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Soft adhesives that can attach to three-dimensional curvilinear surfaces historically 

have gained a myriad of attention from both scientific and technological perspectives. The 

rapid advances of bio-integrated devices in recent decades further led to a wealth of 

research in strategically designing soft adhesives with not only strong bonding capability 

but also easy-to-detach and reusable merits. The robust conformal contact, nondestructive 

debonding, and non-degrading repeatability together rule out the employment of chemical-

based bonding agent, giving rise to a flurry of study on adhesives solely enabled by van 

der Waals (vdW) forces and/or suction effect, a.k.a. dry adhesives. In this dissertation, I 

first established an analytical framework for predicting the contact status of a thin elastic 

membrane conforming to a soft and rough substrate assuming vdW membrane/substrate 

interaction. Utilizing energy minimization method, I successfully predicted the fully 

conformed, partially conformed and non-conformed contact results, as validated by 

experimental observations. It was found that vdW adhesion alone is relatively weak to 

secure a conformal contact with rough substrates, especially when the system is subjected 

to external compressive strain. To enhance the interfacial adhesion, polymer surface 

engineered with concave domes, termed craters, recently emerges as a new type of dry 

adhesive. To quantitatively reveal adhesion mechanism in a cratered surface, I established 

a nonlinear elasticity framework for modeling the suction generation through an idealized 

loading-unloading process. Material properties, crater shape, air vs. liquid ambient, surface 
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patterns and preloads are systematically investigated using finite element simulation and/or 

experimental approaches. The optimal topographical feathers of cratered surfaces with 

highest suction effect have been discovered. This dissertation offers an outlook for future 

research directions on crater-enabled dry adhesives. 
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Chapter 1 Introduction 

Conformable electronics that can adapt to curvilinear surfaces represent the next-

generation of dynamically malleable microelectronics. Recent advancement of material 

design, structural optimization, and fabrication techniques have significantly boosted its 

prosperity in various applications. In this chapter, we offer a mini state-of-the-art review 

of conformable electronics, followed by an emerging assembly strategy of utilizing soft 

dry adhesives. Free of chemical bonding agent, dry adhesives are capable of providing 

strong yet reversible adhesive force, allowing for remarkable conformability and 

biocompatibility of the conformable electronics.  
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 CONFORMABLE ELECTRONICS  

Conventional electronics are manufactured on two-dimensional (2D) planar and 

rigid substrates such as silicon wafers, which are intrinsically incompatible with three-

dimensional (3D) curvilinear surfaces. This conflict becomes more conspicuous when the 

surface is dynamically deformable, e.g., the surface of living organisms. Driven by the 

enormous demand for innovative characteristics and integrated multifunctionalities, 

conformable electronics that can accommodate 3D complex surfaces have been garnering 

substantial interests in recent decades. A variety of potential applications for sensory 

systems such as morphing aircraft monitoring, healthcare diagnostics, and electronics skin 

(E-skin) have already been demonstrated. For example, utilizing aerosol jet printing, 

Paulsen et al directly printed electronic circuits onto the 3D rigid surface with sharp edges 

[1]. Such 3D conformal sensors and antennas, known as stereo circuits, can be employed 

on aircraft wings or fuselages for defect detection, which used to be unmeasurable for lack 

of curvilinear sensors or circuitry [2]. The epidermal electronics [3-6] and smart implants 

[7-9] recently have emerged as promising medical devices for both vital signal monitoring 

and therapeutic purposes. Emulating the perceptions of human skin, E-skin with tactile 

sensors wrapped on robotics fingers is capable of identifying pressure, temperature, 

moisture and so on [10-12]. When equipped on prosthetic hands, such E-skin can receive 

external stimuli during daily activities while simultaneously replicating realistic 

appearance and physical properties to help hand amputees integrate into social contexts 

naturally [13, 14]. Aside from basic sensing function, unconventional materials such as 

InGaZnO [15], graphene [6, 16], quantum dots [17], liquid metal [18], piezoelectric 
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materials [19-21] and hydrogel [22-24], are also broadly exploited for multifunctional 

conformable electronics, giving rise to applications in curvilinear electro-optics [25], 

conformal displays [26, 27], and energy harvesting [28, 29] as shown in Figure 1.1. 

 

 

 

 

 

Figure 1.1  Fabrications and applications of 3D conformal electronics on deformable, 

curved, and time-dynamic surfaces[30].  
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A crucial reason for the flourish of conformable electronics lies in the rational 

structural design. The overarching design principle dictates a relatively low structural 

stiffness, i.e., the strain energy stored in the deformed electronics should be minimized 

from the energy point of view. If a deformable corrugated surface is encountered, it also 

requires that the electronics can be easily stretched, compressed, or twisted without 

detrimental cracks. Towards these two goals, researchers have come up with three 

strategies by patterning blanket membrane into in-plane meshed structure [31, 32], 

serpentine ribbons [33, 34], and out-of-plane buckled interconnects [32, 35], as presented 

in Figure 1.2.  

 
Figure 1.2  Structural design of conformable electronics. (a) Meshed structure [31]; (b) 

Serpentine structure[33]; (c) Buckled structure[32]; (d) Buckled graphene mesh with 

serpentine interconnects [5]  
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The patterned thin membrane reduces the overall structural stiffness, allowing the 

electronics to follow the morphology of the curvilinear surface with high bendability. The 

stretchability of serpentine ribbons has been systematically analyzed by Yang et al [36] 

and Zhang et al [37, 38] who claimed that the optimized structure can be stretched up to 

several times of its original length before rupture. In contrast to the tiny rupture strain (~1%) 

of conventional inorganic semiconductor (e.g., silicon), such remarkable stretchability 

enables the electronics to firmly attach the rough substrate when subjected to stretching. 

Actually, these three designs are not mutually exclusive. Instead, hybrid structures have 

already been widely implemented into smart devices with multifunctionalities [5, 14, 39, 

40]. For instance, Figure 1.2(d) is a stretchable medical device with bulked mesh–

serpentine graphene electrodes for electrophysiology and therapy of skeletal muscles [5]. 

 

 DRY ADHESIVES 

In addition to the high bendability and stretchability of the electronics, the 

interfacial adhesion also plays a significant role in the conformal contact between the 

electronics and rough surfaces. The interfacial adhesion should be strong enough such that 

it can provide sufficient driving force for deforming the electronics.  

Currently, there is a broad interest in developing imperceptible electronic tattoo (E-

tattoo) which are ultra-thin electronics conforming to human skin enabled by pure van der 

Waals (vdW) adhesion (Figure 1.3 (a)). For example, Ameri et al reported a graphene-

based electronic tattoo with total thickness ~463 nm [6]. In the same vein, Wang et al 
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fabricated a Au mesh E-tattoo with total thickness ~1 m [41]. Due to the thin nature, those 

E-tattoos can firmly stay with the human skin under various body movements while 

unnoticeably providing high-fidelity sensings, such as electrocardiogram (ECG), skin 

temperature, and skin hydration. However, vdW adhesion only suffices for sufficiently thin 

structure. For instance, Ameri et al also observed many delaminations in experiments when 

the thickness of E-tattoo reaches ~700 nm [6]. Therefore, theoretical design guidelines of 

such ultra-thin imperceptible electronics, e.g., the critical material stiffness and thickness, 

are indeed of great significance. 

 

 

 

Figure 1.3  Adhesives that used in conformable electronics. (a) No adhesives: (i)[6]; 

(ii)[41]; (b) Pressure-sensitive adhesives (3M Tegaderm) used for multi-layered electronic 

patch [42] (c) Micro-pillar-enabled adhesives [43]; (d) Crater-enabled adhesives [44]. 
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When stiff materials are used or multi-layered electronic patches are fabricated 

(Figure 1.3 (b)), additional adhesive force may be incorporated to secure the conformal 

contact. An effective candidate for providing strong bonding is so-called pressure-sensitive 

adhesives (PSA). By employing a viscoelastic bonding agent, PSA can instantaneously 

form a bond to the rough adherend when pressure is applied [45-48]. As an example, sticky 

yet highly stretchable, 3M Tegaderm has been extensively used as the supporting substrate 

for conformable electronics patches [49-52].  

Despite the strong bond, PSAs are facing some shortcomings such as degradable 

tackiness over time, susceptible to impurities, low repositionability, epiderm irritation  

and skin damage upon peeling [39, 53-55]. To overcome these drawbacks, a wealth of 

effort has been devoted to exploring alternative chemical-free adhesives, a.k.a dry 

adhesives, in the last two decades, among which gecko-inspired micro-pillars (Figure 1.3 

(c)) [43, 56-64] and octopus-inspired craters (Figure 1.3 (d)) [44, 65-71] prevailed. 

Intrinsically distinct from the chemical-based bonding agent, micro-pillar-enabled and 

crater-enabled adhesives generate adhesive force via vdW interaction and suction effect, 

respectively, allowing for superior repeatability to PSAs. By incorporating engineering 

technologies, dry adhesive can be readily transformed into advanced conformable 

electronics with integrated functionalities, such as ECG [43, 72] (Figure 1.3 (c)) and 

temperature [44] (Figure 1.3 (d)) sensing. 

To achieve high-strength dry adhesives, extensive studies have been carried out to 

optimize the structural feather of the micro-pillars [73-81]. Using analytical, numerical, 

and experimental approaches, different shapes of pillar tip (e.g., round, flat, spatula, 
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mushroom, and etc.) aspect ratio, material modulus, and other parameters have been 

systematically investigated. In contrast, even though some have demonstrated crater-

enabled dry adhesives exhibit remarkable attachment performance, the suction effect 

produced by the craters, which may be chiefly responsible for the improved adhesion, has 

not been properly modeled, not to mention the comprehensive mechanistic understanding 

of the optimization of a cratered surface.  

 OBJECTIVES 

There are two objectives for this dissertation. The first is to investigate the contact 

between the thin membrane electronics and a rough/soft substrate under pure vdW 

adhesion. After a brief introductory motivation in Chapter 2, we develop an energy 

minimization framework for quantifying the conformability of a thin membrane laminating 

onto a deformable substrate with roughness in Chapter 3. Critical parameters such as 

membrane stiffness, thickness, and interfacial adhesion strength have been revealed for a 

fully conformed scenario to take place. We also elucidate how the external 

stretching/compression would alter the conformability in Chapter 4. This study offers a 

simple analytical guideline for the design and optimization of imperceptibly thin 

conformable electronics.  

The second is to look into the crater-enabled dry adhesives with a particular focus 

on modeling of the suction effect. In Chapter 5, we offer the motivation for the study of 

crater-enabled dry adhesives, followed by nonlinear elasticity framework for quantifying 

the suction force of isolated crater established in Chapter 6. Based on this framework, we 
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elaborate the effect of surface tension and the aquatic environment on the suction forces of 

isolated craters in Chapter 7 and Chapter 8, respectively. We also extend the study from 

isolated craters to crater arrays in Chapter 9 where crater area fraction is considered.  
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Chapter 2 Motivations for Conformability Study of a Thin Membrane1 

Conformability describes the degree to which a thin membrane accommodates a 

corrugated surface. High conformability refers to intimate contact between the thin 

membrane and the target surface. High conformability can enhance effective membrane-

to-substrate adhesion strength and facilitate the signal/heat/mass transfer across the 

interface, which is of great importance to soft electronics laminated on rough bio-tissues. 

This chapter will discuss the motivation for the conformability study.  

  

                                                 
1L. Wang and N. Lu, Conformability of a thin elastic membrane laminated on a soft substrate with slightly 

wavy surface. Journal of Applied Mechanics. 2016 Jan 27; 83(4): 041007. (L. Wang conducted the theoretical 

analysis and wrote the paper)  
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 CONFORMABILITY 

Conformability can be understood as a measure to how large is the true contact area 

in respect to the nominal contact area between a thin membrane and the rough substrate. 

When laminating a thin membrane on a substrate with surface roughness, three scenarios 

can happen: non-conformed, i.e., the membrane remains flat if gravity is not concerned 

(Figure 2.1(a)); partially conformed i.e., some part of the membrane forms intimate contact 

with the substrate surface while the other part of the membrane is suspended (Figure 2.1(b)) 

and fully conformed, i.e., the membrane completely follows the surface morphology of the 

substrate without any interfacial gap (Figure 2.1(c)). For example, Figure 2.1 (d) shows the 

angled and cross-sectional scanning electron microscopy (SEM) images of the contact 

between a silicone replica with different thicknesses (blue) and the surface of a skin (grey), 

which apparently indicates that a thinner membrane usually exhibits much more conformal 

attachment onto the curvilinear surfaces [50]. 
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Figure 2.1  (a)-(c) Three possible conformability statuses when a thin membrane is 

laminated on a corrugated substrate. (d) Angled and cross-sectional SEM images showing 

the degree of conformal contact between a silicone replica of the surface of the skin and 

various thicknesses of elastomer membrane substrates [50]  
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 SIGNIFICANCE OF CONFORMABILITY 

Conformability governs the effective adhesion strength between a thin membrane 

and a rough surface. Higher effective adhesion strength can be achieved by improving 

membrane-to-substrate conformability, which is chemical-free adhesion is formed due to 

intermolecular forces known as vdW interactions. These interactions form spontaneously 

between different molecules, but only if they are close enough to each other i.e., the 

distance between the molecules has to be in nanometer scale. For example, monolayer 

graphene to silicon adhesion strength is measured to be higher than few-layer graphene 

[82], which is attributed to better conformability between monolayer graphene and the 

silicon substrate [83]. As another example, the feet of geckos and beetles are covered by 

thin fibers ending with leaf-like plates which can be easily bent to well conform to a rough 

contacting surface, which considerably enhances the adhesion strength [84, 85]. Moreover, 

conformability-based metrology has been applied to estimate the adhesion strength 

between few-layer graphene and a pre-corrugated polydimethylsiloxane (PDMS) [86].  

In addition to enhanced adhesion strength, conformability also plays a significant 

role in the functionality of bio-integrated electronics [87], which have sprung up in recent 

years due to unlimited potentials in disease monitoring, diagnosis, treatment as well as 

human-machine interfaces. Contact impedances are minimized between the bio-tissue and 

the thin film electrode, if the true contact area is as large as possible, giving rise to superior 

signal-to-noise ratio in both implantable [8, 9, 88] and epidermal [3, 50, 89, 90] 

electrophysiological (EP) sensors, hydration sensors [91], and temperature detectors [92]. 

As another example, wearable heaters for thermoregulation and thermal treatment [93, 94] 
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require uniform and efficient heat transfer at the heater-tissue interface, which fully relies 

on intimate heater-tissue contact. Moreover, effective device-tissue interface mass 

exchange for sweat monitoring [95, 96] and on-demand drug delivery [97] would also 

benefit from conformable device-tissue contact. Therefore, a comprehensive mechanistic 

understanding of the conformability of thin device sheets on soft bio-tissues can offer 

important insights into the design of the mechanical properties of the bio-integrated 

devices. 

 THIN MEMBRANE CONFORMING TO A RIGID AND ROUGH SUBSTRATE 

The conformability of a thin membrane on a rigid substrate with a corrugated 

surface has been well studied. For example, in the case of graphene sheets laminated on a 

silicon substrate, Gao et al developed a theoretical model based on van der Waals 

interaction to reveal how the graphene thickness and the surface roughness of silicon affect 

the conformability [83]. Wagner et al implemented the method of variation of total energy 

to show that the substrate profile plays a crucial role in determining the transition from 

partial to full conformability [98]. A snap-through phenomenon has been reported  

Furthermore, using energy minimization method, Carbone et al[99] and Qiao et al [100] 

established a complete theory to predict the FC, PC and NC modes of a thin membrane on 

a rigid and sinusoidally corrugated substrate. In fact, conformal contact and effective 

adhesion strength between a thin elastic plate and a rigid and randomly rough (e.g., self-

affine fractal) substrate have been studied by Carbone et al using contact mechanics [101].  
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 THIN MEMBRANE CONFORMING TO A SOFT AND ROUGH SUBSTRATE 

When the substrate is a soft solid with surface roughness, it can deform due to film-

substrate interaction and would also try to conform to the film. Conformability of a thin 

membrane on rough, deformable substrate still remains veiled so far due to the unclear 

interaction between the membrane and the soft substrate, especially for partially conformed 

cases. As a result, the elastic energy stored in the deformed substrate is difficult to obtain 

unless the corrugated substrate surface deforms from one sinusoidal shape to another 

sinusoidal shape with the same wavelength but different amplitude, which requires fully 

conformed contact between membrane and substrate. In this case, analytical solutions of 

the surface traction and displacement of the substrate are available [102, 103]. Based on 

those analytical solutions, substrate elastic energy can be computed as the work done to 

the substrate and hence can be used to predict whether epidermal electronics can fully 

conform to rough skin surfaces using the energy minimization method [104, 105]. For a 

general partially conformed scenario, theoretical modeling of conformability is still 

unavailable. 

 

 

Figure 2.2  Epidermal electronics on human skin demonstrating excellent conformability 

during (a) stretch (b) compression, and (c) torsion[89].  
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In addition, equilibrium analysis between membrane and a relaxed substrate is not 

sufficient for bio-integrated electronics because bio-tissues are dynamic in reality. The 

degree of conformability can be easily changed by the contraction and expansion of the 

bio-tissues (Figure 2.2). Therefore, being able to understand and to further control the 

quality of contact between the thin film device and the dynamic bio-tissue is of practical 

significance. Actually, the conformability of a thin elastic membrane laminated on a soft 

corrugated substrate subjected to stretching/compression has been analyzed using the FC 

theory [105, 106]. But such FC theory failed to draw convincing conclusions for the 

following reasons. First, it dismisses the possibility of the PC mode and the minimization 

of the total energy is implemented only within the FC and NC modes. As a result, the 

energy minimum found by the FC theory may not be the global minimum and the predicted 

critical conditions for FC may not be enough to reach actual FC. Second, in [105, 106] the 

substrate energy is miscalculated by adopting a positive sign in front of the applied strain 

𝜖0 (𝜖0 > 0 for tension and 𝜖0 < 0 for compression), which should have been a negative 

sign according to [103, 107]. Herein, we develop a new theory to account for both partially 

conformed scenario and external stretching/compression, as will be elaborated in the next 

chapter. 
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Chapter 3 Conformability of a Thin Elastic Membrane on Soft and 

Rough Substrate2 

The vdW adhesion plays a significant role in enhancing the conformability of the 

imperceptible membrane-like E-tattoos. In this chapter, we will discuss the conformability 

of a thin membrane conforming to a soft and rough substrate under pure vdW adhesion. To 

reveal governing parameters in this problem and to predict conformability, energy 

minimization is implemented after successfully finding the substrate elastic energy under 

partially conformable contact. Four dimensionless governing parameters involving the 

substrate roughness, membrane thickness, membrane and substrate elastic moduli, and 

membrane-to-substrate intrinsic work of adhesion have been identified to analytically 

predict the conformability status and the area of contact. The analytical prediction has 

found excellent agreement with experimental observations.  

  

                                                 
2L. Wang and N. Lu, Conformability of a thin elastic membrane laminated on a soft substrate with slightly 

wavy surface. Journal of Applied Mechanics. 2016 Jan 27; 83(4): 041007. (L. Wang conducted the theoretical 

analysis and wrote the paper)  
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 THEORETICAL MODEL 

A 2D schematic for the partially conformed configuration is given in Figure 3.1. 

For simplicity, the membrane is modeled as a uniform linear elastic membrane with plane 

strain modulus 𝐸̅𝑚 and thickness t. The soft substrate is assumed to be a pre-corrugated 

linear elastic half space with plane strain modulus 𝐸̅𝑠. Within the Cartesian coordinate 

system xy as defined in Figure 3.1, the surface profile of the undeformed substrate is simply 

characterized by a sinusoidal equation  

 𝑤0(𝑥) = ℎ0 (1 + 𝑐𝑜𝑠
2𝜋𝑥

𝜆
) ( 3.1) 

where ℎ0 and 𝜆 denote the semi-amplitude and wavelength of the undeformed substrate 

surface, respectively.  

