variations remained within 300 Q,
with a hysteresis of 59 Q. Additionally, Figure S8 illustrates
impedance changes over 1,800 cycles, where the impedance
stabilized after 500 cycles, remaining between 0.86 kQ and 1 kQ.

Figure 2G compares the contact impedance of the APC-GPU
electrodes with that of the bare GPU electrodes and the gel elec-
trodes (Kendall disposable surface electrode, USA). APC-GPU
electrode achieved a remarkably low contact impedance of
8.03 kQ - cm? at 10 Hz, which was even lower than that of the
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(A) Photo of the FPC consisting of a power-management module, an analog front-end (AFE) and analog-to-digital converter (ADC) module, and a Bluetooth (BLE)
module. The inset shows the FPC serpentine extension connecting to a rechargeable LiPo battery.

(B) Block diagrams of the FPC and the workload-estimation pipeline.

(C) Comparison of EEG power spectra between closed-loop and open-loop RLD implementations in the presence of 60-Hz powerline noise.
(D) Current draw of the e-tattoo under normal advertising and data-transmitting periods over 60 s. The inset shows instantaneous current draw in between two

packet transmissions (40-ms period).

commercial gel electrode (12.06 kQ - cm?). The contact imped-
ance of the APC-GPU electrode decreased over time in a typical
EEG bandwidth of 1-100 Hz as shown in Figure 2H. At 10 Hz, the
contact impedance of the APC-GPU electrode gradually
decreased from 8.03 kQ - cm? to 2.53 kQ - cm? after 5 h due to
slight sweat secretion. The reduction in contact impedance after
exercise (Figure S9) further confirmed the effect of sweat on
reducing the contact impedance. Despite excessive sweating
during exercise, the adhesion of the APC-GPU is still sufficient
to maintain good contact with the skin, which is important for
monitoring EEG under dynamic motion. Figure 2| shows that
the average contact impedance of APC-GPU electrodes always
remained under 25 kQ during the test period, ensuring high EEG
and EOG signal quality. In contrast, the contact impedance of
the bare GPU electrodes increased with time as sweat plays little
role with non-ionically conductive GPU but sebum secretion
worsened the mechanical and electrical contacts between the
electrode and the skin. In conclusion, the APC coating signifi-
cantly enhances the performance of GPU-based filamentary
serpentine electrodes by improving adhesion and reducing elec-
trode-skin contact impedance. These innovations ensure reli-
able, high-quality EEG and EOG signal acquisition even under

dynamic movements, making APC-GPU electrodes a promising
solution for large-area, accessible, and disposable forehead
e-tattoos.

We custom designed an FPC (Figure 3A) for low-power, high-
fidelity EEG/EOG data acquisition and wireless transmission.
The exploded view of the double-layer FPC is offered in
Figure 1F. The island-serpentine-bridge design provides both
mechanical isolation to rigid IC chips to maximize conformability
to the curved forehead and electrical isolation between power,
analog, and digital modules to improve circuit stability. The total
FPC footprint is only 858.37 mm?. The power-management
module has a serpentine extension that can simply slide into a
low-profile FPC connector mounted on a small rechargeable
lithium polymer (LiPo) battery (Figure 3A, inset). The central
analog front-end island is connected to three signal-input termi-
nals containing 10 copper pads (four EEG electrodes, one com-
mon EEG reference electrode, one RLD ground electrode, and
four EOG electrodes forming two bipolar channels). The copper
pads on the FPC layer are connected to the GPU terminals in the
e-tattoo layer via ACF tape. Figure 3B offers a block diagram of
the wireless forehead e-tattoo system. The EEG and EOG sig-
nals are low-pass filtered (LPF) for antialiasing and then amplified
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and converted to digital signals by a 24-bit analog-to-digital con-
verter (ADC; Texas Instruments ADS1299). For EEG data
acquisition, closed-loop RLD configuration (Figure S10A) was
implemented after comparing its stability and common mode
rejection ratio with other popular configurations in an SPICE
simulation (Figure S10B). This configuration achieved an
85.7% reduction in the body-coupled 60-Hz powerline noise
(Figure 3C) compared to the open-loop alternatives. Powerline
contaminations are ubiquitous in ambulatory settings. The
ADS1299 communicates via a serial peripheral interface (SPI)
with the Nordic nRF52832 BLE system on a chip, which was pro-
grammed via a serial wire debug (SWD) interface. A custom
Android application marks every wirelessly acquired sample
with a unique timestamp based on the Lab Streaming Layer ar-
chitecture.®® This allowed the EEG and EOG data to be tempo-
rally synchronized with each other and with external data or
event timing information such as in our dual N-back task study.
The stability of the wireless transmission was characterized by
the low mean packet loss of 0.07% at distances below 1 m
and 0.5% at distances below 10 m (Figure S11). Overall, the
data acquisition system had several favorable performance
characteristics such as low self-noise of 0.079 pVrms and
0.634 pVpp, as shown in Figures S12A and S12B. Additionally,
it had a low-noise corner frequency of 10~" Hz (Figure S12C),
which is well below the frequencies of interest in EEG and EOG
signals. The accuracy of the physiological signals collected by
our device is demonstrated through comparisons with a gold-
standard device, as described in the next section. Given our sys-
tem average current draw of 5.25 mA (5.23 mA in advertising
phase, 5.26 mA in active data transmission) (Figure 3D), a
3.7-V, 150-mAh LiPo battery (which was seamlessly integrated
into the device via a modified connector; see Methods for details)
can last more than 28 h without interruption. The current draw
was measured in the recording configuration used for all mea-
surements in the study (closed-loop RLD enabled, sampling
rate = 250 Hz, 25 packets transmitted per second, 10 six-chan-
nel data samples per packet). Table 1 highlights the low power
consumption and long-term operation when comparing our de-
vice with existing wireless forehead EEG systems.