When an elastic membrane is laminated on the soft substrate and starts to conform 

to the substrate due to interface adhesion, a contact zone with horizontal projection denoted 

as 𝑥𝑐  is labeled in Figure 3.1. Therefore 𝑥𝑐 = 𝜆/2 represents FC scenario, 0 < 𝑥𝑐 <

𝜆/2 PC scenario, and 𝑥𝑐 = 0 NC scenario. Due to the membrane-substrate interaction, 

the soft substrate deforms. Here, we simply postulate that the surface profile of the 

substrate within the contact zone deforms from the initial sinusoidal shape to a new 

sinusoidal shape with the same wavelength but a different amplitude, which can be 

captured by  

 𝑤1(𝑥) = ℎ1 (1 + 𝑐𝑜𝑠
2𝜋𝑥

𝜆
) , 0 ≤ 𝑥 ≤ 𝑥𝑐 (3.2) 

where ℎ1  denotes the deformed semi-amplitude while the wavelength 𝜆  remains the 

same as the initial profile. This assumption holds all the way till 𝑥𝑐 = 𝜆/2, which means 
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in the FC mode, the overall substrate surface deforms from one sinusoidal profile to another 

with the same wavelength but different amplitude. 

 

 

 

 

Figure 3.1  Schematic of partially conformed scenario with geometric parameters and 

characteristic points labeled: the initial amplitude and wavelength of the substrate is 2h0 

and , respectively; after membrane lamination, the substrate surface within the contact 

zone deforms to a new sinusoidal shape with amplitude 2h1 (not labeled in the figure) and 

unchanged wavelength; xc is the horizontal projection of the contact zone; Point B denotes 

the delaminating point. 
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The profile of a partially conformed membrane, 𝑤2(𝑥) as depicted in Figure 3.1, 

is sectional: from A to B, i.e., when 0 ≤ 𝑥 ≤ 𝑥𝑐 , the membrane fully conforms to the 

substrate and thus 𝑤2(𝑥)  = 𝑤1(𝑥) ; from B to C, i.e., when 𝑥𝑐 ≤ 𝑥 ≤ 𝜆/2 , the 

membrane is suspended and 𝑤2(𝑥) is taking a modified hyperbolic shape which will 

decay to a parabolic shape when normal strain in the membrane is small, i.e., a pure bending 

condition is assumed [98, 100]. Therefore, 𝑤2(𝑥) can be expressed as 

 𝑤2(𝑥) =

{
 

 ℎ1 (1 + 𝑐𝑜𝑠
2𝜋𝑥

𝜆
) ,           0 ≤ 𝑥 ≤ 𝑥𝑐

𝑚(𝑥 −
𝜆

2
)
2

+ 𝑛 ,           𝑥𝑐 ≤ 𝑥 ≤ 𝜆/2

 (3.3) 

 

where m and n are two coefficients to be determined by the continuity condition. Applying 

the continuity condition at Point B where both the profile and the slope of the membrane 

should be continuous, i.e., 𝑤2(𝑥𝑐) =  𝑤1(𝑥𝑐) and 𝑤2
′(𝑥𝑐) =  𝑤1

′(𝑥𝑐), we can solve the 

coefficients a and b to obtain the profile of the membrane from B to C as 

 

 

𝑤2(𝑥) = ℎ1 [
𝜋

𝜆(
𝜆
2 − 𝑥𝑐)

𝑠𝑖𝑛 (
2𝜋𝑥𝑐
𝜆
) [(𝑥 −

𝜆

2
)
2

− (𝑥𝑐 −
𝜆

2
)
2

] + 1

+ 𝑐𝑜𝑠 (
2𝜋𝑥𝑐
𝜆
)] ,  𝑥𝑐 ≤ 𝑥 ≤ 𝜆/2 

(3.4) 

To solve for 𝑥𝑐 and ℎ1 in Eq. (4), energy minimization method is adopted. The total 

energy of the system 𝑈 consists of the following four energies: 
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 𝑈 = 𝑈𝑏 +𝑈𝑚 + 𝑈𝑎𝑑 + 𝑈𝑠 
(3.5) 

where 𝑈𝑏  is the bending energy of the membrane, 𝑈𝑚  is the membrane energy 

associated with tensile strain in the membrane, 𝑈𝑎𝑑  is the interface adhesion energy 

between the membrane and the substrate, and 𝑈𝑠 is the elastic energy stored in the 

substrate, will have to be obtained through contact mechanics analysis. None of the four 

energies can be neglected in our analysis. Both bending and membrane energies are making 

significant contributions according to our recent paper of elastic membranes laminated on 

rigid corrugated substrate [100]. Adhesion energy helps reduce the total energy of the 

system and is the only negative component out of the four. Nonzero elastic energy stored 

in the substrate indicates that the substrate is a deformable object. 

 The bending energy of the membrane (per unit arc length) is given by 

 𝑈𝑏 =
2

𝜆
[
1

2
∫ 𝐸̅𝑚𝐼
𝐵

𝐴

𝜅1
2𝑑𝑠 +

1

2
∫ 𝐸̅𝑚𝐼
𝐶

𝐵

𝜅2
2𝑑𝑠] (3.6) 

where  𝐸̅𝑚𝐼 =  𝐸̅𝑚𝑡
3 12⁄  is the plane strain bending stiffness of the membrane, 𝜅 is its 

curvature, and 𝑑𝑠 is the infinitesimal arc length. We use subscript 1 to represent the 

contact zone, i.e., from A to B, and subscript 2 to denote the non-contacting zone, i.e., from 

B to C, as labeled in Figure 3.1. The membrane energy per unit arc length can be written 

as: 

 𝑈𝑚 =
2

𝜆
[
1

2
∫ 𝐸̅𝑚

𝐵

𝐴

𝑡𝜀1
2𝑑𝑠 +

1

2
∫ 𝐸̅𝑚𝑡
𝐶

𝐵

𝜀2
2𝑑𝑠] (3.7) 

where 𝜀1(𝑥) = √1 + 𝑤1′2 − 1 and 𝜀2(𝑥) = √1 + 𝑤2′2 − 1 are the tensile strains in the 

adhered and non-contacting zones of the membrane, respectively. Adhesion between the 
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membrane and the substrate actually reduces system energy so it should be negative. Given 

the membrane-substrate interface work of adhesion 𝛾 , adhesion energy per arc length 

becomes 

 𝑈𝑎𝑑 = −
2

𝜆
∫ 𝛾𝑑𝑠
𝐵

𝐴

 
(3.8) 

 For analytical computation of these energies, simplification and 

nondimensionalization are implemented. Since a slightly wavy surface is considered, the 

deflection of the membrane is assumed to be small. Therefore, approximations can be 

applied to simplify the computation of bending energy, which are 𝜅𝑖 ≈ 𝑤𝑖
′′ (i = 1, 2) and 

𝑑𝑠 ≈ 𝑑𝑥. Hence, the bending energy can be written as: 

 

𝑈𝑏 =
2

𝜆
[
1

2
∫ 𝐸̅𝑚𝐼
𝑥𝑐

0

(𝑤1′′)
2𝑑𝑥 +

1

2
∫ 𝐸̅𝑚𝐼

𝜆
2

𝑥𝑐

(𝑤2′′)
2𝑑𝑥]

=
4𝜋2ℎ1

2𝐸̅𝑚𝐼

𝜆4
𝐷(𝑥̂𝑐) 

(3.9) 

where 

 𝐷(𝑥̂𝑐) =
2

1 − 𝑥̂𝑐
𝑠𝑖𝑛2(𝜋𝑥̂𝑐) + 𝜋

2𝑥̂𝑐 +
𝜋

2
𝑠𝑖𝑛(2𝜋𝑥̂𝑐) (3.10) 

and 𝑥̂𝑐 = 2𝑥𝑐/𝜆  is the dimensionless parameter that describes the degree of 

conformability: 𝑥̂𝑐 = 0  represents non-conformed, 0 < 𝑥̂𝑐 < 1  means partially 

conformed, and 𝑥̂𝑐 = 1 denotes fully conformed. If we define three more dimensionless 

parameters 𝛽 = 2𝜋ℎ0 𝜆⁄ , 𝜂 = 𝑡 𝜆⁄ , and  𝜉 = ℎ1 ℎ0⁄ , and substitute 𝐸̅𝑚𝐼 =  𝐸̅𝑚𝑡
3 12⁄ , 

we can further express bending energy per unit arc length as: 

 𝑈𝑏 =
4𝜋2ℎ1

2𝐸̅𝑚𝐼

𝜆4
𝐷(𝑥̂𝑐) = 𝐸̅𝑚𝜆

𝛽2𝜉2

12
 𝜂3𝐷(𝑥̂𝑐) 

(3.11) 
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As for the computation of membrane energy and adhesion energy, arc length is taken as 

𝑑𝑠 ≈ √1 + (𝑤𝑖′)2𝑑𝑥 ≈ [1 +
1

2
(𝑤𝑖

′)2]𝑑𝑥 (otherwise, strain 𝜀𝑖(𝑥) = (𝑑𝑠 − 𝑑𝑥) 𝑑𝑥⁄  is 

zero if 𝑑𝑠 ≈ 𝑑𝑥). Hence membrane energy becomes: 

 

𝑈𝑚 =
1

𝜆
[∫ 𝐸̅𝑚𝑡

𝑥𝑐

0

(
1

2
(𝑤2′)

2)
2

(1 +
1

2
(𝑤2′)

2)𝑑𝑥

+ ∫ 𝐸̅𝑚𝑡

𝜆
2

𝑥𝑐

(
1

2
(𝑤2′)

2)
2

(1 +
1

2
(𝑤2′)

2) 𝑑𝑥]

= 𝐸̅𝑚𝜆𝜂(𝛽𝜉)
4𝐾(𝑥̂𝑐, 𝜉𝛽) 

(3.12) 

where 

 

𝐾(𝑥̂𝑐, 𝜉𝛽) =
𝛽2

107520𝜋
(96𝜋(−1 + 𝑥̂𝑐)(−28 − 5𝛽

2

+ 5𝛽2 cos(2𝜋𝑥̂𝑐)) 𝑠𝑖𝑛(𝜋𝑥̂𝑐)
4

+ 35(144𝜋𝑥̂𝑐 + 60𝛽
2𝜋𝑥̂𝑐 − 3(32 + 15𝛽

2) sin(2𝜋𝑥̂𝑐)

+ 3(4 + 3𝛽2) sin(4𝜋𝑥̂𝑐) − 𝛽
2 sin(6𝜋𝑥̂𝑐))) 

 

(3.13) 

And adhesion energy can be calculated as: 

 𝑈𝑎𝑑 ≈ −
2𝛾

𝜆
∫ (1 +

1

2
(𝑤2

′)2)
𝑥𝑐

0

  𝑑𝑥 = −𝛾𝐸(𝑥̂𝑐,  𝜉𝛽) (3.14) 

where 

 
𝐸(𝑥̂𝑐 ,  𝜉𝛽) = 𝑥̂𝑐 (1 +

(𝜉𝛽)2

4
) −

(𝜉𝛽)2

8𝜋
 𝑠𝑖𝑛 (2𝜋𝑥̂𝑐) 

 

(3.15) 

The calculation of the elastic energy stored in the substrate 𝑈𝑠 is not as straightforward 

because the traction between membrane and substrate is not readily known. According to 
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assumption (ii), displacement of the substrate surface within the contact zone can be 

calculated as 

 𝑢(𝑥) = 𝑤1(𝑥) − 𝑤0(𝑥) = (ℎ1 − ℎ0) (1 + 𝑐𝑜𝑠
2𝜋𝑥

𝜆
) , 0 ≤ 𝑥 ≤ 𝑥𝑐 

(3.16) 

For the surface traction  𝑃(𝑥) over the contact zone as labeled in Figure 3.2, if we just 

focus on the elastic substrate with a slightly wavy surface, Johnson [108] has a conclusion 

that is directly applicable to our situation. He claimed that 𝑃(𝑥) can be comprehended by 

the superposition of a compressive pressure 𝑃1(𝑥) and a tensile pressure 𝑃2(𝑥), which 

follows as  

 𝑃(𝑥) = 𝑃1(𝑥) + 𝑃2(𝑥), 0 ≤ 𝑥 ≤ 𝑥𝑐 
(3.17) 

Here, 𝑃1(𝑥)  is the so called “bearing pressure” which induces a sinusoidal surface 

displacement 𝑢(𝑥) on a soft substrate with either flat or a slightly wavy surface.  

 

Figure 3.2  Schematic of traction over the contact area in the presence of adhesion by 

superposition P(x)=P1(x)+P2(x).  
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The contact of two slightly wavy half-planes in the absence of adhesion ( Figure 

3.3 (a)) was first analyzed by Westergaard [109]. When a rigid body with a slightly wavy 

surface is compressed against an infinitely large elastic substrate with flat surface as 

depicted in Figure 3.2(b), contact occurs over width 2a near the crests of the waves. For 

small amplitude corrugation, following Westergaard’s solution [109], the bearing pressure 

distribution over contact zone, i.e., 0 ≤ 𝑥 ≤ 𝑥𝑐  in our case, can be expressed as 

 
𝑃1(𝑥) = −2𝜋𝐸̅𝑠

ℎ0 − ℎ1
𝜆

𝑐𝑜𝑠
𝜋𝑥

𝜆
√(𝑠𝑖𝑛 

𝜋𝑥𝑐
𝜆
)
2

− (𝑠𝑖𝑛
𝜋𝑥

𝜆
)
2

,

0 ≤ 𝑥 ≤ 𝑥𝑐 

(3.18) 

where the forefront negative sign suggests that 𝑃1(𝑥) is a compressive pressure. The 

profile of 𝑃1(𝑥) is depicted in (c). When adhesion is taken into account, it will facilitate 

the two contacting surfaces to be attracted to each other, hence we expect 𝑃2(𝑥) to be a 

tensile (or positive) pressure. Johnson [108] suggested that 𝑃2(𝑥) can be comprehended 

as the stress distributed across the ligament (−𝑎 < 𝑥 < 𝑎) on a plane of collinear, periodic 

cracks each of length 2b under remote tensile loading 𝜎0 (Figure 3.4(a)). In this drawing, 

the ligament represents the contact zone and the crack represents the non-contact zone as 

shown in Figure 3.2. 
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Figure 3.3  (a) Schematic of a rigid, slightly wavy surface with periodicity touching a 

flat elastic surface before any deformation. (b) When subjected to uniform external 

pressure periodic, sinusoidal displacement is induced in the contact zone (-xc<x<xc). (c) 

Distribution of the bearing pressure, P1(x) within the contact zone. 
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Figure 3.4  (a) A row of collinear cracks in an infinite elastic sheet with crack length 2a 

and interval 2b, subjected to remote tensile stress (b) Stress distribution over the 

ligament represents the adhesion stress P2(x). 
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The problem of collinear cracks in an infinite elastic sheet was analyzed by Koiter 

[110], who offered the stress distribution over the contact zone, i.e., 0 ≤ 𝑥 ≤ 𝑥𝑐 in our 

case, as  

 𝑃2(𝑥) = 𝜎0 𝑐𝑜𝑠
𝜋𝑥

𝜆
[√(𝑐𝑜𝑠

𝜋𝑥

𝜆
)
2

− (𝑐𝑜𝑠
𝜋𝑥𝑐
𝜆
)
2

]

−1

, 0 ≤ 𝑥 ≤ 𝑥𝑐 (3.19) 

whose profile is drawn in Figure 3.4 (b). Here 𝜎0  can be determined by letting the 

averaged overall traction 𝑃̅ (Figure 3.3) go zero as the membrane spontaneously conforms 

to the substrate without any external load [111]: 

 𝑃̅ = ∫ 𝑃(𝑥)𝑑𝑥 = ∫ [𝑃1(𝑥) + 𝑃2(𝑥)]𝑑𝑥 = 0
𝑥𝑐

−𝑥𝑐

𝑥𝑐

−𝑥𝑐

 (3.20) 

Solving Eq. (3.20) yields  

  𝜎0 = 𝜋𝐸̅𝑠
ℎ0 − ℎ1
𝜆

(𝑠𝑖𝑛 
𝜋𝑥𝑐
𝜆
)
2

 (3.21) 

which means that the total traction within contact zone in the presence of adhesion as given 

by Eq. (3.17) is now fully solved. Hence elastic energy stored in the substrate 𝑈𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 

per unit arc length can be obtained as the product of traction and displacement: 

 

𝑈𝑠 =
2

𝜆
 ∫

1

2
𝑢(𝑥)

𝑥𝑐

0

𝑃(𝑥)𝑑𝑥 =
1

𝜆
∫ 𝑢(𝑥)
𝑥𝑐

0

[𝑃1(𝑥) + 𝑃2(𝑥)]𝑑𝑥

=
(ℎ0 − ℎ1)

2𝐸̅𝑠𝜋

4𝜆
𝑠𝑖𝑛4(

𝜋𝑥̂𝑐
2
) 

(3.22) 

 

Hence the total energy of the system can be explicitly expresses as 
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𝑈 = 𝐸̅𝑚𝜆
𝛽2𝜉2

12
 𝜂3𝐷(𝑥̂𝑐) + 𝐸̅𝑚𝜆 𝜂 (𝛽𝜉)

4𝐾(𝑥̂𝑐, 𝜉𝛽) − 𝛾𝐸(𝑥̂𝑐,  𝜉𝛽)

+
𝐸̅𝑠𝜆𝛽

2(1 − 𝜉)2

4𝜋
𝑠𝑖𝑛4(

𝜋𝑥̂𝑐
2
) 

(3.23) 

Through dimensional analysis, we want to introduce two additional dimensionless 

parameters 𝛼 = 𝐸̅𝑚/𝐸̅𝑠  and 𝜇 = 𝛾 (𝐸̅𝑠𝜆)⁄ , which are membrane-to-substrate modulus 

ratio and normalized interface intrinsic work of adhesion. Finally, the normalized total 

energy becomes  

 

𝑈̂ =
𝑈

𝐸̅𝑠𝜆𝛽2
= 𝛼

𝜉2

12
 𝜂3𝐷(𝑥̂𝑐) + 𝛼 𝜂  𝜉

4𝛽2𝐾(𝑥̂𝑐, 𝜉𝛽) −
𝜇

𝛽2
𝐸(𝑥̂𝑐,  𝜉𝛽)

+
(1 − 𝜉)2

4𝜋
𝑠𝑖𝑛4(

𝜋𝑥̂𝑐
2
) 

(3.24) 

which is a function of four dimensionless input parameters: 𝛽 = 2𝜋ℎ0 𝜆⁄ , 𝜂 = 𝑡 𝜆⁄ , 𝛼 =

𝐸̅𝑚 𝐸̅𝑠⁄ , and 𝜇 = 𝛾 (𝐸̅𝑠𝜆)⁄ , which are physically interpreted as normalized roughness of 

the corrugated substrate (𝛽), normalized membrane thickness (𝜂), membrane-to-substrate 

modulus ratio (𝛼), and normalized membrane-substrate intrinsic work of adhesion (𝜇), 

respectively. In addition, there are two unknown dimensionless parameters: 𝑥̂𝑐 = 2𝑥𝑐/𝜆 

and 𝜉 = ℎ1/ℎ0, which once solved can yield the contact zone and the amplitude of the 

deformed substrate. By fixing 𝛽, 𝛼, 𝜇, and 𝜂, minimization of Eq. (3.24) with respect to 

𝑥̂𝑐 and 𝜉 within the domain confined by  0 ≤ 𝑥̂𝑐 ≤ 1 and 0 ≤ 𝜉 ≤ 1 will give us the 

equilibrium solution, which can be visualized as the global minimum of the 3D plot of the 

normalized total energy landscape as a function of 𝑥̂𝑐 and 𝜉. 
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Figure 3.5  (a) Normalized total energy landscape of Ecoflex membrane of four different 

thicknesses (four different 𝜂’s) laminating on Ecoflex skin replica where 𝛼 = 1, 𝛽 =

1.2, 𝜇 = 0.003. Global minima are labeled by red dots. (a) When 𝜂 = 0.02, 𝑥̂𝑐 = 1  and 

𝜉 = 0.88 , which indicates FC. (b) When 𝜂 = 0.0144 , 𝑥̂𝑐 = 0.09, 𝜉 = 0.65 , which 

predicts PC. (c) When 𝜂 = 0.4 and (d) when 𝜂 = 2 , 𝑥̂𝑐 = 0, 𝜉 = 1, which suggests 

NC. 
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 EXPERIMENTAL VALIDATION 

With the total energy obtained in Eq. (3.24), we are now ready to implement the 

energy minimization method to predict conformability conditions of thin membranes 

laminated on soft, corrugated substrates. Two experiments in the literature are adopted to 

validate our model. 

3.2.1 Ecoflex Membrane on Skin-like Substrate  

Epidermal electronics can be exploited for many clinical and research purposes. 

Due to the ultimate thinness and softness of epidermal sensors, laminating them on 

microscopically rough skin surface leads to fully conformal contact, which can maximize 

the signal-to-noise ratio while minimizing motion artifacts, as evidenced in [112]. To 

optimize the design of epidermal electronics for human-machine interface, Jeong et al [50] 

tested the conformability of elastomer membranes (Ecoflex, Smooth-On, USA) of various 

thicknesses on an Ecoflex replica of the surface of human skin. Membrane-substrate 

conformability is clearly revealed by the cross-sectional scanning electron microscopy 

(SEM) images : 5 μm thick membrane can achieve full conformability to the substrate, 

36 m thick membrane only partially conformed to the substrate, whereas membranes with 

thickness of 100 m and 500 m remained non-conformed at all (See Figure 2.1 (b)) . 

Basic parameters that can be extracted from the experiments are: substrate roughness ℎ0 =

50 μm, 𝜆 = 250 μm, plane strain moduli of membrane and substrate 𝐸̅𝑠 = 𝐸̅𝑚 = 92 

kPa [50]. Since the conformability experiments were carried by placing Ecoflex membrane 

on Ecoflex-based skin replica, we assume the interface intrinsic work of adhesion to be 
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𝛾 = 50mJ m2⁄  according to our recent experimental measurements on the work of 

adhesion between different types of elastomers [113]. Based on those given parameters, 

the four dimensionless parameters are computed as follows: 𝛽 = 1.2, 𝛼 = 1, 𝜇 = 0.003, 

and 𝜂 =0.02, 0.144, 0.04, and 2, which corresponds to the four different experimental 

thicknesses of the membrane t = 5 m, 36 m, 100 m, 500 m, respectively. Normalized 

total energy given by Eq. (3.24) of each η is calculated and the energy landscape 𝑈̂ 

versus 𝑥̂𝑐 and 𝜉 is plotted in Figure 3.5 (a)-(d). When 𝜂 = 0.02 (Figure 3.5 (a)), the 

global minimum falls at 𝑥̂𝑐 = 1  and 𝜉 = 0.88, as highlighted by the red dot in the figure 

and the inset. 𝑥̂𝑐 = 1  indicates full confirmability and 𝜉 = 0.88  suggests that the 

substrate is flattened to a new amplitude of ℎ1 = 0.88ℎ0. When 𝜂 = 0.144 (Figure 3.5 

(b)), the minimal energy locates at 𝑥̂𝑐 = 0.09, 𝜉 = 0.65, indicating a partially conformed 

scenario where contact zone only covers about 9% of the wavelength; As for 𝜂 = 0.4 

(Figure 3.5 (c)) and 𝜂 = 2 (Figure 3.5 (d)) the minimal energy points are both at 𝑥̂𝑐 =

0, 𝜉 = 1, suggesting that the membrane is non-conformal to the substrate and the substrate 

is not deformed at all. Therefore, our predictions of conformability for four different 

membrane thicknesses are in excellent agreement with the experimental findings. 

By fixing the substrate morphology 𝛽 = 1.2 (i.e., ℎ0 = 50 μm , 𝜆 = 250 μm), 

Figure 3.6 predicts the conformability as a function of the other three parameters 𝛼, 𝜇 

and 𝜂. By numerically solving the minimization problem above, a 3D plot in Figure 3.6 

(a) shows two critical surfaces dividing FC/PC and PC/NC. It is obvious that the FC 

condition can be achieved at small 𝜂, i.e., thinner membrane, small , i.e., softer membrane 
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compared to the substrate, and large 𝜇, i.e., strong membrane-substrate intrinsic work of 

adhesion. On the contrary, NC condition most likely occurs at large 𝛼, large 𝜂, and small 

𝜇. 
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Figure 3.6  (a) Surfaces dividing FC/PC and PC/NC when 𝛽 = 1.2 (i.e., ℎ0 =

50 μm , 𝜆 = 250 μm) is fixed. (b) Contact area  𝑥̂𝑐  versus 𝜂  on the top or t in the 

bottom when  𝛽 = 1.2, 𝛼 = 1, 𝜇 = 0.003 . (c) Contact area  𝑥̂𝑐  versus 𝜇  when  𝛽 =

1.2, 𝛼 = 1, 𝜂 = 0.12 . (d) Contact area  𝑥̂𝑐  versus 𝛼  when  𝛽 = 1.2, 𝜇 = 0.003, 𝜂 =

0.12.  
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To better illustrate the effect of individual variables, we choose to fix three 

variables and only change one at a time. For example, in Figure 3.6 (b), 𝑥̂𝑐 is plotted as a 

function of 𝜂 in the top axis and t in the bottom axis with 𝛽 = 1.2, 𝛼 = 1, 𝜇 = 0.003 

fixed. It is evident that as the film thickness grows from 0, the conformability goes from 

FC to PC and finally NC. While the transition from PC to NC is smooth, the transition from 

FC to PC is abrupt, which suggests a significant drop (> 77%) of contact area from FC to 

PC. Similar jump has been observed for few layer graphene (FLG) conforming to silicon 

substrate [114] and elastic membrane laminated on rigid, corrugated substrate [100]. More 

analysis on how different substrate morphologies affect snap-through transition can be 

found in [98]. Quantitatively, full conformability requires 𝜂 < 0.03, i.e., 𝑡 < 7.5 μm. 

When 𝜂 > 0.28, i.e., 𝑡 > 70 μm, there is no conformability at all. When 0.03 < 𝜂 <

0.28 , i.e., when 7.5 μm < 𝑡 < 70 μm, the contact area of the PC scenario can be 

determined. The three black dots indicate the three different membrane thicknesses tested 

in the experiments by Jeong et al [50], which are fully consistent with our prediction.  

Since the original epidermal electronics was fabricated on 30 μm thick Ecoflex 

[3] the conformability of a 30 μm thick membrane on an Ecoflex skin replica substrate has 

been predicted. In order to show the effect of adhesion energy and membrane modulus over 

wide range, 𝑥̂𝑐 versus 𝜇 (or ) and 𝑥̂𝑐 versus 𝛼 (or 𝐸̅𝑚) are plotted with logx scale in 

Figure 3.6 (c) and Figure 3.6 (d), respectively, with the other three variables fixed. In Figure 

3.6 (c), it is evident that when 𝜇 > 0.008, i.e., 𝛾 > 138 𝑚𝐽/𝑚2,  FC mode can be 

achieved but when 𝜇 < 0.0016, i.e., 𝛾 < 30 𝑚𝐽/𝑚2, the membrane would not conform 

to the substrate at all. Figure 3.6 (d) indicates that when 𝛼 < 0.2, i.e., 𝐸̅𝑚 < 10 kPa, FC 
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happens but when  𝛼 > 2.5, i.e., 𝐸̅𝑚 > 125 kPa, there is no conformability. It is also 

noted that the abrupt transition from FC to PC is also present in Figure 3.6 (c) and Figure 

3.6 (d), with the same maximum contact area (23% of total surface area) under PC. In 

summary, Figure 3.6 offers a quantitative guideline towards conformable skin-mounted 

electronics in the four-parameter design space. 
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3.2.2 Polyimide (PI) Membrane on a Feline Brain in vivo 

In addition to human skin, brain is another soft organ with surface roughness that 

can prevent intracranial electrodes from conformal contact with the cortex. To retrieve 

electrocorticography (ECoG) with high spatial-temporal resolution, Kim et al [9] have 

fabricated ultrathin polyimide supported gold electrode arrays on a bioabsorbable film of 

silk fibroin. The silk substrate was gradually dissolved after being mounted on the cortex 

and hence left the ultrathin electrodes wrapping the cortex tissue due to the capillary 

adhesion. Since the gold layer is only 150 nm thick, which is much thinner than the thinnest 

polyimide they used (2.5 m), the gold layer is neglected in the following conformability 

discussion. The conformability of electrodes with two different polyimide thicknesses 

(2.5μm and 76 m) were tested on a feline brain in vivo. It turned out that the 2.5 m 

thickness electrodes achieved full conformability to the feline brain while the 76 m thick 

electrode was not able to conform at all. According to the experimental pictures [9], 

roughness of the brain gyrus is determined to be ℎ0 = 0.24 mm and 𝜆 = 11.86 mm, 

which yields 𝛽 = 0.13. By neglecting the gold layer, the modulus of the electrodes is 

given by polyimide modulus: 𝐸̅𝑚 = 2.8 GPa [9]. The modulus of the brain is found in 

literature as 𝐸̅𝑠 = 50  kPa [115]. Hence the membrane-substrate modulus ratio is 

computed as 𝛼 = 56000 . As for the interface intrinsic work of adhesion, since the 

polyimide substrate is washed by saline solution in the experiment and placed on the wet 

brain surface, we simply assume the work of adhesion is twice of the surface energy of 

water at room temperature: 𝛾 = 144 mJ m2⁄  which yields 𝜇 = 0.00024.   
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Figure 3.7  (a)-(c) Normalized total energy landscape of polyimide supported electrodes 

of three different thicknesses (i.e., three different 𝜂’s) laminated on feline cortex when 

𝛽 = 0.12, 𝛼 = 56000, 𝜇 = 2.4 × 10−4. (a) When 𝜂 = 0.0002, 𝑥̂𝑐 = 1, 𝜉 = 0.9, which 

indicates FC. (b) When 𝜂 = 0.001, 𝑥̂𝑐 = 0.12, 𝜉 = 0.86, which predicts PC.  (c) When 

𝜂 = 0.006, 𝑥̂𝑐 = 0, 𝜉 = 1, which suggests NC. (d) Contact area 𝑥̂𝑐 versus 𝜂 on the top 

or t in the bottom when 𝛽 = 0.06, α = 56000,= 2.4 × 10−4.  
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The conformability of electrodes with three different thicknesses (2.5 m, 12 m, 

76 m) laminated on cortex can be predicted by our theory by substituting 𝛽 = 0.13, 𝛼 =

56000, 𝜇 = 0.00024, and 𝜂 = 0.0002, 0.001, and 0.006  into Eq. (3.24). The 

normalized total energy 𝑈̂ versus 𝑥̂𝑐 and 𝜉 is plotted in Figure 3.7 (a)-(c). When 𝜂 =

0.0002 (i.e., t = 2.5 m) (Figure 3.7 (a)), global minimal energy falls at 𝑥̂𝑐 = 1, 𝜉 = 0.9 

as labeled by the red dot. It means the electrode is predicted to fully conform to the brain 

while the brain was slightly flattened by reducing the amplitude to ℎ1 = 0.9ℎ0. 

When 𝜂 = 0.001 (i.e., t = 12 m) (Figure 3.7 (b)), the global minimal minimum 

locates at 𝑥̂𝑐 = 0.12, 𝜉 = 0.86, as highlighted by the red dot in the figure, which indicates 

a partially conformed scenario. When 𝜂 = 0.006 (i.e., t = 76 m) (Figure 3.7 (c)) the 

minimal energy occurs at 𝑥̂𝑐 = 0, 𝜉 = 1, suggesting that the membrane is not able to 

conform to the cortex at all. To offer a holistic picture of the effect of electrode thickness 

on conformability, Figure 3.7 (d) plots 𝑥̂𝑐 as a function of 𝜂 as the top axis and t as the 

bottom axis when 𝛽 = 0.13, 𝛼 = 56000, and 𝜇 = 0.00024  are fixed. We use three 

black dots to represent the three different thicknesses of electrodes. Again, our prediction 

of conformability agrees well with the experimental findings. Figure 3.7 (d) also tells that 

full conformability can only be achieved when 𝜂 < 0.0042 , i.e., the thickness of 

polyimide should be smaller than 5 m. The sharp transition from FC to PC modes again 

suggests that there is an upper limit in the maximum contact area (23% of the total surface 

area) under the PC condition and hence FC mode is strongly preferred for effective 

measurements and treatments. 
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 DISCUSSIONS 

3.3.1 Double-checking Assumption (ii) under fully conformed condition 

Assumption (ii) dictates that the substrate surface deforms from one sinusoidal 

shape to another sinusoidal shape over the contact zone. This is inspired by the fully 

conformed scenario in which the substrate surface undergoes a sinusoidal deformation over 

the entire wavelength when the membrane is fully attached on it, in which case the traction 

exerted on the substrate is also sinusoidal and the substrate energy can be readily calculate 

[104]. Here we would like to double check whether the surface displacement and traction 

are both sinusoidal under FC mode and whether our substrate energy can recover the result 

given in [104]. By setting 𝑥𝑐 = 𝜆/2, the elastic energy in the substrate 𝑈𝑠 (per unit arc 

length) can be calculated through the work done by the traction 

 𝑈𝑠 =
1

2𝜆
∫ 𝑃(𝑥)𝑢(𝑥)𝑑𝑥 =

1

4

𝜆

0

 𝜋𝐸̅𝑠
(ℎ0 − ℎ1)

2

𝜆
 (3.25) 

which is exactly the same as that obtained by nonlinear analysis of wrinkles [102] and 

linear perturbation method [103]. This outcome proves that from the energy point of view, 

our method is validated as it can successfully decay to the fully conformed solution.  
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3.3.2 Displacement of Substrate Surface in Non-contacting Zone  

Displacement of the substrate surface within the contact zone (0 ≤ 𝑥 ≤ 𝑥𝑐) is 

assumed to be Eq. (3.16) and corthe responding traction with adhesion taken into account 

is given by Eqs.(3.17)-(3.20) whereas the non-contacting zone (𝑥𝑐 ≤ 𝑥 ≤ 𝜆/2)  has 

traction free surface. Then displacement over the non-contacting zone can be written as 

𝑢(𝑥) = 𝑢1(𝑥) + 𝑢2(𝑥) where the displacement of 𝑢1(𝑥) induced by 𝑃1(𝑥) is given as 

[111] 

 
𝑢1(𝑥) = (ℎ1 − ℎ0)[1 + cos

2𝜋𝑥

𝜆
+ 2 (sin

𝜋𝑥𝑐
𝜆
)
2

𝐺(𝑥)],

𝑥𝑐 ≤ 𝑥 ≤ 𝜆/2 

(3.26) 

where 

 𝐺(𝑥) = 𝜁√𝜁2 − 1 − ln [ζ + √𝜁2 − 1], 𝑥𝑐 ≤ 𝑥 ≤ 𝜆/2 (3.27) 

with 𝜁(𝑥) = (sin 𝜋𝑥/𝜆)/(sin (𝜋𝑥𝑐)/𝜆) . Since 𝑢2(𝑥) induced by 𝑃2(𝑥)  is given as 

[111] 

 𝑢2(𝑥) = 2(ℎ0 − ℎ1) (sin
𝜋𝑥𝑐
𝜆
)
2

ln [ζ + √𝜁2 − 1], 𝑥𝑐 ≤ 𝑥 ≤ 𝜆/2 (3.28) 

As a result, the non-contacting substrate surface displacement can be analytically 

expressed. 
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3.3.3 Thin Membrane versus Thick Slab 

In our 2D plane strain theory, the membrane is modeled as a Bernoulli-Euler beam 

(for 2D case, von Karman plate theory should be applied) which undergoes bending and 

stretching when laminated onto a corrugated substrate. This assumption is valid as long as 

the thickness of the membrane is much smaller than the wavelength of the corrugated 

substrate, i.e., 𝜂 = 𝑡/𝜆 ≪ 1. However, when the thickness of the film is comparable or 

even larger than the wavelength of the substrate, this assumption no longer holds, which is 

referred as a thick slab. When a thick but soft slab is laminated on a corrugated substrate, 

the lower surface of the slab will deform to fill the cavity between the substrate while the 

upper surface of the slab will stay almost flat. As a result, the slab needs to be modeled as 

an elastic body instead of a beam (or plate). Hence, the total energy given by Eq. (3.25) is 

no longer reliable when for example 𝜂 = 2 (i.e., t = 500 m). The contact problems of a 

thin elastic plate and an elastic body making contact with a randomly rough hard surface 

were studied by Perrsson [101], in which the elastic energy needed to deform a large thin 

plate 𝑈𝑝𝑙𝑎𝑡𝑒  and to deform a semi-infinite elastic solid 𝑈𝑠𝑜𝑙𝑖𝑑  so that they make full 

contact with a substrate cavity of diameter 𝜆 and height ℎ are given as  

 

𝑈𝑝𝑙𝑎𝑡𝑒 ~ 𝐸𝑡
3 (
ℎ

𝜆
)
2

 

 

𝑈𝑠𝑜𝑙𝑖𝑑  ~ 𝐸𝜆
3 (
ℎ

𝜆
)
2
 

(3.29) 

respectively, where 𝐸 is the Young’s modulus of the plate or solid on the top. If 𝑡 ≪ 𝜆 

the elastic energy stored in plate is much smaller than the elastic energy stored in a thick 
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solid. Therefore, the thin plate is elastically softer than a thick slab and hence easier to 

conform to the substrate. 
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 CHAPTER SUMMARY  

Using the method of energy minimization, this paper develops an analytical model 

to determine the conformability of a thin elastic membrane placed on a soft substrate with 

a slightly wavy surface. Four dimensionless governing parameters have been identified. 

Although the effect of each parameter is monotonic, abrupt transition from FC to PC has 

been observed for all parameters. Analytical predictions of the conformability of Ecoflex 

membrane on Ecoflex-based skin replica and polyimide membrane on an in vivo feline 

brain have found excellent agreement with the experimental observations of 

conformability. Furthermore, critical membrane thickness, membrane-substrate intrinsic 

work of adhesion, and membrane to substrate stiffness ratio are identified for full 

conformability. This model hence provides a viable method to predict the conformability 

and contact area between thin elastic membrane and soft substrate with slightly wavy 

surface. It also offers a guideline for the design of the electronic membrane as well as the 

bio-electronic interface to achieve high conformability.  
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Chapter 4 A Thin Elastic Membrane Conformed to a Soft and Rough 

Substrate subjected to Stretching/Compression3 

When the rough surface is dynamically deforming, for example the skin contracts, 

the deformation may lead to changes in conformability of thin electronics. In this chapter, 

we will reveal how stretching/compression would affect the conformability. Taking 

advantage of the path-independent feature of elastic deformation, we find that the total 

energy of a partially conformed system subjected to stretching or compression can be 

analytically expressed and minimized. Our results reveal that stretching enhances 

conformability while compression degrades it. In addition to predicting the critical 

parameters to maintain fully conformed under deformation, our PC theory can also be 

applied to predict the critical compressive strain beyond which fully conformed is lost.  

  

                                                 
3L. Wang, S. Qiao, A. Kabri, H Jeong, N. Lu, A Thin Elastic Membrane Conformed to a Soft and Rough 

Substrate Subjected to Stretching/Compression. Journal of Applied Mechanics. 84(11): 111003.2017 Sep 12; 

(L. Wang conducted the theoretical analysis and wrote the paper).  
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 THEORETICAL ANALYSIS 

4.1.1 Fully Conformed Theory: Loading Path (a) 

For simplicity, the membrane is modeled as a uniform linear elastic membrane with 

plane strain modulus 𝐸̅𝑚  and thickness t. The soft substrate is assumed to be a pre-

corrugated linear elastic half space with plane strain modulus 𝐸̅𝑠. Initially, i.e. at State 0 in 

Figure 4.1, the surface profile of the undeformed substrate is simply characterized by a 

sinusoidal equation 

 𝑤0(𝑥) = ℎ0 (1 + 𝑐𝑜𝑠
2𝜋𝑥

𝜆0
)  (4.1) 

where ℎ0 and 𝜆0 denote the semi-amplitude and wavelength of the undeformed substrate 

surface, respectively. Both the membrane and the substrate are stress free in State 0.  

4.1.1.1 State 1 in Loading Path (a) 

When the membrane is laminated on the soft substrate, it starts to conform to the 

substrate driven by the membrane-substrate interfacial adhesion. If FC is achieved, i.e. 