Signal-quality validation
We adopted a commercially available, widely used wireless EEG
system, the Brain Vision actiCAP active electrodes with LiveAmp
32 amplifier (Brain Products, Germany), as the gold standard for
the validation of our signal quality. Figure 4 compares the signal
quality and motion artifacts between the two. All EEG electrodes
were applied to AF7, Fp1, Fp2, and AF8. In this comparison, solid
gel-based active electrodes (actiCAP, Brain Products, Germany)
were placed right above the APC-GPU electrodes with an offset
of 1 cm. The reference and ground electrodes were also placed
adjacent to each other on the mastoids. The gel electrodes were
connected to the LiveAmp amplifier through standard DIN 1.5-
mm EEG cables. The Brain Vision system and the forehead
e-tattoo were configured to record signals simultaneously at a
sampling rate of 250 Hz.

To assess the ability of the forehead e-tattoo to record basic
neural activities, we measured the synchronization and desynch-
ronization of the alpha EEG band (8-12 Hz) during open and
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closed eyes. Alpha synchronization (i.e., elevated EEG alpha
band power) is expected when eyes are closed.®® Alpha band-
pass-filtered EEG signals from both the Brain Vision system
(Figure 4A) and the forehead e-tattoo (Figure 4C) indicated
similar levels of alpha activity during closed and open eyes. Simi-
larly, Figures 4B and 4D show the average spectrograms across
all four EEG channels obtained by the Brain Vision system and
the e-tattoo, respectively. The EEG signals and the average
spectrograms are virtually indistinguishable, validating the EEG
sensing capabilities of the wireless e-tattoo. Figure S13 also
shows that our e-tattoo captured the apparent alpha synchroni-
zation during eye closing in all subjects. By accurately measuring
the visual stimuli-modulated changes in alpha activity, we vali-
dated the feasibility of using the e-tattoo for applications
requiring accurate neural spectra information.

Our e-tattoo also clearly distinguishes horizontal EOG (hEOG)
and vertical EOG (VEOG) during eye movements and blinks
(Figure 4E). During vertical eye movements, there was a lack of
hEOG signals and vice versa, which can be attributed to the pre-
cise placement of the hEOG and vEOG electrodes owing to the
high customizability of the e-tattoo to fit an individual user’s face.
Distinctive orthogonal EOG measurements enable a wider range
of EOG analysis than combined EOG measurements in other
wearable platforms.®”°® Weak and strong blinks were also
captured accurately by the e-tattoo as evident in the vEOG chan-
nel. They are important for regression-based EOG artifact
removal from the forehead EEG signals.