State 1 in Figure 4.1(a), the profiles of both the substrate and the membrane are the same: 

 𝑤1(𝑥) = ℎ1(1 + 𝑐𝑜𝑠
2𝜋𝑥

𝜆1
) (4.2) 

where ℎ1 and 𝜆1 are the semi-amplitude and wavelength. Since no lateral deformation is 

applied in State 1 of Figure 4.1 (a), the wavelength remains unchanged, i.e. 𝜆1 = 𝜆0. In 

addition, since the interfacial shear stress can be neglected when the membrane is 

reasonably stiff [102], the membrane energy can neglected at State 1, i.e. 𝑈𝑚 ≈ 0.  
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Figure 4.1  Schematics of a thin elastic membrane fully conformed to a soft corrugated 

substrate following two different loading paths: (a) The laminate-stretching path: the 

membrane first laminates on the substrate and the system is then subjected to lateral strain 

𝜖0 . At equilibrium, the substrate surface is characterized by its semi-amplitude and 

wavelength, i.e. (ℎ0, 𝜆0) at State 0; (ℎ1, 𝜆1) at State 1; (ℎ2, 𝜆2) at State 2. (b) The 

stretch-laminating path: the membrane and substrate are first subjected to 𝜖0 and then 

laminated together with 𝜖0  still applied. At equilibrium, the substrate surface is 

characterized by (ℎ0, 𝜆0) at State 0; (𝐻1, 𝜆1) at State 1; (𝐻2, 𝜆2) at State 2. 
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Hence, the total energy of the system at State 1 in Figure 4.1(a), 𝑈1
𝑎 , consists of the 

following three energies: 

 𝑈1
𝑎 = 𝑈𝑏1

𝑎 + 𝑈𝑎𝑑1
𝑎 + 𝑈𝑠1

𝑎  (4.3) 

 

where superscript “a” represents Loading Path (a), subscript “1” denotes State 1, 𝑈𝑏1
𝑎  is 

the bending energy of the membrane, 𝑈𝑎𝑑1
𝑎  is the interfacial adhesion energy between the 

membrane and the substrate, and 𝑈𝑠1
𝑎  is the elastic energy stored in the substrate. Bending 

energy and adhesion energy per wavelength can be readily written as: 

 

𝑈𝑏1 =
1

2𝜆1
∫ 𝐸̅𝑚𝐼
𝜆1

0

𝜅1
2𝑑𝑥 ≈

1

2𝜆1
∫ 𝐸̅𝑚𝐼
𝜆1

0

(𝑤1
′′)2𝑑𝑥 =

4ℎ1
2𝜋4

𝜆1
4 𝐸̅𝑚𝐼 

𝑈𝑎𝑑1 = −
1

𝜆1
∫ 𝛾𝑑𝑠
𝜆1

0

≈ −
𝛾

𝜆1
∫ [1 +

1

2
(𝑤1

′)2
𝜆1

0

]𝑑𝑥 = −𝛾(1 +
𝜋2ℎ1

2

𝜆1
2 ) 

(4.4) 

where 𝐸̅𝑚𝐼 = 𝐸̅𝑚𝑡
3/12 is the plane strain bending stiffness of the membrane, 𝜅1 ≈ 𝑤1

′′ 

is its curvature assuming slight waviness, 𝛾 is the membrane-substrate work of adhesion, 

𝑑𝑠 ≈ (1 + 1/2(𝑤1
′)2)𝑑𝑥 is an infinitesimal segment of the curve.  

As for the substrate energy (𝑈𝑠1
𝑎 ), it should equal to the work done by the surface 

tractions on the substrate. The surface displacement of the substrate is given by 𝑢(𝑥) =

𝑤1(𝑥) − 𝑤0(𝑥) and the surface traction to induce such a surface displacement is found to 

be 𝑝(𝑥) = −𝜋𝐸̅𝑠/𝜆1(ℎ1 − ℎ0) cos( 2𝜋𝑥/𝜆1)  [102, 103], which yields the following 

substrate energy per wavelength:  

 𝑈𝑠1
𝑎 =

1

𝜆1
∫

1

2
𝑢(𝑥)

𝜆1

0

𝑝(𝑥)𝑑𝑥 = 𝐸̅𝑠
𝜋

4

(ℎ0 − ℎ1)
2

𝜆1
 (4.5) 
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After introducing five non-dimensional parameters 𝛼 = 𝐸̅𝑚/𝐸̅𝑠 , 𝛽 = 2𝜋ℎ0 𝜆0⁄ , 𝜂 =

𝑡 𝜆0⁄ , 𝜇 = 𝛾/𝐸̅𝑠𝜆0 and 𝜉 = ℎ1 ℎ0⁄ , which are normalized membrane stiffness, substrate 

roughness, membrane thickness, work of adhesion, and substrate amplitude, respectively, 

the normalized total energy of the system in State 1 can be rewritten as 

 𝑈̂1
𝑎 =

𝑈1
𝑎

𝐸̅𝑠𝜆0𝛽2
=
𝜋2

12
𝜉1
2𝛼𝜂3 +

1

16𝜋
(1 − 𝜉1)

2 − 𝜇(
1

𝛽2
+
1

4
𝜉1
2) (4.6) 

where 𝑈̂1
𝑎 is a function of five variables 𝛼, 𝛽, 𝜂, 𝜇 and 𝜉1. If 𝛼, 𝛽, 𝜂 and 𝜇 are given, 

minimization of 𝑈̂1
𝑎 with respect to 𝜉1, i.e. 𝜕𝑈̂1

𝑎/𝜕𝜉1 = 0, gives the equilibrium state, 

which is achieved when 

 𝜉1 =
ℎ1
ℎ0
=

3

3 + 4𝜋3𝛼 𝜂3 − 12𝜋𝜇
 (4.7) 

The FC theory in [104, 105] claims that the criterion for FC is that the total energy of the 

system at State 1 is lower than that of NC, i.e. 

 𝑈̂1|𝜉1 < 𝑈̂1|𝑁𝐶 = 0 (4.8) 

Solving the inequality in Eq. (4.8) yields 

 𝛼𝜂3 <
3(4𝜇 + 𝛽2𝜇 − 16𝜋𝜇2)

𝜋2(𝛽2 − 16𝜋𝜇)
 (4.9) 

When 𝛽 and 𝜇 are given, Eq. (4.9) gives a condition that 𝛼 and 𝜂 should satisfy for 

FC. 
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4.1.1.2 State 2 in Loading Path (a) 

Section 4.1.1.1 analyzed the contact between a thin elastic membrane and a relaxed 

soft substrate with wavy surface, i.e. State 1 in Figure 4.1(a). After that, a lateral strain 𝜖0 

is applied on both the substrate and the membrane, as illustrated by State 2 of Figure 4.1 

(a). Assuming that the membrane still fully conforms to the substrate after the lateral strain 

is applied, the substrate will deform to State 2 with the following surface profile:  

 𝑤2(𝑥) = ℎ2(1 + 𝑐𝑜𝑠
2𝜋𝑥

𝜆2
) (4.10) 

where the subscript “2” indicates the State 2, ℎ2 is the new semi-amplitude, and 𝜆2 =

𝜆0(1 + 𝜖0) is the new wavelength. 

Similarly, the bending energy of the membrane and the interfacial adhesion energy 

per wavelength at State 2 can be found as 

 

𝑈𝑏2
𝑎 =

4ℎ2
2𝜋4

𝜆2
4 𝐸̅𝑚𝐼 

𝑈𝑎𝑑2
𝑎 = −𝛾(1 +

𝜋2ℎ2
2

𝜆2
2 ) 

(4.11) 

while the substrate energy per wavelength becomes [103, 107] 

 𝑈𝑠2
𝑎 =

𝜋

4𝜆2
𝐸̅𝑠[(ℎ0 − ℎ2)

2 + 2ℎ0(ℎ2 − ℎ0)𝜖0] + 𝐶 (4.12) 

The first term of Eq. (4.12) is the energy associated with the variation of the wavy surface 

while the second term 𝐶 is a constant which is independent of ℎ2 (See Section 4.4.1 for 

the derivation of 𝐶). The membrane energy due to stretching is also a constant, i.e. 𝑈𝑚2
𝑎 =

𝐸̅𝑚𝑡𝜖0
2/(2𝜆2) ≡ 𝐷. Since the total energy will be minimized by taking the variation with 
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respect to ℎ2, the constant terms 𝐶 and 𝐷 can be dropped. Therefore, the normalized 

total energy at Stage 2 of Figure 4.1(a) is 

 

𝑈̂2
𝑎 =

𝑈𝑡2
𝑎

𝐸̅𝑠𝜆2𝛽′2
=
𝜋2

12
𝜉2
2𝛼𝜂′3 +

1

16𝜋
[(1 − 𝜉2)

2 + 2(𝜉2 − 1)𝜖0] − 𝜇′(
1

𝛽′2

+
1

4
𝜉2
2) 

(4.13) 

where 𝛽′ = 𝛽/(1 + 𝜖0), 𝜂′ = 𝜂/(1 + 𝜖0),  𝜇′ = 𝜇/(1 + 𝜖0)  and  𝜉2 = ℎ2/ℎ0 . 

Minimization of 𝑈̂2
𝑎  with respect to 𝜉2 , i.e. 𝜕𝑈̂2

𝑎/𝜕𝜉2 = 0 , gives the equilibrium 

substrate semi-amplitude of State 2 

 𝜉2 =
ℎ2
ℎ0
=

3(1 − 𝜖0)

3 + 4𝜋3𝛼 𝜂′3 − 12𝜋𝜇′
 (4.14) 

Again, solving 

 𝑈̂2
𝑎|𝜉2 < 𝑈̂2

𝑎|𝑁𝐶 = 0 (4.15) 

yields a new criterion for FC when lateral tension or compression is applied 

 𝛼𝜂′3 <
3(4𝜇′ + 𝛽′2𝜇′ − 16𝜋𝜇′2)

𝜋2(𝛽′2 − 16𝜋𝜇′)
 

(4.16) 

It is obvious that when 𝜖0 = 0, Eqs. (4.14) and (4.16) will decay to Eq. (4.7) and Eq. (4.9), 

respectively, which means State 2 will recover State 1 when there is no applied strain. This 

concludes the analysis of Loading Path (a) using the FC theory (Figure 4.1 (a)). Closed-

form solutions have been obtained for both State 1 and State 2. Next, we need to obtain the 

solution to State 2 of Loading Path (b) (Figure 4.1 (b)) and prove that it is the same as State 

2 of Figure 4.1 (a). 
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4.1.2 Fully Conformed Theory: Loading Path (b) 

In Figure 4.1(b), the membrane and substrate are first stretched to State 1, and then 

the membrane is laminated to the substrate to achieve FC in State 2. We will use this 

loading path to find the solution to State 2.  

4.1.2.1 State 1 in Loading Path (b) 

In Figure 4.1(b) State 1, the membrane and the substrate are not in contact and they 

are individually stretched. Therefore, the top surface of the corrugated substrate is traction 

free, in which case the wavelength of the substrate surface profile becomes 𝜆1 = 𝜆0(1 +

𝜖0)  and the semi-amplitude will simply change to 𝐻1 = ℎ0(1 − 𝜖0)  under small 𝜖0 

[103]. It is also obvious that both the bending energy of the membrane and the adhesion 

energy at State 1 are zero, i.e. 𝑈𝑏1
𝑏 = 𝑈𝑎𝑑1

𝑏 = 0 where superscript “b” stands for Loading 

Path (b). The membrane energy due to stretching equals 𝑈𝑚1
𝑏 = 𝐸̅𝑚𝑡𝜖0

2/(2𝜆1) ≡ 𝐷. Also, 

the substrate energy and membrane energy are found to be a constant 𝑈𝑠1
𝑏 = 𝐶 which is 

the same as the constant term 𝐶 in Eq. (4.12).(See Section 4.4.2 for derivation).  
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4.1.2.2 State 2 in Loading Path (b) 

After each being stretched by 𝜖0 (State 1), the membrane is brought into contact 

with the substrate with 𝜖0 still applied on both. Assuming FC is achieved at equilibrium, 

as drawn in State 2 of Figure 4.1(b), the semi-amplitude becomes 𝐻2  while the 

wavelength remains to be 𝜆2 = 𝜆0(1 + 𝜖0). The bending energy of the membrane and the 

adhesion energy can be written as: 

 

𝑈𝑏2
𝑏 =

4𝐻2
2𝜋4

𝜆2
4 𝐸̅𝑚𝐼 

𝑈𝑎𝑑2
𝑏 = −𝛾(1 +

𝜋2𝐻2
2

𝜆2
2 ) 

(4.17) 

Considering the substrate energy at State 1, 𝑈𝑠1
𝑏  is a constant independent of the amplitude 

of the wavy surface, the deformation from State 1 to State 2 in Loading Path (b) is 

analogous to that from State 0 to State 1 in Loading Path (a), i.e., the membrane 

spontaneously conforms to a traction-free surface. As a result, we can calculate the 

substrate energy at State 2 by simply modifying Eq. (4.5): 

 

𝑈𝑠2
𝑏 = 

𝜋

4𝜆2
𝐸̅𝑠(𝐻1 − 𝐻2)

2 =
𝜋

4𝜆2
𝐸̅𝑠[(𝐻2 − ℎ0)

2 + 2ℎ0(𝐻2 − ℎ0)𝜖0] + 𝑂(𝜖0
2) 

(4.18) 

Since the stress-strain fields are calculated by linear perturbation method [103], higher 

order terms are omitted. Therefore, minimization of the total energy 𝜕𝑈2
𝑏/𝜕𝐻2 = 0 

yields: 

 
𝐻2
ℎ0
=

3(1 − 𝜖0)

3 + 4𝜋3𝛼 𝜂′3 − 12𝜋𝜇′
 (4.19) 
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Comparing Eq. (4.19) with Eq.(4.14), we can see that 𝐻2 = ℎ2, which proves that the two 

loading paths are completely equivalent. This is because stretching in State 1 of Loading 

Path (b) simply changes the surface profile of the substrate before it contacts the membrane 

without introducing non-constant energy terms. Therefore, Path (b) shows a potential for 

developing and solving the PC theory.  
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4.1.3 Partially Conformed Theory: Loading Path (a) 

In Section 4.1.1 and Section 4.1.2, we have proved that the laminate-stretching 

path and the stretch-laminating path can lead to the same final FC configuration. In this 

section, we will extend our model to the PC scenario. 

4.1.3.1 State 1 in Loading Path (a)  

When a membrane is partially conformed to a corrugated substrate, as depicted by 

State 1 in Figure 4.2 (a), the contact zone is labeled to be 0 ≤ 𝑥 ≤ 𝑥𝑐1 while the detached 

zone is 𝑥𝑐1 ≤ 𝑥 ≤ 𝜆1/2. This PC state has been investigated in Chapter 3. Here, we 

postulated that in PC mode, the substrate within the contact zone deforms from its initial 

sinusoidal profile to a new sinusoidal shape and within the detached zone (𝑥𝑐1 ≤ 𝑥 ≤

𝜆0/2), the membrane simply takes a parabolic shape if the membrane stress is neglected 

and it is therefore under pure bending. Thus, the associated energies at State 1 can be 

calculated as  

 

𝑈𝑏1
𝑎 =

4𝜋2ℎ1
2𝐸̅𝑚𝐼

𝜆1
4 𝐷(𝑥̂𝑐1); 𝑈𝑎𝑑1

𝑎 = −𝛾𝐸(𝑥̂𝑐1,  𝜉1,  𝛽);  

𝑈𝑠1
𝑎 =

𝐸̅𝑠𝜆1𝛽
2(1 − 𝜉1)

2

4𝜋
𝐹(𝑥̂𝑐1) 

(4.20) 

where 𝜆1 = 𝜆0, 𝛽 = 2𝜋ℎ0/𝜆0, 𝑥̂𝑐1 = 2𝑥𝑐1/𝜆0, 𝜉1 = ℎ1/ℎ0, and  

 

𝐷(𝑥̂𝑐1) =
2

1 − 𝑥̂𝑐1
𝑠𝑖𝑛2(𝜋𝑥̂𝑐1) + 𝜋

2𝑥̂𝑐1 +
𝜋

2
𝑠𝑖𝑛(2𝜋𝑥̂𝑐1) 

𝐸(𝑥̂𝑐1,  𝜉1𝛽) = 𝑥̂𝑐1 (1 +
(𝜉1𝛽)

2

4
) −

(𝜉1𝛽)
2

8𝜋
𝑠𝑖𝑛 (2𝜋𝑥̂𝑐1) 

(4.21) 
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𝐹(𝑥̂𝑐1) =
1

4
𝑠𝑖𝑛4 (

𝜋𝑥̂𝑐1
2
) 

 

When 𝑥̂𝑐1 = 1, Eq. (4.20) decays to Eq. (4.4) and Eq. (4.5) suggesting that our PC 

theory can successfully recover the FC theory when the there is no detached zone.  

 

 

 

Figure 4.2  Schematics of a thin elastic membrane partially conformed to a soft corrugated 

substrate following two different loading paths. (a) The laminate-stretching path: at 

equilibrium, the substrate is characterized by (𝑥𝑐1, ℎ1, 𝜆1)  at State 1; (𝑥𝑐2, ℎ2, 𝜆2) at 

State 2 where 𝑥𝑐  reflects the contact zone size. (b) At equilibrium, the substrate is 

characterized by (𝐻1, 𝜆1) at State 1; (𝑋𝑐2, 𝐻2, 𝜆2) at State 2.  
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After introducing the contact zone variable 𝑥̂𝑐1, the total energy of the system at 

State 1 becomes a function of six variables 𝛽, 𝛼, 𝜂, 𝜇, 𝜉1 and 𝑥̂𝑐1 

 𝑈̂1
𝑎 =

𝑈1
𝑎

𝐸̅𝑠𝜆0𝛽2
=
𝜋2

12
𝜉1
2𝛼𝜂3𝐷(𝑥̂𝑐1) −

𝜇

𝛽2
𝐸(𝑥̂𝑐1,  𝜉1𝛽) +

(1 − 𝜉1)
2

4𝜋
𝐹(𝑥̂𝑐1) 

(4.22) 

When 𝛽, 𝛼, 𝜂, and 𝜇 are specified, minimization of 𝑈̂1
𝑎  with respect to 𝜉1 and 𝑥̂𝑐1 

will yield the equilibrium state. It is worth noting that at equilibrium, 𝜕𝑈̂1
𝑎/𝜕𝑥̂𝑐1 = 0 is 

not always satisfied due to the fact that 𝑥̂𝑐1  is limited within 0 ≤ 𝑥̂𝑐1 ≤ 1 . But the 

condition 𝜕𝑈̂1
𝑎/𝜕𝜉1 = 0 can always be met, which yields 

 

𝜉1 = 3(1 − 𝑥̂𝑐) 𝑠𝑖𝑛
4 (
𝜋𝑥̂𝑐1
2
) /{3(𝑥̂𝑐1 − 1) 𝑠𝑖𝑛

4 (
𝜋𝑥̂𝑐1
2
)

+ 2[−4𝜋𝛼𝜂3 𝑠𝑖𝑛2(𝜋𝑥̂𝑐1) + (𝑥̂𝑐1 − 1)(2𝜋𝑥̂𝑐1(𝜋
2𝛼𝜂3 − 3𝜇)

+ (𝜋2𝛼𝜂3 + 3𝜇) 𝑠𝑖𝑛(2𝜋𝑥̂𝑐1))]} 

(4.23) 

Plugging Eq. (4.23) into Eq. (4.22) simplifies the normalized total energy to have only five 

variables: 

 𝑈̂1
𝑎(𝛼, 𝛽, 𝜂, 𝜇, 𝑥̂𝑐1) 

(4.24) 

For the sake of space, the complete form of Eq. (4.24) is not provided here. For given 𝛽, 

𝛼, 𝜂, and 𝜇, normalized total energy 𝑈̂1
𝑎 can be plotted as a function of 𝑥̂𝑐1 in which 

minimal energy state can be found. The difference between conformability predicted by 

the FC theory, i.e. by the minimization of Eq.(4.6), and by the PC theory, i.e. by the 

minimization of Eq. (4.24), will be discussed in Section 4.2. 
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4.1.3.2 State 2 in Loading Path (a) 

State 1 in Figure 4.2 (a) has been analytically solved by the PC theory. However, 

after stretching or compression is applied, i.e. at State 2 in Path (a), no analysis regarding 

the substrate energy is available to the best of our knowledge. Fortunately, we have shown 

that for the FC case, the two loading paths are interchangeable. Here, we presume that for 

the PC scenario, the two loading paths can still give identical results according to the 

following three arguments: 

(1) Only small stretching/compression and slightly wavy surface are considered in this 

paper, i.e. 𝜖0 ≪ 1, ℎ0/𝜆0 ≪ 1. These are necessary conditions to derive explicit 

stress-strain fields by linear perturbation method in [103, 107]. 

(2) Substrate deformation in PC mode is smaller than that of FC mode. 

(3) PC theory can successfully recover the FC theory.  

Herein, we assume that State 2 in the PC scenario can be analyzed by following Path (b) 

in Figure 4.2 in which the substrate is stretched first to have wavelength 𝜆1 = 𝜆0(1 + 𝜖0) 

and semi-amplitude 𝐻1 = ℎ0(1 − 𝜖0) at State 1. 

Therefore, by modifying Eq. (4.22), the normalized total energy at State 2 can be written 

as 

 

𝑈̂2
𝑏 =

𝑈2
𝑏

𝐸̅𝑠𝜆2𝛽′2
= 

𝜋2

12
𝜉2
2𝛼𝜂′3𝐷(𝑥̂𝑐2) −

𝜇′

𝛽′2
𝐸(𝑥̂𝑐2,  𝜉2𝛽′) +

(1 − 𝜖0 − 𝜉2)
2

4𝜋
𝐹(𝑥̂𝑐2) 

(4.25) 

where 𝛽′ = 𝛽/(1 + 𝜖0),𝜂′ = 𝜂/(1 + 𝜖0),𝜇
′ = 𝜇/(1 + 𝜖0),𝑥̂𝑐2 = 2𝑥𝑐2/𝜆2, 𝜉2 = 𝐻2/ℎ0, 

and 
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𝐷(𝑥̂𝑐2) =
2

1 − 𝑥̂𝑐2
𝑠𝑖𝑛2(𝜋𝑥̂𝑐2) + 𝜋

2𝑥̂𝑐2 +
𝜋

2
𝑠𝑖𝑛(2𝜋𝑥̂𝑐2) 

𝐸(𝑥̂𝑐2,  𝜉2𝛽′) = 𝑥̂𝑐2 (1 +
(𝜉2𝛽

′)2

4
) −

(𝜉2𝛽
′)2

8𝜋
𝑠𝑖𝑛 (2𝜋𝑥̂𝑐2) 

𝐹(𝑥̂𝑐2) =
1

4
𝑠𝑖𝑛4 (

𝜋𝑥̂𝑐2
2
) 

(4.26) 

Similar analysis can be performed to obtain the equilibrium solution. The criterion to 

maintain FC when 𝜖0 is applied using the PC theory can be expressed as  

 𝛼𝜂′3 < 𝑓(𝛽′, 𝜇′, 𝜖0) 
(4.27) 

where 𝑓(𝛽′, 𝜇′, 𝜖0) is numerically obtained. Results will be presented and discussed in 

Section 4.2. 
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 RESULTS 

The criteria for a thin elastic membrane to fully conform to a soft corrugated 

substrate subjected to stretching/compression (State 2) have been obtained by the FC 

theory, i.e. Eq. (4.16), and by the PC theory, i.e. Eq. (4.27), respectively. Note that setting 

𝜖0 = 0 in Eq. (4.16) and Eq. (4.27) will lead to the criterion for FC mode at State 1 in the 

FC and PC theory, respectively. By fixing the moduli of the substrate and membrane, the 

roughness of the substrate surface, and the interfacial work of adhesion, i.e. by fixing 𝛼, 

𝛽 , and 𝜇 , we can investigate the effect of membrane thickness, i.e. 𝜂 , on the 

conformability. In this section, we will use the following numerical example to illustrate 

the idea. Considering a silicone membrane of 𝐸̅𝑚 ≈ 2 MPa [106] laminating on human 

skin whose ℎ0 ≈ 20 m, 𝜆0 ≈ 150 m [116], and 𝐸̅𝑠 ≈ 130 kPa [115]. The silicone-

skin interface adhesion has been measured to be 𝛾 ≈ 0.21 N/m [117]. Accordingly, the 

non-dimensional parameters can be calculated as 𝛼 = 𝐸̅𝑚/𝐸̅𝑠 = 15.4, 𝛽 = 2𝜋ℎ0/𝜆0 =

0.8, 𝜇 = 𝛾/(𝐸̅𝑠𝜆0) = 0.011.  
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4.2.1 Laminating on Relaxed Substrate 

On the one hand, plugging 𝛼 = 15.4, 𝛽 = 0.8, 𝜇 = 0.011, 𝜖0 = 0 into Eq. (4.16) 

yields that the critical thickness of the membrane to fully conform to the skin is 31.5 m, 

i.e. 𝜂 = 0.21. In other words, according to the FC theory, as long as the membrane is 

thinner than 31.5 m, it will fully conform to a relaxed skin. On the other hand, according 

to the PC theory, the total energy at State 1 of Loading Path (a), 𝑈̂1
𝑎 can be plotted as a 

function of the contact zone variable 𝑥̂𝑐1. Normalized energy 𝑈̂1
𝑎 as function of 𝑥̂𝑐1 with 

𝜂 = 0.11, 0.12, 0.13, 0.14, 0.15 and 0.21 are plotted in Figure 4.3 (a). The three curves 

corresponding to 𝜂 = 0.11, 0.12  and 0.13  (red, blue and black) all reach the global 

minimum at 𝑥̂𝑐1 = 1, which indicates that the FC mode is energetically favorable. The 

difference is that for 𝜂 = 0.11 (red), 𝑈̂1
𝑎 monotonically decreases with 𝑥̂𝑐1, while for 

𝜂 = 0.12 and 0.13 (blue and black), there is an energy barrier before reaching 𝑥̂𝑐1 = 1. 

This indicates that PC mode, though excluded by FC theory, could be a locally stable state 

during the transition from NC to FC. When 𝜂 = 𝜂0 = 0.14 (magenta), i.e. 𝑡0 = 21 m, 

there are two global minimums, 𝑥̂𝑐1 = 0.36  and 𝑥̂𝑐1 = 1 . Thus, 𝜂0 = 0.14  is the 

critical thickness of membrane that assures FC based on the PC theory. For thicker 

membranes, e.g. 𝜂 = 0.15 and 0.21 (green and brown), the global minimum falls at 

𝑥̂𝑐1 = 0.36 and 𝑥̂𝑐1 = 0.30, respectively, which indicates that PC is preferred over FC. 

In summary, we discover that the critical thickness predicted by the PC theory (𝑡0 = 21 

m) is 33% smaller than that predicted by the FC theory (31.5 m). This is because the FC 

theory dismisses the possibility of PC so that the minimal energy is searched only within 
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FC and NC scenarios. In other words, the critical membrane thickness in the FC theory is 

obtained by equating the total energy at 𝑥̂𝑐1 = 0 and 𝑥̂𝑐1 = 1, which is the case for the 

brown curve in Figure 4.3 (a). Nevertheless, the PC theory claims that even when 𝑈̂1
𝑎|𝐹𝐶 <

𝑈̂1
𝑎|𝑁𝐶 is satisfied, the FC may not be the most energetically favorable state because there 

may be a global energy minimum in between, e.g. at 𝑥̂𝑐1 = 0.32 when 𝜂 = 0.15 (green).  
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Figure 4.3  (a) Normalized total energy of the system as a function of contact zone 

variable 𝑥̂𝑐1 at State 1 with 𝛽 = 0.8, 𝛼 = 15.4 and 𝜇 = 0.011 fixed. Six different 𝜂 =

0.11, 0.12, 0.13, 0.14, 0.15 and 0.21 are plotted where 𝜂 = 0.14 (magenta curve) is the 

critical membrane thickness for FC. (b) Normalized total energy of the system as a function 

of contact zone variable 𝑥̂𝑐2  at State 2 with 𝛽 = 0.8, 𝛼 = 15.4, 𝜇 = 0.011 and 𝜂 =

0.14 fixed. Five different applied strains 𝜖0 = −0.1, −0.05, 0, 0.05 and 0.1 are plotted. 

(c) Critical combinations of 𝜂 and 𝛼 for FC according to the FC theory (red curve) and 

the PC theory (blue, magenta, black) with 𝛽 = 0.8 and 𝜇 = 0.011 fixed. (d) Critical 

membrane thickness for FC as a function of applied strain 𝜖0.   



 64 

4.2.2 Strained after Lamination 

Due to the limitation of the FC theory, when discussing the conformability after 

straining, we only focus on the results of the PC theory. First, by fixing 𝜂 = 𝜂0 = 0.14, 

i.e. critical thickness 𝑡0 = 21 m of the membrane, we can investigate how the stretching 

and compression of the substrate affect the conformability. Figure 4.3(b) presents the 

normalized total energy at State 2 as a function of 𝑥̂𝑐2 with 𝜖0 = −0.1, −0.05, 0, 0.05 

and 0.1. It clearly shows that when stretching is applied, e.g. when 𝜖0 = 0.05 and 0.1 

(black and green), the right part of the energy curve bends down, thus FC can be 

maintained. However, when compression is applied, e.g. when 𝜖0 = −0.05 and −0.1 

(blue and red), the right part of the energy curve bends up and global minimum shifts to 

the middle, hence FC will change to PC under compression. The discovery that 

conformability can improve when stretching is applied can be easily explained using 

Loading Path (b). In fact, stretching the substrate in State 1 effectively reduces the surface 

roughness of the substrate.  

One application of this result is illustrated in Figure 4.3(c), which plots the critical 

(𝜂, 𝛼) combination left to or below which FC can be achieved. The red curve in Figure 

4.3(c) represents the FC criterion given by the FC theory when 𝜖0 = 0, i.e. Eq. (4.9). When 

𝛼 = 15.4, as used in the previous example, the intersection between the dashed green line 

and the red curve gives the critical thickness of the membrane, which is 𝜂 = 0.21 or 𝑡 =

31.5 m as pointed by the red arrow close to the upper horizontal axis. The magenta curve 

plots the critical (𝜂, 𝛼) combination based on the PC theory when 𝜖0 = 0, i.e. Eq. (4.27). 
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When 𝛼 = 15.4 , the critical thickness is 𝜂0 = 0.14 or 𝑡 = 21 μm . When a tensile 

strain, 𝜖0 = 0.05, is applied, the result shifts right to be the black curve, such that the 

critical thickness enlarges to 𝑡 = 25.5 m. When a compressive strain, 𝜖0 = −0.05, is 

applied, the magenta curve shifts left to be the blue curve, such that the critical thickness 

reduces to 𝑡 = 18.5 m. Therefore, when a substrate is subjected to arbitrary lateral strain 

between −0.05 < 𝜖0 < 0.05 , it is easy to conclude that the critical thickness for the 

membrane to always stay FC should be 𝑡 = 18.5 m. 

We may directly visualize the critical thickness 𝜂𝑐 as a function of 𝜖0 in Figure 

4.3(d). We normalize 𝜂𝑐  by 𝜂0 = 0.14 , which is the critical thickness at 𝜖0 = 0 

obtained by the PC theory. The actual thickness is denoted by the vertical axis on the right. 

It is manifest that the critical thickness monotonically increases with increasing 𝜖0, which 

has an opposite trend to that reported in [105, 106] due to the inversed sign before 𝜖0 in 

their substrate energy equations as pointed out before. The prediction that stretching allows 

for thicker membrane to conform can be comprehended by imagining an extreme case in 

which very large stretching is applied. In this case, the rough surface of the substrate would 

flatten to an almost smooth surface and then membrane of any thickness would be able to 

fully conform to it. The other difference is that our plot is based on the PC theory but plots 

in [105, 106] were based on the FC theory. 
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4.2.3 Predicting Critical Strain to Losing FC 

Another application of our PC theory is to predict the change of conformability 

with different applied strain. The loading has to be quasi-static as the theory does not 

involve dynamics analysis. Recently, Ameri et al [6, 118] have fabricated an ultrathin and 

transparent graphene electronic tattoo (GET) sensor that is imperceptible on human skin 

but can perform multimodal vital sign monitoring. The graphene layer is supported by a 

transparent PMMA substrate which provides necessary mechanical support for processing 

and also for transferring GET to human skin. Since graphene thickness is much less 

compared with the PMMA, the thickness and mechanical properties of the GET are 

dominated by the PMMA. To fully understand GET conformability on human skin, here 

we conducted a series of experiments using blanket PMMA membranes with thicknesses 

of 500 nm, 550 nm and 700 nm and we observed three different conforming behaviors 

within such a small thickness range. Figure 4.4 displays multiple experimental pictures of 

those PMMA membranes on human skin with and without skin deformation. It is 

interesting to note that 500-nm-thick PMMA can fully conform to the skin upon lamination 

and can stay conformed even under 25% compression (Figure 4.4 (a)). In contrast, Figure 

4.4 (b) shows that 550-nm-thick PMMA can fully conform to the relaxed skin but when 

subjected to 10% compression, internal delaminations can be observed, as indicated by 

small red arrows. When PMMA is 700-nm thick, Figure 4.4 (c) clearly suggests that it 

cannot even conform to relaxed skin. With a compression of 10%, more delamination 

occurred.  
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Figure 4.4  Experimental pictures of PMMA membranes on human skin. (a) membrane 

of thickness 𝑡 = 500 nm can fully conform to the skin with or without skin compression. 

(b) membrane of thickness 𝑡= 550 nm fully conforms to relaxed skin but experiences 

partial delamination under a compression of 10%. (c) membrane of thickness 𝑡 = 700 nm 

cannot form full conformability even with relaxed skin and more delaminations appear 

after a compression of 10%. Scale bar indicates 1 mm.  
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We now can use our PC theory to understand above experimental observations. 

Parameters are chosen to be ℎ0 ≈ 20 m, 𝜆0 ≈ 150 m [116], 𝐸̅𝑠 ≈ 130 kPa [115], 

𝐸̅𝑚 ≈ 3.3  GPa [6, 118], 𝛾 ≈ 18  mJ/m2 [119]. Accordingly, the non-dimensional 

parameters can be calculated as 𝛽 = 2𝜋ℎ0/𝜆0 = 0.8, 𝛼 = 𝐸̅𝑚/𝐸̅𝑠 = 25384, and 𝜇 =

𝛾/(𝐸̅𝑠𝜆0) = 0.00092. Plugging into Eq. (4.24), the system energy after lamination (solid 

curves) and after compression (dashed curves) for different 𝑡 = 500, 550 and 700 nm 

are shown in Figure 4.5 (a). It is obvious that the minimal total energy of 500-nm (red solid 

curve) and 550-nm-thick PMMA (blue solid curve) after skin lamination falls at 𝑥̂𝑐 = 1 

(FC) while that of 700-nm thickness (black curve) falls at 𝑥̂𝑐 = 0.21 (PC). This is fully 

consistent with our experimental observations in the left column of Figure 4.4, i.e. 500-

nm- and 550-nm-thick PMMA can fully conform to relaxed skin while 700-nm-thick one 

cannot. When 𝜖0 = −0.25 is applied, the solid red curve shifts to the dashed red curve, 

whose global minimum still locates at 𝑥̂𝑐 = 1, which explains why the 500-nm-thick 

PMMA remained FC under 25% skin compression (Figure 4.4 (a)). In contrast, for 550-

nm-thick PMMA, the blue solid curve is bent to the blue dashed curve after 𝜖0 = −0.25, 

in which case the total minimal energy changes from 𝑥̂𝑐 = 1  to 𝑥̂𝑐 = 0.17 , i.e. the 

conformability status switches from FC to PC (Figure 4.4 (b)). The relation between 𝑥̂𝑐 

and 𝜖0 is plotted in Figure 4.5(b). As expected, the 500-nm-thick PMMA (red curve) can 

stay FC up to 25% skin compression whereas the conformability of the 550-nm-thick 

PMMA (blue curve) suddenly drops from FC to PC upon compression at 𝜖0 = −0.08, 

which explains why we see delamination at 10% compression in our experiment (Figure 
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4.4 (b)). It is worth noting that this snap-through transition is similar to those reported in 

previous works [98, 100, 120]. After the sudden change from FC to PC at 𝜖0 = −0.08, 

our PC theory can continue to predict the change of contact area upon further compression. 

It is surprising that when the thickness only drops by 50 nm, the 500-nm PMMA (red curve) 

survives compressive strain of 0.25, which makes it a very good choice for GET because 

it well balances the tradeoff between conformability and thickness (robustness). However, 

we have to admit that our current theory is developed within the scope of linear elasticity, 

hence the predictions for strains beyond 10% will not be very accurate. 
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Figure 4.5  Analytical prediction of conformability of PMMA membrane. (a) Normalized 

total energy of the system as a function of contact zone variable 𝑥̂𝑐 with 𝛽 = 0.8, 𝛼 =

25384  and 𝜇 = 0.00092  fixed. At State 1, three thicknesses of PMMA 𝑡 =

500, 550, and 700 nm are plotted as solid curves; At State 2 (e.g. 𝜖0 = −0.25), 𝑡 = 500 

and 550 nm are plotted as dashed curves. (b) Conformability as a function of 𝜖0 for 

PMMAs of thicknesses 𝑡 = 500 nm (red) and 550 nm (blue). Snap-through transition 

from FC to PC is predicted at 𝜖0 = −0.08 when 𝑡 = 550 nm while PMMA with 𝑡 =

500 nm remains FC throughout the compression up to 𝜖0 = −0.25. 
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 CHAPTER SUMMARY 

In this chapter, by using the method of energy minimization, we developed a 

theoretical framework to determine the conformability of a thin elastic membrane placed 

on a soft substrate with slightly wavy surface subjected to stretching/compression. By 

proving that the laminate-stretching and stretch-laminating loading paths can lead to 

exactly the same final states for the fully conformed scenario, we demonstrate that the 

stretch-laminating loading path can also be employed to solve partial conformability under 

linear elasticity assumptions. Our theory suggests that stretching improves the 

conformability while compression impairs it, which can be explained by the fact that 

stretching actually reduces the roughness of the substrate. Furthermore, this framework 

provides a viable method to predict the conformability and the contact area when the 

substrate has lateral strain. The critical membrane thickness and membrane-to-substrate 

stiffness ratio are quantitatively identified for full conformability. Our theory can also be 

used to predict the strain at which full conformability can no longer sustain. Our theory has 

been validated by laminating PMMA membranes of different thicknesses on human skin 

and inducing skin deformation. 
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 APPENDIX 

4.4.1 Substrate energy at State 2 in FC 

According to the linear perturbation analysis in Ref. [103], the displacement field 

at State 2 in Loading Path (a) is given 

 

𝑢𝑥 = 𝜖0𝑥 +
ℎ0

2(1 − 𝜈)
𝑒𝑘𝜔 sin 𝑘𝑥 [(1 − 2𝜈 + 𝑘𝜔)

ℎ2 − ℎ0
ℎ0

− (3 − 2𝜈 + 𝑘𝜔)𝜖0] 

𝑢𝑦 = −
𝜈

1 − 𝜈
𝜖0𝜔 +

ℎ0
2(1 − 𝜈)

cos 𝑘𝑥 {−2𝜈𝜖0

+ 𝑒𝑘𝜔 [(2 − 2𝜈 − 𝑘𝜔)
ℎ2 − ℎ0
ℎ0

+ (2𝜈 + 𝑘𝜔)𝜖0]} 

(4.28) 

where 𝑘 = 2𝜋/𝜆 , 𝜈  is the Poisson’s ratio of the substrate, and  𝜔 = 𝑦 − ℎ0 cos(𝑘𝑥) 

which transforms the substrate with sinusoidal surface to a semi-infinite solid with flat 

surface (−∞ < 𝑥 < ∞,−∞ < 𝜔 < 0) . The stress and strain fields can be derived 

accordingly and integrating 
1

2
𝜎𝑖𝑗𝜖𝑖𝑗 over the entire substrate gives the substrate energy at 

State 2 in Figure 4.1(a) 

 𝑈𝑠2
𝑎 =

𝜋

4𝜆2
𝐸̅𝑠[(ℎ2 − ℎ0)

2 + 2ℎ0(ℎ2 − ℎ0)𝜖0] +
𝐸̅𝑠𝜖0

2

2
𝐻𝑠𝑢𝑏 

(4.29) 

where 𝐻𝑠𝑢𝑏 is the thickness of the substrate and 𝐻𝑠𝑢𝑏 → ∞ is assumed throughout our 

analysis. The second term is a constant 𝐶 ≡ 1/2 𝐸̅𝑠𝜖0
2𝐻𝑠𝑢𝑏. Note that the substrate energy 

given in Refs. [105, 106] has an inverse sign in front of the 𝜖0 term, which leads to a trend 

opposite to Figure 4.3(d). 
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4.4.2 Substrate energy at State 1 in FC 

According to the linear perturbation analysis in Ref. [103], the displacement field 

at State 1 in Loading Path (b) is given by 

 

𝑢𝑥 = 𝜖0𝑥 + (𝜖0ℎ0)(
−2 + 2𝜈 − 𝑘𝜔

1 − 𝜈
𝑒𝑘𝜔 sin 𝑘𝑥) 

𝑢𝑦 = −
𝜈

1 − 𝜈
𝜖0𝜔 + (𝜖0ℎ0)[(

−2 + 2𝜈 + 𝑘𝜔

1 − 𝜈
𝑒𝑘𝜔 −

𝜈

1 − 𝜈
) cos 𝑘𝑥 + 1] 

(4.30) 

The stress-strain fields can be obtained out of the displacement field and integrating 

1

2
𝜎𝑖𝑗𝜖𝑖𝑗 over the substrate domain gives the substrate energy per wavelength 

 𝑈𝑠1
𝑏 =

𝐸̅𝑠𝜖0
2

2
𝐻𝑠𝑢𝑏 +

𝐸̅𝑠𝜋ℎ0
2𝜖0

2(5 − 20𝜈 + 16𝜈2)

8𝜆0(1 − 𝜈)(2𝜈 − 1)
≈
𝐸̅𝑠𝜖0

2

2
𝐻𝑠𝑢𝑏 ≡ 𝐶 

(4.31) 

The first term is simply equal to the work done by the external load on a semi-infinite 

elastic body with thickness of 𝐻𝑠𝑢𝑏. The second term is omitted as 𝐻𝑠𝑢𝑏 ≫ ℎ. Therefore, 

𝑈𝑠1
𝑏  is independent of 𝐻2, thus it does not play a role in the variation of the total energy. 
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Chapter 5 Background and Motivations for Crater-enabled Dry 

Adhesive4 

The vdW interaction between the thin electronics and bio-tissues is a weak bonding, 

which can only works for ultra-thin electronics with sufficiently low structural stiffness, 

e.g., E-tattoos. When thick materials are needed or multi-layered electronic patches are 

fabricated, additional adhesive force may be incorporated to secure the conformal contact. 