Many motion artifact removal methods for ambulatory EEG
rely on a considerable number of EEG channels, which can be
impractical for wearable form factors.®®’° Additionally, these ap-
proaches often incorporate external sensing modalities, such as
accelerometers, which can add complexity to the system. On the
other hand, a significant advantage of cable-free wireless EEG
sensing is suppression of motion artifacts without extensive
signal processing. Figure 4F compares the EEG measured by
the Brain Vision system (red) and the forehead e-tattoo (blue)
during head rotations (looking up/down/left/right), facial muscle
movements (raising eyebrows, smiling, swallowing), and outdoor
activities (walking and running). EEG signals recorded by the
Brain Vision system were significantly corrupted by dynamic
movements such as head rotations, walking, and running, while
the e-tattoo EEG remained unaffected. Figure S14 shows that
the average root-mean-square (RMS) values of the EEG signals
under different motion conditions were 1,847.26 and 68.04 pV for
the Brain Vision and forehead e-tattoo, respectively. The RMS
value of the forehead e-tattoo EEG falls within the typical EEG
amplitude range of 10-100 pV. Only during eyebrow raising did
the e-tattoo EEG fluctuate more than the Brain Vision EEG due
to the relative proximity of the e-tattoo electrodes to the eye-
brows. Other subtle facial expressions, such as smiling and
swallowing, did not induce significant motion artifacts in either
system. The relative immunity to motion artifacts indicates that
the wireless forehead e-tattoo holds promise for real-life mental
workload monitoring.

Dual N-back task design and behavioral analysis
The N-back task has been widely adopted to parametrically
evoke different levels of working memory load by adjusting the
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Figure 4. Signal quality validation against Brain Vision EEG device using gel electrodes

(A-D) Alpha band-filtered EEG and spectrograms from (A and B) Brain Vision and (C and D) forehead e-tattoo simultaneously measured during eye open-
closed test.

(E) Horizontal and vertical EOG measured from forehead e-tattoo under various eye movements and blinks.

(F) Brain Vision (red) and e-tattoo (light blue) measured EEG under various head movements, facial expressions, and ambulatory movements.

N value, directly taxing the prefrontal cortex, which is a key brain  need to memorize a sequence of the stimuli: the positions of the
region associated with cognitive control and mental effort.>>”"  cells shown and the alphabet characters within them. It is called

We, therefore, designed a dual N-back task in which the subjects  dual N-back task because it forces the subject to maintain a
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constantly updating short-term working memory of two different
pieces of information: alphabet (visual) and cell position (spatial).
The visuospatial trial’s difficulty level escalates as the load factor
N increases from O-back to 3-back. Figure 5A illustrates our
experimental paradigm and the sequence of our dual N-back
task. Each experimental session comprises three runs with
5-min breaks between them. Within each run, 16 N-back trials
are evenly distributed across four difficulty levels (0-, 1-, 2-,
and 3-back) in randomized order. During each N-back trial, sub-
jects are presented with 20 stimuli, each consisting of a visual
display of an alphabet character inside a highlighted cell lasting
0.6 s, followed by a black screen for 1.4 s, totaling 2.0 s per stim-
ulus. When a stimulus is repeated either in cell position or char-
acter N stimuli after its previous appearance, subjects need to
respond by clicking a mouse button (left for a character match,
right for a position match). In the 0-back scenario, subjects are
pre-assigned a target character and a cell position before the
stimulus cycle begins. After each run, subjects were asked to
evaluate their task load and performance using the NASA-TLX
questionnaire.