A promising solution is to use dry adhesives. In this chapter, we will elucidate the 

motivations for the study of crater-enabled dry adhesives due to its remarkable superiority 

to both chemical-based pressure sensitive adhesives and micro-pillar-based adhesives.   

                                                 
4 L. Wang, S. Qiao, K. Ha, N. Lu, Understanding Crater-enabled Dry Adhesives. (To be submitted). (L. 

Wang conducted literature review and wrote the paper)  
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 BACKGROUND AND MOTIVATIONS 

In the preceding Chapter 3 and Chapter 4, we built an analytical framework for 

predicting how an elastic thin film conforms to the soft substrate with wavy surfaces under 

vdW interaction. We found that the electronics/bio-tissues vdW adhesion is normally weak, 

e.g., 𝛾 ~ 20 J/m2, which is not substantially strong for stiff electronics to fully conform to 

bio-tissues, thus limits the selection of materials and the design of electronics. For example, 

only when the thickness of the graphene/PMMA membrane drops below 510 nm can it 

fully conform to the human skin, as predicted by our theory and observed in the experiment 

[121]. Such a thinness not only makes it difficult for the fabrication process but also renders 

a low mechanical robustness. The fully conformed contact can also be easily compromised 

when encountered with compressive deformation since bio-tissues are dynamically 

deformable. 

The current theoretical model elaborated in Chapter 3 and Chapter 4 simplifies the 

whole electronics patch as an effective elastic thin layer without considering the complex 

patch configuration. The rigid components, if any, e.g., Bluetooth IC for data transmission, 

and batters for power supply, etc., will further elevate the overall stiffness of the structure, 

leading to a poor conformability. Therefore, strong and reliable adhesion between the 

electronics and bio-tissues is always desired for bridging the intrinsically stiff electronics 

and soft bio-tissues.  
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 CONVENTIONAL PRESSURE SENSITIVE ADHESIVES (PSA)  

Currently, conventional pressure sensitive adhesives (PSA) are most commonly 

employed for enhancing the adhesion with bio-tissues. Utilizing a viscoelastic bonding 

agent, they can instantaneously form a bond to the adherend when pressure is applied 

without any activation such as treatment with solvents or heat [45-48]. Acrylics, polyether, 

rubbers, silicones, polyesters, and polyurethanes are commonly used bonding agent for 

PSA[122, 123]. Due to their viscous nature, PSA can even flow into the surface with 

multiscale roughness (e.g., skin), leading to a conformal and robust contact.[124, 125] 

Examples can be found everywhere in healthcare, such as the bandage and 3M Tegaderm 

for wound covering and healing (Figure 5.1 (a) and Figure 5.1 (b)). In the last two decades, 

3M Tegaderm has also been extensively used as the adhesive dressing in epidermal 

electronics. The strong adhesive force can enable robust contact with skin over a large area 

with prolonged time and low susceptibility to deformation [89]. (Figure 5.1 (c) and Figure 

5.1 (d)). 

However, despite the strong adhesion, PSA for bio-medical applications are also 

facing some challenges and drawbacks. First, the bonding agent can be easily contaminated 

with impurities (e.g., dust, sebum and cutin etc.) such that PSAs are usually designed for 

one-time use and are hardly repositionable when in service. Second, the bonding agent may 

contain chemical irritants that induces skin irritation[126] and contact dermatitis[127]. 

Third, the excessive adhesive force may be more traumatic to the skin during removal, 

causing skin injury and damage [39, 53-55] (see Figure 5.2). Therefore, to overcome these 

limitations, a wealth of attention has been paid to other adhesion mechanisms in the last 



 77 

two decades, among which bio-inspired dry adhesives stand out as exceptional alternatives 

to chemical-based PSAs.  

 

 

Figure 5.1  Examples of adhesion enhancement using conventional pressure sensitive 

adhesives. (a) Bandage for wound covering. (b) 3M Tegaderm for wound healing. (c) 3M 

Tegaderm serves as an adhesive dressing for multi-functional electronics[42]. (d) 

Epidermal electronics stay fully conformed with the skin under stretching and compression. 
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Figure 5.2  Types of skin irritation and injury by pressure-sensitive adheisves [39]  
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 MICRO-PILLAR-ENABLED DRY ADHESIVES 

5.3.1 Nature Prototype  

The first successful bio-inspiration originates from terrestrial spices with fibril-

patterned toe pad including spiders, lizards and geckos [56, 75, 128-131]. The pioneer work 

done by Autumn et al revealed the intricate structures of gecko toe pad by scanning electron 

microscopy (SEM) [56], where the hierarchical structure is based on the lamellae, from 

which the individual hairs, referred as setae, protrude [56]. Each seta branches into 

hundreds of 200-nm thin spatula, which is capable of making intimate contact with a 

variety of surface profiles of any orientations. As a result, a strong adhesion strength of 

100 kPa can be achieved according to the measurement from Autumn et al.[56] Such a 

high adhesion is solely attributed to the vdW forces between the nanoscale spatula and the 

target surface instead of chemical bonding since no skin gland has been observed on the 

toe pad of gecko [128].  

 

Figure 5.3  (a) Hierarchical structure of gecko’s adhesive system.[132] (b) Schematic of 

gecko adhesion mechanism[133].   



 80 

Aside from the remarkable attachment performance, the fibrillary system also 

exhibits superior reversibility and self-cleaning ability: gecko’s toe pad can easily peel off 

from the surface without leaving any residue while keeping the cleanness.[131] due to the 

“dry” contact.  

5.3.2 Artificial Micro-pillar-enabled Dry Adhesives 

 

 

Figure 5.4  Gecko inspired micro-pillar-based adhesives (a) Flat tip [77] . (b) Hierarchical 

tip [134] ; (c) Spatula tip [135]; (d) Tilted tip [136]; (e) Mushroom-like tip [137].  

 

The rapid advancing of microfabrication techniques, such as photolithography, 

electron-beam lithography[138, 139] and hot embossing,[140] has contributed to the boom 

of biomimetic adhesives. Figure 5.4 showcases several representative synthetics mimics 

with micro-scale surface features in reminiscence of gecko setae. The simplest design of 

the fibrillary system is micro-pillars arrays with a flat tip (Figure 5.4 (a)) [77, 135, 141]. 

Since real gecko’s toe pad has a hierarchical structure with spatula end, synthetic mimics 
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with hierarchy [134, 137]( Figure 5.4 (b)) and spatula tip [135] (Figure 5.4 (c)) have also 

been fabricated. Emulating the design principle of the tilting setae in the gecko’s toe pad, 

slanted structures have been widely exploited to generate directional adhesion (Figure 5.4 

(d)), i.e., strong adhesion in one direction for gripping and weak adhesion in another for 

quick releasing[136]. Such an anisotropic adhesion gives rise to the breakthrough in 

developing reversible adhesives that truly resembles the natural prototypes. Among all the 

tip geometries, mushroom-like shape (Figure 5.4 (e)) prevails as it shows promising 

adhesion strength at relatively low preload by reducing the stress concentration when in 

contact with substrates.[43, 81, 135, 137, 142-144]. 

By incorporating with engineering technology, e.g., electronic sensors, monitors, 

etc., the micro-pillar-enabled adhesives can be transformed into advanced biomedical 

devices other integrated functions such as vital signal monitoring[4, 44] and pressure 

sensing [12, 145, 146] ( see Figure 5.5). In these applications, the dry adhesives serve as a 

dressing layer which provides strong adhesive force during service, high repeatability, and 

less skin irritation.  

 

Figure 5.5  Micro-pillar-enabled adhesives with integrated functionalities [43, 72].  
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5.3.3 Limitations  

Though micro-pillar-enabled adhesives have shown promising potential as an 

alternative to chemical-based PSA, there are still some obstacles that inhibit them from 

large-scale applications. First, due to the slender nature, tiny pillars possess very low 

mechanical robustness, leading to lateral collapse (Figure 5.6 (a)) and rupture (Figure 5.6 

(b)) after repetitive use. Such a structural instability dramatically impairs the adhesion as 

well as the repeatability. Second, it has been reported that wet surfaces or underwater 

environment significantly reduce the performance of micro-pillar-enabled adhesives [147-

149], as shown in Figure 5.6 (c). This challenges the application on human skin because of 

the sweating of the gland.  

 

 

 

Figure 5.6  Limitation of micro-pillar-enabled adhesives (a) Lateral collapse [57]; (b) 

Rupture [144]; (c) Low wet adhesion [150].  
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 CRATER-ENABLED ADHESIVES  

5.4.1 Nature Prototype 

Another inspiration for the design of dry adhesives comes from aquatic 

cephalopods such as squid and octopus whose limbs are equipped with hundreds of suckers 

[65, 151-154]. For example, the octopus can easily anchor onto different terrains and 

substrates by actively manipulating the muscle on the limbs. Such attachment is secured 

by the strong suction force due to the pressure difference between the sucker and ambient 

environment, termed negative pressure, which can roar up to 300 kPa for octopus and 800 

kPa for decapod underwater[151, 155]. (Figure 5.7)  

 

Figure 5.7  (a) Photograph of the cephalopod tentacle (left; inset shows the entire octopus) 

and 3D laser scanning image of magnified suction cup (right)[67]. (b) Adhesion 

mechanism of octopus sucker.   
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5.4.2 Artificial Crater-enabled Dry Adhesives 

While commercial use of engineered hierarchical fibrillary structures is at its 

infancy, low-cost fixtures in the form of suction cups have been widely used in numerous 

applications, such as wall/window-mounting suction hooks and skin-mounting suction 

electrodes. Adhesion of suction cups is enabled by vacuum generated inside the cup upon 

compressive loading and unloading, as inspired by octopus suckers. Similarly, adhesion 

can also be generated on cratered surfaces which are surfaces with engineered dimples. For 

example, in 2015, Choi et al. created an array of 1-m-diameter craters on the surface of a 

multilayer PDMS and the measured adhesion strength exceeds that of the same PDMS with 

both flat surfaces and surface pillars.[67] (Figure 5.8 (a)). Also in 2015, Akerboom et al. 

fabricated close-packed nano-dimples on 10:1 PDMS and found that the pull-off force is 

promoted compared with flat PDMS control [66] (Figure 5.8 (b)). In 2017, Baik et al. 

fabricated microscale craters cylindrical-shape and dome-shaped protuberances and their 

adhesion strength measured under both dry and wet conditions turn out to be much larger 

than their pillared counterparts.[69] (Figure 5.8 (d)). Similarly, enhanced adhesion has also 

been observed by Nanni et al. who engineered PDMS with square-shaped craters [156]. 

Octopus suckers equipped with a layer of thermoresponsive hydrogel show switchable 

adhesion and thus, can be used for transfer printing of semiconducting nanomembranes 

[68] (Figure 5.8 (e)). Octopus-inspired micro-craters with built-in protuberance structure 

demonstrated load-dependent adhesion both in dry and wet conditions [157], distinct from 

that of gecko-like adhesives. PDMS nanosucker arrays are flexible and generate strong 

adhesion even when applied on irregular surfaces [158].   
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Figure 5.8  Octopus inspired crater-enabled dry adhesives. (a) [67] (b) [66]; (c)-(d) [69]; 

(e) [156] 

Unlike the abundant theoretical understandings for microfibrils [130, 159-161], 

cratered surfaces are emerging physical adhesives that little analysis is available at this 

moment. Although thin-walled suction cups have been modeled before [162, 163], surface 

craters [68, 157, 164-166] are surrounded by thick walls and therefore demand different 

analysis. Spolenak et al investigated various suction effect in pillars with concaved tip 

[159], but the pressure drop in the suction cup was considered to be constant. In Baik et al 

(2017), the authors presented a closed-form solution for the adhesion strengths of cratered 

surfaces. However, the analysis is based on the prior work of Afferrante et al [167] and 

Tramacere et al [168], which is applicable to suction cups rather than craters. All of these 

call for a new modeling scheme for crater-enabled dry adhesives.   
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 CHAPTER SUMMARY 

 In this chapter, three types of adhesives have been discussed. The conventional 

pressure sensitive adhesives, which are widely used in healthcare but still facing some 

limitations; the micro-pillar-enabled adhesives which have emerged as a new dry adhesive 

but also suffer from the low structural stability and repeatability; and crater-enabled dry 

adhesives, which are still in its infancy but have exhibited many superiorities to others. 

Fundamental understanding of the behavior of craters is critical to the design, including 

optimal selection of material properties, crater shape, and preload. In Chapter 6, we will 

establish a theoretical framework to analyze isolated craters in ambient condition, obtain 

nonlinear solutions to preload-dependent suction forces, and validate our solutions by 

experiments. We regard this study as an essential step toward developing a comprehensive 

framework for quantitative characterization of cratered surface. Utilizing this framework, 

we continue to consider the effect of surface tension (Chapter 7) and aquatic environment 

condition (Chapter 8) on isolated crates and extend to crater arrays in Chapter 9. 
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Chapter 6 Isolated Craters in Ambient Environment5 

Enhanced adhesion of crater-enabled dry adhesives is primarily attributed to the 

suction effect. In this chapter, we develop a framework for quantifying the suction effect 

produced by isolated craters combining experimental, numerical simulation and analytical 

approaches. The modeling approach emphasizes the essential role of large elastic 

deformation, while the airflow dynamics, microscopic mechanisms, like surface tension 

and air permeation, and rate-dependence are neglected. This approach is validated using 

experimental data for isolated hemispherical craters. The modeling approach is further 

applied to spherical cap (not necessarily hemi-spherical) craters with the objective of 

identifying optimal geometric and material properties, as well as the minimum preload 

necessary for attaining the maximum suction force. 

  

                                                 
5 S. Qiao, L. Wang, G. Rodin, N. Lu*. Suction effects in cratered surfaces. Journal of the Royal Society 

Interface. 14(135):20170377. Oct 1, 2017. (L. Wang conducted some parts of numerical simulations, 

experiments and wrote the analysis section in the paper)  
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 HEMI-SPHERICAL CRATERS 

In this section, we use experimental, computational, and analytical approaches to 

study isolated hemi-spherical macroscopic craters. The computational framework 

established in this section will be applicable to more general classes of isolated 

macroscopic craters, i.e., craters of other shapes. 

6.1.1 Modeling setup  

Consider a specimen containing a hemi-spherical crater with radius 𝑎 . The 

specimen rests on a flat rigid substrate. We suppose that the specimen is made of rubber, 

that is, it is capable of sustaining large elastic strains. The air inside the crater is the same 

as in the ambient environment, and it is characterized by the atmospheric pressure 𝑝𝑎, 

volume 𝑉0, and molecules 𝑁0.  

The suction effect is realized in two stages:  

1. The specimen is compressed, so that the air is squeezed out of the crater; at the end 

of this stage, the remaining air in the crater is characterized by the triplet (𝑝1, 𝑉1, 𝑁1).  

2. The specimen is unloaded, so that the crater springs back. This action results in a 

pressure drop associated with the suction effect. At the end of this stage, the air in the 

crater is characterized by the triplet (𝑝2, 𝑉2, 𝑁2). 

Accordingly, the pressure drop is 

 −Δ𝑝 = 𝑝1 − 𝑝2  

and the suction force is  

 𝐹 = −Δ𝑝𝐴2 (6.1) 

where 𝐴2 is the projected area of the crater at the end of Stage 2.  
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Figure 6.1  A loading-unloading cycle that produces the suction effect: (a) A specimen 

with an isolated hemi-spherical crater of radius 𝑎 resting on a flat plate (blue); (b) The 

specimen is preloaded in compression and the air is squeezed out of the crater; (c) The 

preload is released, and the springback induces vacuum in the crater. The symbols 𝑝, 𝑉 and 

𝑁 denote the pressure, volume, and number of molecules of air inside the crater at each 

state. 
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A complete analysis of the two-stage process requires one to model the airflow 

dynamics. Preliminary results presented in this dissertation are obtained by adopting the 

following assumptions:  

1. The air flows freely out of the crater upon loading, so that 𝑝1 = 𝑝𝑎. 

2. No air exchange takes place upon unloading, so that 𝑁1 = 𝑁2.  

3. The entire process is isothermal and the air is an ideal gas, so that 𝑝1𝑉1 = 𝑝2𝑉2. 

As a result, the expression for the suction force becomes  

 𝐹 = (1 −
𝑉1
𝑉2
) 𝑝𝑎𝐴2 (6.2) 

The first assumption that the liquid can flow out freely when compressed is inspired 

by prior works on thin-walled suction cups [163, 167, 169]. In these models [163, 167, 

169], analytical relationship between preload and suction-cup deformation has been 

obtained by neglecting gas resistance during compression. As for the second assumption 

that there is no leakage during unloading, it is consistent with experimental observations 

for thin-walled suction cups[163, 167, 169] as well as surface craters[69].With the adopted 

assumptions, the dynamics of airflow is regarded as a sequence of static equilibrium states. 

Consequently, it becomes sufficient to analyze the two-stage process in the context of solid 

mechanics. 

In the remainder of this section, we describe an experimental setup designed to 

conform with the adopted assumptions. Further, we show that the experimental results can 

be accurately predicted using nonlinear elasticity theory alone. That is neglecting the 

airflow dynamics appears to be a good assumption.  
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6.1.2 Experimental Setup 

The experimental setup was designed so that it realizes the two-stage process under 

conditions that well represent the adopted assumptions. We choose polydimethylsiloxane 

(PDMS, Sylgard 184 Dow Corning) to make our specimens as it is a quintessential rubber 

with negligible rate-dependence in the time-temperature range in our experiments [170]. 

Cylindrical specimens with diameter 25.40 mm and height 35.13 mm was molded from 

PDMS with the base-to-curing-agent mass ratio equal to 30:1, and then cured at 70℃ for 

12 hours. A hemi-spherical crater of diameter 12.70 mm was placed at the center of a 

circular face.  

Pure rectangular prisms without crater were also made for identifying material 

properties. The dimensions of the prisms were 25×25×40 mm3. To this end, we conducted 

a uniaxial compression test using a Dynamic Mechanical Analyzer (DMA) (RSA-G2, TA 

Instruments). The top and bottom surfaces of the specimen were lubricated by performance 

oil (Fellowes Powershred Performance Shredder Oil) such that the specimen was under 

uniaxial stress. The loading velocity was set at 3 mm/min, which corresponds to a nominal 

strain rate of 1.25×10-3 s-1, so that the deformation was dominated by rubber elasticity. The 

axial load-displacement data were converted into the nominal stress 𝜎 versus the principal 

stretch 𝜆 data and fitted by the incompressible Neo-Hookean model 

 𝜎 = 𝜇 (𝜆 −
1

𝜆2
) (6.3) 

where the shear modulus 𝜇 is the small strain shear modulus as well as a fitting parameter. 

As shown in Figure 6.2, this model fits the experimental data very well for 𝜇 = 47.3 kPa.  
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Direct measurements of the suction force upon unloading are difficult. Therefore 

we performed the loading-unloading experiments on the specimens and measured the pull-

off force rather than suction force. These data can be used for calculating the suction force.  

 

 

 

 

Figure 6.2  Nominal stress 𝜎 versus the principal stretch 𝜆. The data were obtained 

using pure rectangular specimens subjected to uniaxial compression, and fitted based on 

the incompressible Neo-Hookean model for 𝜇=47.3 kPa. 
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To realize experimental conditions that well represent the adopted assumptions, we 

built a special platform as illustrated by a schematic in Figure 6.3 (a) and a photograph in 

Figure 6.3 (b). The cratered specimen was compressed against a stiff acrylic platform. At 

the platform center, we drilled a ventilation hole with diameter of 0.8 mm, which was used 

for releasing and trapping the air in the crater. During the first stage, consistent with the 

first assumption, the hole was opened. During the second stage, consistent with the second 

assumption, the hole was sealed. Both stages were realized using a 3 mm/min loading 

velocity. Similar to the pure rectangular prism, the top and bottom surfaces of the cratered 

specimens were lubricated. To measure the pull-off force, the second stage involved not 

only unloading but also retraction. That is, during the second stage, the specimen was 

stretched beyond the unloading point, until the cratered surface was pulled off the platform. 

The load-displacement data for both pure prismatic and cratered specimens are shown in 

Figure 6.3 (c) and Figure 6.3 (d). There we identify the loading, unloading, and retraction 

stages, and the pull-off force. Note that the two sets of data are qualitatively similar. 

Nevertheless, quantitative differences are significant enough to identify the suction effect. 
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Figure 6.3  A schematic drawing (a) and a photograph (b) of the experimental platform. 

The small ventilation hole drilled in the bottom plate is open during loading and closed 

during unloading. Load-displacement curves with vent hole open (c) and closed (d) during 

unloading. Peak compressive strain was 10%. Loading, unloading, retraction stages, and 

the pull-off points are identified.  
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In both testing systems, the top and bottom surfaces of the specimen were still 

lubricated by performance oil (Fellowes Powershred Performance Shredder Oil) such that 

the specimen was free of friction and loaded under uniaxial stress.  

Because the suction force induced by pressure drop inside the crater (Δ𝑝) only 

depends on the different liquid pressure inside the crater (i.e. 𝑝1 and 𝑝2) instead of the 

ambient, it was only necessary to fill the crater with incompressible liquid and perform the 

measurement in air. To realize experimental conditions that well represent the adopted 

assumptions, we built a special platform as illustrated by a schematic in Figure 6.3 (a) and 

a photograph in Figure 6.3 (b). The cratered specimen was compressed against a stiff 

acrylic platform. At the platform center, we drilled a ventilation hole with diameter of 0.8 

mm, which was used for releasing and trapping the liquid in the crater. During the first 

stage, consistent with the first assumption, the vent hole was kept open. During the second 

stage, consistent with the second assumption, the hole was sealed. Both stages were 

realized under a 3 mm/min loading velocity. To measure the pull-off force, the second 

stage involved not only unloading but also retraction. That is, during the second stage, the 

specimen was stretched beyond the unloading point, until the cratered surface was pulled 

off the platform. This pull-off force is denoted as 𝐹′. To extract the suction force, we 

performed the same loading-unloading experiments with the vent hole open throughout the 

test and the collected pull-off force is denoted as 𝐹′′. Representative load-displacement 

curves for both cases are plotted in Figure 6.3 (c) and Figure 6.3 (d). There we identify the 

loading, unloading, and retraction stages, as well as the pull-off force. Note that the two 
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sets of data are qualitatively similar. Nevertheless, quantitative differences are significant 

enough to identify the suction effect.  

The experimentally collected pull-off force 𝐹′ is a resultant force of the adhesion 

strength over the specimen/platform interface and the suction force over the crater, whereas 

𝐹′′ only consists of the interface adhesion. Thus, the difference in value  

 
𝐹 = 𝐹′ − 𝐹′′ (6.4) 

produces the suction force inside the crater at pull-off as illustrated by the free body 

diagram in Figure 6.4 (a), the suction force 𝐹′ − 𝐹′′  is plotted against the preload 𝜖, 

which is the peak macroscopic axial strain defined as  

 𝜖 = −Δ𝐿/𝐿 (6.5) 

where 𝐿 is the specimen axial length. Solid dots denote results measured are by DMA 

while hollow dots are measured by MTS. In general, craters can produce stronger suction 

force when larger compression is applied. Note that experimental results from DMA were 

limited to 0 ≤ 𝜖 ≤ 0.32, which is associated with the allowable load of the DMA used in 

the experiments. At 𝜖 ≈ 0.32, we measured pull-off forces by both DMA and MTS, and 

the corresponding results are in good agreement for craters filled with both liquid and air. 

This justifies the consistence between the experiments performed via DMA and MTS. 
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Figure 6.4  (a) A schematic of the free body diagram of a specimen at pull-off. (f) 

Experimentally measured suction forces (F'−F'') of air-filled craters. Data obtained by 

DMA are represented by solid dots and MTS by hollow circles.  
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6.1.3 Finite Element Analysis 

Following experimental data for the pure prismatic specimens, we assumed that the 

constitutive behavior of the cratered specimens is described by the incompressible Neo-

Hookean constitutive model with 𝜇 = 47.3 kPa. To simplify the analysis, we applied 

axisymmetry, and the specimen/substrate interface was assumed to be frictionless (Figure 

6.5). Also we neglected any surface tension effects simply because  

 𝛾

𝑎𝜇
≈

2 × 10−2𝑁 𝑚⁄

(10−2 𝑚) × (4 × 104𝑁 𝑚2⁄ )
= 5 × 10−5 ≪ 1 (6.6) 

where 𝛾 is the surface tension of PDMS [171].  

 

 

Figure 6.5  A finite element mesh for an axisymmetric crater model. (b) A deformation 

sequence of a specimen in a loading-unloading test: top row for loading stage and bottom 

row for unloading stage.  
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We used finite element simulations to compute the relationship between the suction 

force 𝐹 = −Δ𝑝𝐴2 and the preload 𝜖. All simulations were conducted using Abaqus. The 

finite element mesh formed by CAX4H elements is shown in Figure 6.5 (a); this mesh was 

selected using basic convergence tests. We used the option *FLUID CAVITY which is 

ideal for modeling both stages of the gas-solid interactions.  

Figure 6.5 (b) shows a sequence of deformed configurations of a specimen with 

hemi-spherical crater in a loading-unloading test. The first panels in top and bottom rows 

are the initial (before loading) and final (end of unloading) configurations, respectively. 

The third panels in each row correspond to the end of loading with 𝜖 =0.35, and the rest 

are intermediate states. At the end of the unloading, the finite element results indicate that 

the crater maintains the spherical symmetry.  
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6.1.4 Linear Elasticity Analysis  

In this section, we present linear elasticity analysis of the problem based on 

Eshelby’s formalism [172]. We treat the crater as an isolated hemi-spherical crater in a 

semi-infinite specimen, and take advantage of the assumption that the contact between the 

specimen and the substrate is frictionless. This allows us to replace the problem for semi-

infinite specimen containing a hemi-spherical crater with an infinite specimen containing 

a spherical cavity. This problem is straightforward to analyze using Eshelby’s formulism  

According to Eq. (6.2), we need to calculate 𝑉1, 𝑉2, and 𝐴2. Note that according 

to classical linear elasticity, the quantities Δ𝑉1 = 𝑉1 − 𝑉0 , Δ𝑉2 = 𝑉2 − 𝑉0, and Δ𝐴2 =

𝐴2 − 𝐴0 are infinitesimal. This allows us to replace 𝐴2 with 𝐴0. However, computing 

Δ𝑉1 and Δ𝑉2 is essential for meaningful calculation of the suction force.  

To compute Δ𝑉1, we subject the infinite specimen to remote uniaxial compressive 

strain 𝜖. For this case, Eshelby’s formulism yields  

 Δ𝑉1 = −
3

2
(1 − 𝜈)𝜖𝑉0 (6.7) 

where 𝜈 is the Poisson’s ratio of the specimen material, and for incompressible material, 

we have 𝜈 = 1/2.  

To compute Δ𝑉2, we subject the cavity to the surface traction 

 𝒕 = (𝑝1 − 𝑝2)𝒏 = (𝑝𝑎 − 𝑝2)𝒏 = −∆𝑝 𝒏 (6.8) 

where 𝒏 is the outward normal. As far as Δ𝑉2 is concerned, this problem is equivalent to 

the superposition of two problems. In the first problem, the specimen is uniformly loaded 
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by −Δ𝑝 on both cavity and remote surfaces. In the second problem, the cavity surface is 

traction-free and the remote surface is subjected to Δ𝑝. As a result, we obtain  

 Δ𝑉2 =
3

4
 
∆𝑝

𝜇
𝑉0 (6.9) 

where  

 ∆𝑝 = −(1 −
𝑉1
𝑉2
) 𝑝𝑎 (6.10) 

Therefore, one can calculate the suction force  

 𝐹 =
1

2
[(1 +

4𝜇

3𝑝𝑎
) − √(1 +

4𝜇

3𝑝𝑎
)
2

− 8(1 − 𝜈)
𝜇

𝑝𝑎
𝜖] 𝑝𝑎𝐴0 (6.11) 
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6.1.5 Results  

 

 

Figure 6.6  (a) Comparisons of suction forces obtained by experimental measurements 

(circular markers), analytical modeling (dashed curves) and finite element simulation 

(solid curves and diamond markers). (b) Finite element simulation results of crater profiles 

upon unloading (blue curve) and at pull-off (red curve) at 𝜖 = 𝜖𝑓. Dashed curve represents 

the initial profile of the hemi-spherical crater.  
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Comparisons of experimental (circular markers), simulation (solid curve), and 

analytical (dashed curve) results are shown in Figure 6.6 (a), where the suction force is 

plotted versus the preload 𝜖. In the range of 0 ≤ 𝜖 ≤ 0.36, experimental and simulation 

results are in good agreement, which validates the use of the modelling assumptions, as 

well as extending the simulations for characterizing more general situations under loading 

range 0 ≤ 𝜖 ≤ 0.36. The calculated suction force −Δ𝑝𝐴2 using linear elasticity analysis 

is plotted as the dashed blue curve in Figure 6.6 (a). It is clear that the linear analysis is 

valid for small strains, and deviates significantly from the experimental and simulation 

results for 𝜖 > 0.1, and therefore its usefulness is rather limited. 

Under large preload, especially when craters reach full closure upon loading, finite 

element simulation shows considerable discrepancy from experimental results. One source 

of the discrepancy comes from the different definitions of suction force used in experiments 

and simulations. In experiments, 𝐹′ − 𝐹′′ represents the suction force inside the crater at 

pull-off, while in simulations, −Δ𝑝𝐴2 is the suction force at the end of unloading and 

before retraction. At small preload, it is fair to argue that the crater has similar configuration 

at pull-off point with that upon fully unloading, so that 

 𝐹′ − 𝐹′′ ≈ −Δ𝑝𝐴2 (6.12) 

is expected. This is true under loading range 0 ≤ 𝜖 ≤ 0.32 based on the observation from 

Figure 6.6 (a). However, the approximation in Eq. (6.12)(6.12) will no longer hold once 

significant difference exists between the pull-off status and the fully unloading status. In 

finite element simulations, experimentally measured retraction strain at pull-off, 𝜖𝑡, can 
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be applied after unloading. Resulted suction forces, 𝐹 = −Δ𝑝′𝐴2
′ , are plotted as blue 

diamonds in Figure 6.6 (a), where Δ𝑝′ and 𝐴2
′  represent the finite element results of 

pressure drop inside the crater and the projected area of the crater at “pull-off”, 

respectively. It is found that Δ𝑝′ doesn’t differ from Δ𝑝 significantly (relative error < 

1%), but 𝐴2
′  is considerably smaller than 𝐴2, as shown in Figure 6.6 (b). In Figure 6.6 

(a), the good agreement between 𝐹 = −Δ𝑝′𝐴2
′  and 𝐹′ − 𝐹′′ indicates that, for air-filled 

craters, the discrepancy between finite element simulation and experimental results can be 

fully explained by the difference in −Δ𝑝𝐴2 and 𝐹′ − 𝐹′′.  

Thus, to accurately predict the suction force at pull-off, one needs the traction-

separation behavior of the specimen/platform interface, which is out of our focus. So, we 

would focus on the study of the suction force −Δ𝑝𝐴2 upon unloading only.  
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 SPHERICAL-CAP-SHAPED CRATERS  

In this section, we extend the simulation approach developed for hemi-spherical 

craters to spherical-cap-shaped (SCS) craters. Our focus is on maximizing the suction force 

by optimizing the crater shape and specimen mechanical properties. Since our analysis is 

limited to large specimens, the only dimensionless geometric parameter involved is  

 𝑏

𝑎
 (6.13) 

where 𝑎 is crater base radius and b is the crater height (Figure 6.7 (a)). The dimensionless 

stiffness parameter is defined as  

 
𝜇

𝑝𝑎
 (6.14) 

In the previous section, these parameters were fixed at 𝑎/𝑏 = 1 and 𝜇/𝑝𝑎  =

0.47  for a hemispherical crater in the ambient environment. Further, in the previous 

section, the preload 𝜖 was varied. In contrast, in this section, this parameter is set to be 

𝜖𝑓 , which is the preload so that the crater attains a full closure and realizes complete 

vacuum. With this provision 𝑉1 = 0, and the suction force is computed from Eq. (6.2) as  

           𝐹̂ = −Δ𝑝𝐴2/(𝑝𝑎𝐴0) (6.15) 

The normalized suction force 𝐹̂ as a function of 𝑏/𝑎 and 𝜇/𝑝𝑎 can be produced using 

finite element simulations, and is presented as a contour plot Figure 6.7 (b). This plot 

clearly demonstrates that large 𝐹̂’s are realized by specimens with large 𝑏/𝑎 and 𝜇/𝑝𝑎. 

But the dependence of 𝐹̂ on 𝑏/𝑎 and 𝜇/𝑝𝑎 is not monotonic.  
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Figure 6.7  (a) A schematic of the spherical-cap-shaped (SCS) crater. (b) A contour plot 

for the normalized achievable suction force 𝐹̂  as a function of 𝑏/𝑎  and 𝜇/𝑝𝑎 . (c) 

Minimum preload strain for closure 𝜖𝑓 as a function of 𝑏/𝑎. 

 

 

Further, for sufficiently stiff specimens, the dependence on 𝛼 is relatively weak. 

We identify “good” specimens as those for which 𝐹̂ > 0.8; the rest of the specimens are 

regarded as “bad”. This (arbitrary) classification is represented by the black curve in Figure 

6.7 (b). In Figure 6.7 (c), we present 𝜖𝑓  as a function of 𝑎/𝑏 ; apparently 𝜖𝑓 is 

independent of 𝜇/𝑝𝑎. As expected, deep craters require large 𝜖𝑓.  

To gain further insight into simulation results, we present the deformed shape of 

twelve specimens upon full unloading corresponding to 𝛼 = 0.25, 0.5, 0.75, 1 and 𝛽 = 

0.5, 1, 10 (Figure 6.8). The dashed lines show the initial craters. It is clear from that stiff 

specimens with deep craters are capable of recovering in a way that 𝐴2 ≈ 𝐴0  and 

therefore for such specimens 𝐹̂ ≈ 1. In contrast, soft specimens with shallow craters result 

in 𝐴2 ≪ 𝐴0 and therefore very small.  
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Figure 6.8  Deformed (solid lines) and undeformed (dashed lines) shapes of craters. The 

deformed shapes correspond to complete unloading.   
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 CHAPTER SUMMARY  

In this work, we established a framework for quantifying the suction force 

generated by a macroscopic crater. For the sake of simplicity, we assume frictionless 

interface between the crater and the flat substrate. We also neglect the surface tension effect 

as our size of samples are much large than the elaso-capillary length. Linear elasticity 

solution has been obtained using Eshelby’s formulism, which breaks down at large preload. 

Both experiments and finite element analysis have been carried out, which mutually agree 

with each other for a hemi-spherical crater. The finite element analysis was then adopted 

to characterize craters of other shapes, i.e., spherical-cap-shaped in this Chapter. We found 

that the suction force show a non-monotonic dependence on the aspect ratio of the crater 

as well as the material stiffness. In stiff materials, one can realize large suction forces by 

optimizing the crater shape. 

  



 109 

 

 

 

 

 

 

Chapter 7 Effect of Surface Tension on Isolated Miniaturized Craters6 

In Chapter 6, we developed a framework for quantifying the suction forces 

produced by isolated macroscopic craters neglecting surface effects. In this chapter, we 

take surface tension into consideration because it plays a significant role in microscale 

craters on soft polymers. We have derived linear and nonlinear elastic solutions for the 

elasto-capillary distortion in miniature hemi-spherical craters when they are demolded 

from the template. By implementing a user-element subroutine in finite element modeling 

(FEM), we have also simulated the demolding, compression, and unloading processes of 

the craters subjected to surface tension under large deformation. We discover that 

reinforcing the crater surface by a thin and stiff shell can help sustain the crater shape after 

demolding. The effects of shell thickness and stiffness are quantitatively investigated 

through FEM and optimal parametric combinations are identified. 

 

  

                                                 
6 L. Wang, S. Qiao, N. Lu*, Effects of surface tension on the suction forces generated by miniature craters. 

Extreme Mechanics Letters, 5: 130-138. Jul. 27, 2017.(L. Wang conducted the theoretical analysis, finite 

element simulation, and wrote the paper) 
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 INTRODUCTION 

Commonly used fabrication method for miniature craters is molding. The molding 

templates are created using either micromachining [67] or colloidal lithography [66, 164]. 

Such methods worked well for UV resin [164] whose modulus is in the GPa range and 10:1 

PDMS [66] whose modulus is in the MPa range. However, when researchers tried to mold 

40:1 PDMS (shear modulus 𝜇  =52 kPa) with m-sized craters, they found that after 

peeling off PDMS from the template, i.e. demolding, the craters in PDMS appeared to be 

much smaller than the domes on the molding template. After coating stiffer PDMS layers 

on the template before molding 40:1 PDMS, the craters were able to preserve the template 

shape very well after demolding [67]. We attribute the self-collapse of miniature craters on 

soft polymers after demolding to the so-called elasto-capillary phenomena [173, 174].  

 

Figure 7.1  Schematics for the deformation process of an isolated hemi-spherical crater 

with reinforcing shell. (a) Crater on the mold whose volume is defined by the molding 

template, 𝑉𝑡; (b) State 0: after demolding, the crater volume contracts to 𝑉0 merely due 

to surface tension. (c) State 1: preload 𝜖 is applied on the specimen to squeeze the crater 

to volume 𝑉1; (d) State 2: crater volume recovers to 𝑉2 after unloading.  
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To elaborate on how the elasto-capillary phenomena can affect the miniature 

craters, let’s consider a crater of radius r in a polymer whose shear modulus is 𝜇 and 

surface energy density is 𝛾. If constant surface energy density is assumed, surface tension 

would equal to surface energy density 𝛾 [175]. Since the total surface energy scales as 

𝛾𝑟2  while the volumetric strain energy scales as 𝜇𝑟3 , we can define a dimensionless 

elasto-capillary number  

 𝛤 = 𝛾 /(𝜇𝑟) (7.1) 

to represent the ratio of surface energy to strain energy. When the polymer is very stiff (𝜇 

is large) and/or the crater is very big (𝑟 is large), 𝛤 would approach zero, which means 

the surface energy would be negligible compared with the elastic strain energy and 

therefore the crater cannot be deformed by surface tension. However, when the polymer is 

ultra-soft (𝜇 is small) and when the crater is in micro- or nano-scale (𝑟 is small), 𝛤 can 

be so large that the effects of surface tension is no longer negligible. In this case, the crater 

will try to reduce the surface energy (or surface area) through mechanical deformation. 