Under Institutional Review Board (IRB) approval, we recruited
six healthy adults to perform the aforementioned dual N-back
task. We examined NASA-TLX ratings, behavioral performance,
and physiological indices together to analyze the effects of N and
to validate that the N-back task design can successfully induce
mental workload that increases with N. Figure 5B shows that the
averaged self-assessed total TLX increased with task difficulty,
indicating statistically significant perceived difficulty levels be-
tween N =1, 2, 3 with p ( 0.001. However, the difference in total
TLX between 0-back and 1-back did not achieve statistical sig-
nificance at a = 0.05 (p = 0.053). The average NASA-TLX ratings
for six subjective subscales shown in Figure S15 indicate that
increasing N from N =0to N =1 did not increase the physical de-
mand to accomplish the tasks, allowing us to correlate our
downstream analysis of EEG and EOG features with mental
workload, not physical workload. We also examined the accu-
racy and response time to assess subjects’ behavioral perfor-
mance differences between the N levels, which are also used
as indicators to characterize changes in mental workload in
earlier works.”? Figure 5C compares the average N-back perfor-
mance assessed by the normalized performance subscale of
TLX (100 — TLX performance rating/100) and task accuracy.
Both metrics showed that performance decreased as the diffi-
culty level N increased. However, N-back performance cannot
be solely represented by a single metric such as stimuli response
accuracy due to different mental priorities adopted by each sub-
ject and the nature of the N-back task. For instance, subjects
may focus on correctly identifying the matching stimuli more
than correctly ignoring non-matching stimuli, or vice versa,
although they were not rewarded either way. Other subjects
may focus on responding to a stimulus quickly. Therefore, it is
typical to evaluate N-back performance through an array of per-
formance metrics. We evaluated the effects of N-back difficulty
on average detection rates, false-alarm rates, and reaction times
for correct responses, which are shown in Figure 5D. As ex-
pected, in addition to decreases in accuracy and detection
rate, false-alarm rate increased with N. In addition, subjects re-
acted faster to stimuli at lower difficulties on average, although
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there were no incentives or penalties based on reaction time.
This trend is consistent with the observations made in prior
work.”® Interestingly, although the total TLX for 1-back was not
significantly higher than that of 0-back (Figure 5B), behavioral
performance metrics indicated a difference (Figures 5C and
5D). Starting from 1-back, the total TLX ratings were significantly
higher as N increased (Figure 5B), and the behavioral perfor-
mance, especially the detection rate, is inversely correlated
with this. In contrast, behavioral performance in terms of task
accuracy, reaction time, and false-alarm rate had already pla-
teaued at 2-back and did not worsen significantly at 3-back
(Figures 5B, 5C, and 5D). These observations suggest that N rep-
resents the overall evoked mental workload that can be
described by not one but a combination of metrics, some of
which may become less or more relevant depending on the N
level in question and presumably the nature of the N-back
task. This result is consistent with the general understanding
that each of these metrics, including NASA-TLX, covers different
aspects of mental workload and its effects, as briefly explored in
the Introduction. However, these are not the focus of this
research and hence not fully studied. In summary, varying N
from 0 to 3 in our N-back task had successfully evoked differen-
tial levels of mental workload experienced by subjects, as char-
acterized by their NASA-TLX ratings, task accuracy, detection
rate, false-alarm rate, and reaction time.

Forehead EEG and EOG features relevant to mental
workload

We analyzed the EEG and EOG signals collected on six subjects
using our wireless forehead e-tattoo during the dual N-back
tasks. EEG band powers for delta (1-4 Hz), theta (4-8 Hz), alpha
(8-12 Hz), beta (12-30 Hz), and gamma (30-50 Hz) bands were
extracted. These measures were calculated from flattened
power spectra to account for the aperiodic EEG activities across
trials and subjects. In addition to EEG band powers, we also
examined their various combinations, such as the beta/(alpha +
theta) ratio, which is known as the engagement index.”* EOG
features we extracted include the number of eye blinks and sac-
cades, the average blink peak (ABP), the average blink duration
(ABD), and the average saccade duration (ASD). The signal-pro-
cessing and feature-extraction procedures are described in
detail in the Methods section and Figure S16. The correlation
matrix among EEG band powers and EOG features is offered
in Figure S17.

Figure 5E plots the averaged physiological features based on
the N level. When N increased, frontal delta- and theta-band
powers increased while alpha-, beta-, and gamma-band powers
decreased. These correlations between mental workload and
EEG band powers are in line with the following neuroscience
studies. An increase in theta-band power has been associated
with an increase in working memory load”®""">"® and was
most clearly observed in the frontal brain region. Increasing
mental workload has been associated with a decrease in alpha
power’”"® and an increase in frontal theta power.>"”® Impor-
tantly, increased memory load during visual information mainte-
nance has been associated with decreases in beta power,2°8"
which is highly relevant for visuospatially evoked mental work-
load in our study. The beta/(alpha + theta) ratio decreased as
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Figure 5. Dual N-back experiment paradigm and result analysis
(A) Diagrams of the experiment paradigm and dual N-back trial design.

(B) Average total NASA-TLX ratings across all trials/subjects. Perceived difficulty differs significantly between N = 1, 2, and 3, but not between N=0and 1 (p =
0.0503).

(C) Comparison of TLX-based self-assessed performance and N-back task accuracy.

(D) Average behavioral performances, including detection rate (blue), false-alarm rate (red), and reaction time (black), were observed across all trials and subjects
changing with the N level.

(E) Average EEG band powers and EOG features (ABP and ASD) across N levels, with statistically significant differences marked (p { 0.05). Error bars indicate 95%
bootstrap confidence intervals. Significance was tested using two-sided Mann-Whitney U tests. Ns, p > 0.05; *p (0.05; **p (0.01; **p (0.001.
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N increased, which indicates that states of disengagement and
low attention correlate with increased mental workload.”*%? In
our case, EOG features such as ABP and ASD did not show a
strong correlation with N, despite the relevance of eye activity
to mental workload suggested in literature.”® This result is
corroborated by some studies in which EOG measures of such
activity could not be used to distinguish between levels of mental
workload.®%:5%

Among all features, frontal theta (p (0.01) and alpha (p (0.05)
band powers were significantly different between low (0- and
1-back) and high (2- and 3-back) mental workload conditions.
Unlike NASA-TLX ratings, which increased gradually with N,
the physiological features did not show a consistent trend with
N, as each reflects different aspects of cognitive processes
and mental workload. However, there were similarities between
behavioral performance and physiological features. For
instance, delta, theta, and beta powers and ASD plateaued after
2-back, similar to false-alarm rate and reaction time. Addition-
ally, the engagement index, the beta/(alpha + theta) ratio,
showed a similar decrease as N increased. These findings
further support using physiological sensing alongside other met-
rics to develop an objective means for workload estimation.

Estimating mental workload based on forehead EEG and
EOG

To evaluate the viability of mental workload estimation using the
e-tattoo, we built a random forest model to predict the level of
mental workload experienced by subjects during N-back tasks.
We chose to use random forests for its robustness against over-
fitting and its non-parametric nature, which allows for easy appli-
cation across different subjects without explicit calibration. In
addition, the random forest framework has native support for
both classification and regression, which we utilize in our model
evaluation approach. For this evaluation, we used the known N
label as the ground truth for mental workload. Figure 6A shows
the structure of the entire dataset recorded during this study,
which was divided into either 16 epochs of 40 s for trial-level
regression or further divided into 16 x 20 epochs of 2 s for stim-
ulus-level classification (see Methods). Figure 6B shows the
confusion matrix of the stimulus-level classification summed
across all subjects. To verify that the mental workload classifier
achieved above-chance accuracy (1) for every subject and (2) for
every N level, we plotted the micro-averaged one-versus-rest
(OVR) receiver operating characteristic (ROC) curves of each
subject and compared them to that of a random unskilled classi-
fier (Figure 6C). We found that the model can successfully esti-
mate the mental workload for all N levels for all six subjects.
Finally, to validate mental workload estimation of a given subject
over time, we performed trial-level regression of N using a
random forest regression model. Figure 6D shows the 3-fold
cross-validated predictions of subject 6’s mental workload
throughout the 2.5-h experimental session, which showed a
Pearson’s correlation coefficient of 0.89 with the actual N levels
that the subject experienced. Together, these results show that
the EEG and EOG data collected by the e-tattoo system con-
tained sufficient information for a reliable estimation of the
mental workload evoked by the dual N-back task in each of
the six subjects.
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DISCUSSION

This study introduces a wireless forehead wearable e-tattoo that
integrates EEG and EOG sensors to assess mental workload.
The e-tattoo platform consists of disposable large-area e-tat-
toos with adhesive electrodes and reusable small-footprint
FPC, connected through ACF. The APC-GPU electrodes
achieved remarkably low contact impedance and strong adhe-
sion with the forehead skin, enabling long-term stable wear
and high-fidelity EEG/EOG measurements, even during dynamic
activities such as walking and running. This is a significant
advantage compared to state-of-the-art wearables with exoge-
nous form factors such as glasses and headbands or other de-
vices that include bulky components and cables. Compared to
commercial EEG systems that use gel electrodes, the wireless
e-tattoo system demonstrated comparable signal fidelity and
the ability to capture equivalent neural spectra from the fore-
head. We conducted dual N-back experiments on six subjects
wearing the wireless e-tattoo in a controlled laboratory setting
and obtained NASA-TLX-based self-assessment, task perfor-
mance metrics, and physiological features. A random forest-
based workload estimation model, trained on forehead EEG
and EOG features evaluated from minimally processed raw sig-
nals from the e-tattoo, indicates the potential of the e-tattoo as a
robust ambulatory cognitive-state-monitoring platform.

While many previous studies have explored individual as-
pects, such as electrode materials or manufacturing techniques,
our key innovation lies in the successful decoding of mental
workload using a wireless, low-power, low-noise, and ultra-thin
EEG/EOG e-tattoo device. It addresses the unique challenges
of monitoring forehead EEG and EOG, where wearability, non-
obstructiveness, and signal stability are critical to assessing
mental workload in the real world. By combining material innova-
tion, cost-effective fabrication, custom circuit design, and reus-
able FPC configuration, our work offers an accessible and user-
friendly solution that is distinct from both conventional rigid/
semi-rigid EEG systems as well as reported peer e-tattoos for
wearable neurotechnology.

Despite its promising capabilities, the current forehead
e-tattoo system can be further improved. Long-term wearability
of the e-tattoo depends on both stable skin contact and effective
sweat management. Although our results show that sweating re-
duces the contact impedance by enhancing the ionic conductiv-
ity, excessive sweat could still compromise adhesion and reduce
comfort. Studies have shown that molecules containing catechol
groups, such as tannic acid®* and polydopamine,®® can form
stable bonds with the skin even under sweating conditions
through multiple interactions, including hydrogen bonding, n-n
stacking, and covalent bonding. Furthermore, more liquid-
permeable®® or sweat-wicking®” substrates can be employed
to enhance long-term wearability.

In addition to limited breathability, APC-GPU electrodes are
not compatible with hair, restricting the e-tattoo to the hairless
area of the forehead. Although the prefrontal regions provide
valuable information about cognitive engagement and attention,
other brain regions, such as the frontocentral, temporal, and oc-
cipital regions, also contain information relevant to monitoring
various neural activities related to emotional processing,
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Figure 6. Mental workload estimation

(A) Overall N-back dataset structure and approach for mental workload estimation. The dataset is split into either trials for trial-level regression or further into
individual stimuli for stimulus-level classification. Extracted EEG and EOG features are listed. All evaluations are based on a 3-fold cross-validation.

(B) Confusion matrix for all subjects from the four-class stimulus-level classification of N.

(C) Micro-averaged one-versus-rest (OVR) receiver operating characteristic (ROC) curves of each subject compared to that of a random unskilled classifier,

defined as the chance level.

(D) Predicted mental workload over time (trials) by the random forest regression model for the best-performing subject (subject 6).

contextual attention, and working memory beyond the frontal re-
gions. The absence of EEG recordings from these locations
potentially limits the comprehensive assessment of mental work-
load in complex operational environments. Future research
could benefit from integrating hair-compatible ultra-thin elec-
trodes or e-tattoos*®?®9 to extend the coverage area without
impeding other headgear such as helmets or VR headsets.

In addition, in this study, we validated the ability of the device
to assess mental workload in laboratory settings. Future work
needs to be done to explore the feasibility of using the forehead
e-tattoo platform for online estimation of mental workload during
real-world human-machine interaction tasks that require optimal
performance. One area needing improvement is to reduce the
error of mental workload classification as well as address the
potential mismatch between the experimental task used (dual
N-back) and the realistic application. Although the presented

system achieved an above-chance four-class classification in
the N-back task, the performance of the predictive model could
be potentially improved by additional feature engineering,
increased training dataset size through a larger number of sub-
jects or a data-generative model, and the use of less-explainable
but higher-performing models (e.g., deep learning). While feature
fusion between different modalities could improve accuracy, our
study used EEG and EOG features separately. The presented
system could also be expanded and validated to monitor other
mental states and disorders, such as vigilance, stress, and sleep
disorders. The multimodal approach, which integrates both EEG
and EOG, could provide more detailed insight into the neuro-
physiological correlates of these conditions, opening avenues
for early detection, warning, and personalized intervention.
Although the proposed e-tattoo system is thin and helmet or
VR headset compatible, further miniaturization and system
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integration would improve its practicality in real-world long-term
monitoring and data collection, overcoming the current limita-
tions of traditional laboratory-based studies and equipment.
This could in turn pave the way for larger-scale studies and lon-
gitudinal investigations, ultimately advancing human-machine
interfaces based on EEG and EOG in everyday life.

METHODS

Materials and fabrication of the wireless forehead
e-tattoo

The wireless forehead e-tattoo consists of two components: a
soft sensor patch and a flexible DAQ module. The tattoo-like
soft sensor patches were designed to fit each study subject’s
facial proportions. The soft sensor patch comprises a carrying
top 3M Tegaderm layer (3M, USA), an electrode layer, and an
insulating bottom Tegaderm layer (Figure S2). The stretchable
filamentary-serpentine-shaped electrode layer made of GPU
(Mineral Seal Corporation, China) was fabricated using our
established cut-and-paste method. According to a previous
report,”® APC was made by adding supramolecular solvents
(citric acid and B-cyclodextrin) and elastic polymer networks
(chemically crosslinked PVA networks with glutaraldehyde) to
the aqueous solution of PEDOT:PSS (Heraeus, USA). The
detailed process of APC solution preparation is illustrated in
Figure S18. A homogeneous mixture of APC was obtained by
DAC 330-100SE (FlackTek Speed Mixer, USA). APC solution
was blade coated on GPU at the active sensing locations and
evaporated water in an oven at 70° C for 2 h. Then, the electrode
layer was transferred to the carrying Tegaderm layer and encap-
sulated by the bottom Tegaderm layer while only exposing the
APC-coated sensing locations and connecting pads to the
DAQ circuits. The detailed fabrication process of the sensor
patch is illustrated in Figure S19.

The FPC is divided into several islands connected by serpen-
tine traces to improve stretchability and also for isolation be-
tween power, analog, and digital signals. The FPC is powered
by a 150-mAh LiPo battery modified with an FPC connector
(5034800400, Molex, USA), into which the FPC is directly in-
serted. For power management, we used low-noise, low-
dropout regulators TPS7A2025 and LM27761 (both from Texas
Instruments, USA) to create 2.5- and 5-V rails. The analog front
end consists of the ADS1299 24-bit ADC (Texas Instruments,
USA), which is connected via the SPI to the nRF52832 BLE sys-
tem on a chip (Nordic Semiconductor, Norway). The nRF52832
was programmed with a low-power design firmware with the
SWD interface. All the components were mounted on a 0.1-
mm-thick double-layer FPC with electroless nickel immersion
gold treatment for exposed copper. The thickness of the FPC
was brought to 0.3 mm at select areas by a polyimide stiffener
(for the battery input terminal) or an FR-4 stiffener (for under
the large ICs). All chip components were hand soldered on the
FPC (manufactured by PCBWay, China). The circuit components
(Figure S20) include the ADS1299 24-bit ADC (Texas Instru-
ments, USA) for signal amplification and conversion and
nRF52832 BLE SoC (Nordic Semiconductor, Norway) for wire-
less transmission of data. The circuit features a low-noise design
with the use of signal isolation, shielding, and low-noise compo-
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nents. All components were encapsulated in silicone compound
(Silbione, Elkem, Norway) for better strain isolation and electrical
shielding. An anisotropic conductive film (9703, 3M, USA) was
used to bind and electrically connect the electrode layer to the
channel pads on the FPC. A skin-safe medical adhesive was
applied under the silicon casing to fix the circuits on the patch.

Characterization of APC-GPU electrodes

The SEM images of APC-GPU electrodes were obtained by
Quanta 650 environmental scanning electron microscope (FEI
Company, USA). The surface profile images and roughness
were obtained using the VK-X1100 optical profilometer (Key-
ence, Japan) and the Multi File Analyzer application (Keyence,
Japan). The stress-strain data and adhesion force of electrode
films were measured by RSA-G2 solids analyzer (TA Instru-
ments, USA). The sheet resistance of the films (n = 5 per film
type) was measured by a DM3065 digital multimeter (RIGOL,
China). Lastly, the skin-electrode contact impedance of the elec-
trodes was measured with Autolab PGSTAT204 electrochemical
workstation (Metrohm, Switzerland). Solid gel, GPU, and APC-
GPU electrodes were applied to the forehead of study subjects
(n = 4), and their contact impedance data were recorded every
10 min for the first hour after application and every 30 min
afterward.

Characterization of DAQ module

Current-draw measurements were made with the Power Profiler
Kit Il (Nordic Semiconductor, Norway) on source mode. The RLD
performance in different configurations was compared in both
simulation and actual measurements with the e-tattoo. Simula-
tions were conducted on QSPICE (Qorvo, USA) using the test cir-
cuit shown in Figure S5. To measure packet loss, we made re-
cordings at various device-phone distances of below 1 or 10 m
with no physical obstacles and calculated the packet loss by
counting missing increments in the packet ID included in each
data packet.

Study subjects and experiment setups

Six study subjects (four males and two females, age 20-33 years)
were recruited. All subjects were required to perform two simple
tests: eye open-closed and dual N-back. All experimental proto-
cols were approved by the IRB of the University of Texas at Aus-
tin (STUDY00002937-MODO02). All study subjects were given a
comprehensive set of instructions regarding the experiment pro-
tocol and provided written consent to agree on their voluntary
participation in the study. Proper skin preparation was per-
formed on the participants’ mastoids and forehead area with Nu-
prep Skin Prep Gel (Weaver and Company, USA) and alcohol
wipes before applying the wireless forehead e-tattoos and acti-
CAP active electrode with Brain Vision LiveAmp 32-ch amplifier
(Brain Products, Germany). The biosignals were recorded simul-
taneously from both systems at AF7, Fp1, Fp2, and AF8 with a
sampling rate of 250 Hz. In addition, hEOG and VEOG were
collected from the e-tattoo. Sampled data from two systems
and task event markers were transmitted to a computer via
BLE and synchronized by the lab streaming layer (LSL) library.®®
The forehead e-tattoo attachment procedure begins with the
EEG electrodes on the forehead, followed by the EOG
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electrodes. Once these electrodes are secured, the reference
and ground electrodes are placed on the mastoid bone behind
the ears. Finally, the battery is attached and positioned in the
designated pocket above the FPC module.

EEG/EOG pre-processing and feature extraction

All physiological data collected for this study were post-pro-
cessed offline for evaluation and machine learning. First, EEG
signals were bandpass filtered from 0.1 to 50 Hz. The following
bands were defined to extract band power features: delta 1-
4 Hz, theta 4-8 Hz, alpha 8-13 Hz, beta 13-30 Hz, and gamma
30-50 Hz. Ratios of band powers were also of particular interest
in our study due to their popular use in related studies. Specif-
ically, these ratios were evaluated: alpha/theta, which has
been associated with mental workload®’; theta/beta and (alpha +
theta)/(alpha + beta), which have been associated with fa-
tigue®'°; and beta/(alpha + theta), also known as the engage-
ment index, which has been associated with task workload.®®
However, recent work has suggested that raw band powers
and their ratios may not accurately represent oscillatory activity
modulation information that is intended to be captured by the
use of such measures.” In light of this, we incorporated a
method of neural spectra parameterization proposed by Donog-
hue et al.,”® which extracts periodic and aperiodic components
from a given EEG power spectrum. The power spectrum with
the aperiodic component removed, also referred to as a flattened
spectrum, was used to calculate band power and band-power
ratio measures in this study to ensure an accurate evaluation
of oscillatory activity modulation.

EOG signals were bandpass filtered from 0.02 to 50 Hz. EOG
features were extracted by an offline implementation of the algo-
rithm proposed by Toivanen et al.,”® which takes horizontal and
vertical EOG inputs to estimate blink and saccade timings and
durations based on an expectation maximization algorithm.
From this output, the number of blinks, saccades, their durations
and the ABP amplitude were collected as features. The model
also outputs the probability of an extracted event indeed being
an event of that type (possible types are blink, saccade, or fixa-
tion), the sum of which was also used as a feature to represent
blink/saccade frequency weighted by the model’s confidence.

Random forest model training and evaluation for mental
workload prediction

Each channel-run-subject block containing approximately
20-25 min of e-tattoo data (with variable duration due to
NASA-TLX administration) was divided into either 16 epochs of
40 s for trial-level regression or further divided into 16x 20
epochs of 1.8 s for stimulus-level classification (Figure 6A). The
latter approach provides a more systematic evaluation of the
predictive power of the extracted EEG features through a four-
class classification of subject data collected during thousands
of individual N-back stimulus presentations. The former
approach provides a more reliable and continuous estimate of
mental workload by using longer data segments, which allowed
for a meaningful inclusion of EOG features, as opposed to the
stimulus-level approach where the majority of the 1.8-s data seg-
ments were lacking blinks or saccades, resulting in a sparse
feature matrix. Both approaches were evaluated with subject-

¢? CellPress

specific 3-fold cross-validation, in which the model was always
predicting the task difficulty N only based on unseen training
data. To further reduce the risk of overfitting, the number of trees
in the random forest classifier was increased to 500, which de-
creases the generalization error.

The stimulus-level classification was evaluated by an all-sub-
ject confusion matrix (Figure 6B) and subject-specific ROC
curves (Figure 6C). To best capture the model’s performance
in predicting each class, we plotted the micro-averaged OvR
ROC curves. This approach reflects the model’s performance
in predicting in each of the four N levels while accounting for
class imbalance arising from rejected epochs due to significant
motion. In this approach, each ROC curve in Figure 6C is a
weighted average of four ROC curves for that subject (N =
Ovs.N=1or20r3,N=1vs.N=0or2or3, and so on). To clarify,
the OvVR paradigm is used only for the purpose of visualizing the
two-dimensional ROC curves; the actual classification results
presented in Figure 6B are the results of a true four-class classi-
fication without an OVR constraint.
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