Experimentally, such elasto-capillary phenomena have been widely reported when 𝛤 is 

near 1 [173, 174, 176, 177]. Specific to craters, let’s consider the experiments carried out 

by Choi et al. [67] where they tried to mold m-sized craters out of 40:1 PDMS whose 𝜇 

=52 kPa, 𝛾 = 20 mN/m [178, 179], and  r ~ 0.5 μm. Plugging into Eq. (7.1), we find 

𝛤 = 0.769, which suggests that due to surface tension, the crater may shrink significantly 

to reduce its surface area after demolding. Adding a stiff reinforcing shell to the crater 

proved to be an effective way to sustain the crater shape [67]. However, a quantitative 
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characterization of the effects of surface tension and reinforcing shell on the suction force 

generated by those craters is still missing. 

Following a framework developed for isolated macroscopic craters neglecting 

surface effects in Chapter 6 [180], here we analyze isolated hemi-spherical craters with 

reinforcing shells subjected to surface tension. The process of suction generation is 

illustrated using a quarter of the crater in Figure 7.1. When the specimen is just cured and 

still on the molding template, the volume of the crater is denoted by 𝑉𝑡(Figure 7.1(a)). 

After demolding, the crater contracts due to surface tension (Stage 0). At the end of Stage 

0, the air inside the crater is the same as the ambient air so it is characterized by pressure 

𝑝0, volume 𝑉0, and number of molecules 𝑁0 (State 0, Figure 7.1(b)). The suction effect 

is then realized in the following two stages: 

Stage 1: the specimen is compressed by a nominal strain of 𝜖, named the preload, 

against a flat plate (not shown in Figure 7.1(c)), such that air is squeezed out of the crater. 

At the end of this stage, the remaining air in the carter is characterized by the triplet 

(𝑝1, 𝑉1, 𝑁1) (State 1, Figure 7.1(c)).  

Stage 2: the specimen is unloaded and the crater springs back. This action results 

in a pressure drop inside the crater which produces the suction force. At the end of this 

stage, the air in the crater is characterized by the triplet (𝑝2, 𝑉2, 𝑁2) (State 2, Figure 

7.1(d)). 

Accordingly, the pressure drop is  

 −Δ𝑝 = 𝑝1 − 𝑝2  

and the suction force is  
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 𝐹 = −Δ𝑝𝐴2 (7.2) 

 

where 𝐴2 is the projected area of the crater at State 2. 

Key assumptions adopted in this paper are: 

1. The air flows freely out of the crater upon loading (Stage 1), so that 𝑝1 = 𝑝0. 

2. No air exchange takes place upon unloading (Stage 2), so that 𝑁2 = 𝑁1. 

3. The entire process is isothermal and the air is an ideal gas, so that 𝑃1𝑉1 = 𝑃2𝑉2. 

As a result, the pressure drop can be related to the crater volumes as 

 −Δ𝑝 = (1 −
𝑉1
𝑉2
) 𝑝0 (7.3) 

 

Therefore, the suction force becomes 

 𝐹 = (1 −
𝑉1
𝑉2
)𝑝0𝐴2 (7.4) 

 

In the following section, we simply assume that the crater is sitting in the air such 

that initial pressure equals the atmospheric pressure, i.e., 𝑝0 = 𝑝𝑎. We will quantitatively 

characterize the effects of surface tension and reinforcing shell on crater performance. 

Linear and nonlinear elastic formulation for Stage 0 and nonlinear elastic finite element 

modeling (FEM) of all three stages are described. Analytical and FEM results are 

presented. 
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 METHODS 

7.2.1 Linear Elasticity Solutions for Stage 0 

Given the axisymmetry of the specimen, this problem can be analyzed as a 2-D 

problem. By neglecting the interfacial shear stress between the specimen and the flat plate 

and by overlooking the surface tension effects at the rim of the crater, the hemi-spherical 

crater can be mirrored to a spherical cavity embedded in a polymer matrix (Figure 7.2 (a)). 

The matrix dimension is assumed to be much larger than the cavity size such that the matrix 

can be treated as infinitely large. The initial radius of the crater is 𝑅𝑡 (as defined by the 

molding template shown in Figure 7.1 (a)) and the shear modulus of the polymer matrix is 

𝜇𝑚. Surface tension can be interpreted as a normal traction applied on the surface of the 

spherical cavity [181-183]:  

 𝑡𝑛 = 𝛾𝜅 (7.5) 

where 𝜅 is the sum of the two principal curvatures, which equals to 2/𝑅𝑡 initially. 

We first solve the problem using linear elasticity in a polar coordinates defined in 

Figure 7.2 (a) by adopting Lur’e solution [184] . The displacement and stress fields can be 

expressed as 

 

𝑈𝑟 = 𝐹𝑟 +
𝐺

𝑟2
+ 𝑃2(𝑐𝑜𝑠 𝜙) × [12𝐴𝜈 𝑟3 + 2𝐵𝑟 + 2𝐶

5 − 4𝜈

𝑟2
− 3

𝐷

𝑟4
] 

𝑈𝜙 =
𝑑𝑃2(cos𝜙)

𝑑𝜙
× [(7 − 4𝜈)𝐴 𝑟3 + 𝐵𝑟 + 2𝐶

1 − 2𝜈

𝑟2
+
𝐷

𝑟4
] 

(7.6) 

 

 



 115 

 

𝜎𝑟𝑟
2𝜇𝑚

= [2𝐵 −
2𝐶

𝑟3
(10 − 2𝜈) +

12𝐷

𝑟5
] 𝑃2(𝑐𝑜𝑠 𝜙) +

𝐹(1 + 𝜈)

1 − 2𝜈
−
2𝐺

𝑟3
 

𝜎𝑟𝜙

2𝜇𝑚
= [𝐵 +

2𝐶

𝑟3
(1 + 𝜈) − 4

𝐷

𝑟5
]
𝑑𝑃2(𝑐𝑜𝑠 𝜙)

𝑑𝜙
 

(7.7) 

where 𝑈𝑟  and 𝑈𝜙  are the displacements of cavity surface in the radial and hoop 

directions, respectively, and 𝜎𝑟𝑟 and 𝜎𝑟𝜙 are the normal and shear stresses, respectively. 

𝑃2(𝑐𝑜𝑠 𝜙) = 1/2(3𝑐𝑜𝑠
2𝜙 − 1) is the Legendre Polynomial of order two and 𝜈  is the 

Poisson’s ratio of the polymer matrix. Coefficients 𝐴 through 𝐺 are to be determined by 

boundary conditions.  

 

 

 

Figure 7.2  Effective boundary value problems for Stage 0. (a) A spherical cavity of radius 

𝑅𝑡 inside a matrix of shear modulus 𝜇𝑚. (b) A reinforcing shell of thickness t and modulus 

𝜇𝑠 is added. Both the matrix and the reinforcing shell are assumed to be incompressible 

Neo-Hookean materials. 
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The boundary conditions of Figure 7.2 can be expressed as: in the far field, 𝜖𝑟𝑟
∞ = 0; at 

𝑟 = 𝑅𝑡,   𝜎𝑟𝑟 = 2𝛾/𝑅𝑡,   𝜎𝑟𝜙 = 0. Hence the only nonzero coefficient is found to be 

𝐺 = −𝑅𝑡
2𝛾/(2𝜇𝑚) , which gives the radial displacement of the crater surface 𝑈𝑟 =

−𝑅𝑡𝛤/2 , where  𝛤 = 𝛾/(𝜇𝑚𝑅𝑡)  is the dimensionless elasto-capillary number. 

Therefore, at the end of Stage 0 (i.e. demolding), the hemi-spherical crater will deform to 

another hemi-sphere with a new radius of 

 𝑅0 = 𝑅𝑡(1 −
𝛤

2
) 

(7.8) 

Equation (7.8) shows that the change of crater radius Δ𝑅 = 𝑅0 − 𝑅𝑡  is linearly 

proportional to the elasto-capillary number 𝛤.  

Lur’e formulism, i.e. Eq. (7.6) and Eq. (7.7), can also be applied to solve a spherical 

cavity with a reinforcing shell subjected to surface tension, as depicted in Figure 7.2 (b). 

The thickness and shear modulus of the shell is 𝑡 and 𝜇𝑠, respectively. In this case, the 

boundary conditions become: in the far field, 𝜖𝑟𝑟
∞ = 0 ; at 𝑟 = 𝑅𝑡,   𝜎𝑟𝑟

𝑠 = 2𝛾/

𝑅𝑡,   𝜎𝑟𝜙
𝑠 = 0 , where superscript “s” stands for shell. In addition, stresses and 

displacements should be continuous across the shell-matrix interface, i.e., at 𝑟 = 𝑅𝑡 +

𝑡,  𝜎𝑟𝑟
𝑠 = 𝜎𝑟𝑟

𝑚;  𝜎𝑟𝜙
𝑠 = 𝜎𝑟𝜙

𝑚 ; 𝑈𝑟
𝑠 = 𝑈𝑟

𝑚; 𝑈𝜙
𝑠 = 𝑈𝜙

𝑚 , where superscript “m” indicates the 

matrix. Assume both the shell and the matrix are incompressible materials, i.e., 𝜈 = 0.5, 

solving this boundary value problem gives the following radius of crater after demolding: 

 𝑅0 = 𝑅𝑡{1 −
𝛤(1 + 𝛽)3

2[(1 − 𝛼) + 𝛼(1 + 𝛽)3]
} (7.9) 
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where 𝛼 = 𝜇𝑠/𝜇𝑚 is the normalized shell modulus and 𝛽 = 𝑡/𝑅𝑡 is the normalized shell 

thickness. It is obvious that Eq. (7.9).will decay to Eq. (7.8) when 𝛼 = 1 or 𝛽 = 0, i.e., 

when there is effectively no shell. The conclusion that Δ𝑅 is proportional to 𝛤 is also 

true for Eq. (7.9). 
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7.2.2 Nonlinear Elasticity Solutions for Stage 0 

According to Eq. (7.8), if 𝛤 is 2, 𝑅0 should be zero, indicating that the crater 

would disappear due to large surface tension. Such large deformation violates the small 

deformation assumption in linear elasticity. In fact, the spherical symmetry of the two 

cavities in Figure 7.2 dictates that the solution for this problem should be independent of 

𝜙, which means that the spherical cavity will deform to another spherical shape. Under 

such premise, nonlinear elasticity solutions may be deduced. First, consider a spherical 

cavity with initial inner radius 𝑅𝑡 (Figure 7.2(a)) and an arbitrary radius 𝑅 (𝑅 ≥ 𝑅𝑡) in 

the reference configuration. When subjected to surface tension (i.e., Stage 0), it deforms to 

another cavity with inner radius 𝑅0  and the radius 𝑅  deforms to 𝑟(𝑟 ≥ 𝑅0)  in the 

current configuration. Hence the hoop stretch is defined as 𝜆𝜙(𝑅) = 𝑟/𝑅 . The 

incompressibility of the polymer requires a constant volume of the shell confined by 𝑅𝑡 

and 𝑅, i.e., 

 𝑅3 − 𝑅𝑡
3 = 𝑟3 − 𝑅0

3 (7.10) 

Due to spherical symmetry, the material is under a triaxial stress state (𝜎𝑟𝑟 , 𝜎𝜙𝜙, 𝜎𝜙𝜙). If 

incompressibility is considered, superposing a hydrostatic stress (−𝜎𝑟𝑟, −𝜎𝑟𝑟, −𝜎𝑟𝑟)  on 

the material will not change the state of deformation. Therefore, the stress state of the 

material becomes (0, 𝜎𝜙𝜙 − 𝜎𝑟𝑟 , 𝜎𝜙𝜙 − 𝜎𝑟𝑟) . The constitutive law for incompressible 

Neo-Hookean materials in this equibiaxial stress state can be rewritten as  

 𝜎𝜙𝜙 − 𝜎𝑟𝑟 = 𝜇𝑚(𝜆𝜙
2 − 𝜆𝜙

−4) (7.11) 

The nontrivial equilibrium equation of this problem is 
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𝑑𝜎𝑟𝑟(𝑟)

𝑑𝑟
+ 2

𝜎𝑟𝑟 − 𝜎𝜙𝜙

𝑟
= 0 

(7.12) 

Plugging Eq. (7.11) and Eq. (7.12)and integrating Eq. (7.12) from 𝑟 = 𝑅0 to 𝑟 = ∞ 

yields 

 𝜎𝑟𝑟|𝑟=∞ − 𝜎𝑟𝑟|𝑟=𝑅0 = 𝜇𝑚[
5

2
− 2

𝑅𝑡
𝑅0
−
1

2
(
𝑅𝑡
𝑅0
)
4

] 
(7.13) 

The right hand side is a well-established function group to characterize the large 

deformation of hyperelastic materials [185], while the left hand side is only associated with 

boundary conditions in current configuration. Substituting 𝜎𝑟𝑟|𝑟=∞  = 0, 𝜎𝑟𝑟|𝑟=𝑅0 =

2𝛾/𝑅0 gives an equation relating 𝑅0 to 𝑅𝑡: 

 
𝛾

𝜇𝑚𝑅𝑡
= 1 −

5

4
(
𝑅0
𝑅𝑡
) +

1

4
(
𝑅𝑡
𝑅0
)
3

 (7.14) 

Numerically solving Eq. (7.14) can yield 𝑅0 as a function of 𝑅𝑡 

When a reinforcing shell is considered (Figure 7.2), this problem can be solved by 

adding the continuity conditions at the shell-matrix interface in current configuration, i.e. 

at 𝑟 = 𝑟0 : 𝜎𝑟𝑟
𝑠 = 𝜎𝑟𝑟

𝑚;  𝜎𝑟𝜙
𝑠 = 𝜎𝑟𝜙

𝑚 ; 𝜆𝜙
𝑠 = 𝜆𝜙

𝑚 . After derivation, the analytical relation 

between 𝑅0 and 𝑅𝑡 is given by 

 

𝛾

𝜇𝑚𝑅𝑡
= 𝛼 −

5

4

𝑅0
𝑅𝑡
+
𝛼

4
(
𝑅𝑡
𝑅0
)
3

+ (1 − 𝛼)[
(1 + 𝛽)𝑅0

𝑟0

+
1

4

𝑅0
𝑅𝑡
(
(1 + 𝛽)𝑅𝑡

𝑟0
)

4

] 

(7.15) 

where 𝛼 = 𝜇𝑠/𝜇𝑚 and 𝛽 = 𝑡/𝑅𝑡 are as defined before. Similarly, Eq.(7.15) will decay 

to Eq. (7.14) when 𝛼 = 1 or 𝛽 = 0 if we note that 𝑟0 = 𝑅0 when 𝛽 = 0. 
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7.2.3 Finite element modeling 

We performed FEM using a commercial package ABAQUS/standard 6.13. To 

simulate curvature-dependent surface tension, we implemented a four-noded isoparametric 

quadrilateral user-element subroutine (UEL) [186] in all following FEM jobs. Considering 

the axisymmetry of the problem, in 2-D space, a quarter of a small spherical cavity with 

radius 𝑅𝑡  was built on the surface of a large polymer matrix with lateral size 𝐿0 (𝐿0 >

10𝑅𝑡) (Figure 7.3). The left and bottom surfaces are modeled as symmetric planes. In 

accordance with theoretical analysis, we used nearly incompressible Neo-Hookean 

material, i.e., 𝜈 = 0.4995 , throughout the simulation. To model large deformation in 

FEM, nonlinear geometry (NLGEOM) is always on. We first simulated hemi-spherical 

cavity without reinforcing shell. Detailed procedures for Stages 0 through 2 are described 

as follows: 

Stage 0 (demolding): Apply uniform normal traction 𝜅𝛾 to the inner surface of 

the crater to simulate the demolding process. The hemi-spherical crater deforms from 

initial radius 𝑅𝑡 to 𝑅0. The volume of the crater at the end of Stage 0 is 𝑉0 = 2/3𝜋𝑅0
3. 

This step is realized merely by applying the UEL. 

Stage 1 (loading): Apply a compressive load of  𝜖 = 0.5 on the top surface of the 

specimen. During compression, traction on the crater due to surface tension is still activated 

but varies at each incremental step with the updated local curvature. This step is completed 

by applying the UEL and a compressive load of  𝜖 = 0.5. At the end of this stage, the 

crater deforms to a shallow dome of volume 𝑉1 which can be calculated via exported 

nodal coordinates of the inner surface of the crater. 
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Stage 2 (unloading):  Remove the remote compressive load 𝜖  and apply a 

positive normal traction with the amplitude of −Δ𝑝 = 𝑝1 − 𝑝2 in addition to 𝜅𝛾 to the 

surface of the crater. The pressure drop −Δ𝑝 has to be calculated by combining the ideal 

gas relation and Eq. (15) (see Appendix). This step is finished by deactivating  𝜖 and 

simultaneously applying UEL and  −Δ𝑝. At the end of Stage 2, the crater volume 𝑉2 can 

be obtained. 

In fact, Stage 2 FEM is not necessary because –Δ𝑝 can be obtained analytically 

(see Appendix) once 𝑉1 is obtained by Stage 1 FEM. Therefore, Stage 2 FEM serves as 

a validation for the nonlinear elasticity theory. 

Boundary conditions for those three stages are illustrated in Figure 7.3. The 

contours plot the magnitude of normalized displacement with constant 𝛤 = 1 in all stages. 

The shape of the crater before demolding is highlighted by the red dashed curve in Figure 

7.3 (a) and (d). After demolding, the profile of the crater is given in Figure 7.3 (b) and is 

also drawn as the black dashed curve in Figure 7.3(d). Figure 7.3 (c) shows that after  𝜖 =

0.5 is applied, the crater is compressed to a very shallow dome and the arrows inside the 

cavity indicate the nonuniform normal traction (i.e. surface tension) arising from 

nonuniform local curvature. 

Such three-stage FEM procedure can also be applied to quantify the effects of a 

reinforcing shell by simply modifying the geometry and material properties of the elements 

near the cavity. 
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Figure 7.3  (a) FEM mesh of an axisymmetric crater model with a magnified view of the 

refined mesh near the crater. (b)-(d) Contour plots of normalized total displacement with  

𝛤 = 1 at (b) State 0 where initial crater boundary is marked as red dashed curve; (c) State 

1 with a preload of  𝜖 = 0.5; (d) State 2 where initial and State 0 crater shapes are 

represented by red and black dashed curves, respectively. 
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 RESULTS  

7.3.1 Crater Volume at the end of Stage 0 

Regarding the demolding process (Stage 0), linear elasticity analysis concludes that 

when there is no reinforcing shell, the change of the crater radius (Δ𝑅 ) is linearly 

proportional to the elasto-capillary number (𝜂). When a reinforcing shell is introduced, 

crater contraction can be suppressed and the radius after demolding is given by Eq. (7.9). 

To reveal the effects of shell stiffness (𝛼) and thickness (𝛽), we consolidate the surface 

tension effect by normalizing Δ𝑅/𝑅𝑡  by – 𝛤/2 and plot the linear elasticity results in 

Figure 7.4 (a) and (b) where the red horizontal lines represent unreinforced craters. It is 

manifest that for a given 𝛤, increasing 𝛼 and 𝛽 will both impede the radius shrinkage 

due to surface tension. Specifically, 𝛼 = 30 and 𝛽 = 1 are obtained from a reported 

experiment where 𝜇𝑚 = 52 kPa, 𝜇𝑠 = 1.6 MPa, and 𝑡 = 𝑅𝑡 = 0.5 μm  [67]. Figure 

7.4 suggests that when 𝛼 = 30 (green curve), a small value of 𝛽 , say 𝛽 = 0.1, will 

significantly resist the crater from shrinking. When 𝛽 = 1 (green curve), Figure 7.4 (b) 

indicates that such a thick shell will only need 𝛼 = 10 to effectively protect the cavity 

from collapsing. 

In contrary to linear elasticity solutions, radius change predicted by nonlinear 

analysis in Section 2.2 is no longer proportional to 𝛤. Analytical and FEM results of radius 

change as a function of 𝛤, 𝛼 and 𝛽 are presented in Figure 7.4 (c) and (d). While our 

nonlinear analysis fully agrees with the FEM results, the linear theory is only valid up to 

about 𝛤 = 0.5. When 𝛤 is beyond 0.5, the linear theory would greatly overestimate the 
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radius change. For example, the linear theory predicts that the unreinforced crater should 

disappear when 𝛤 = 2 whereas the nonlinear analysis only yields Δ𝑅/𝑅𝑡 = −0.47. For 

craters of r ~ 0.5 μm on the surface of 40:1 PDMS [67], 𝛤 = 0.769, which should be 

modeled by the nonlinear theory. When 𝛼 = 30 and 𝛽 = 1 (green curves in Figs. 4c and 

4d), the radius shrinkage is almost negligible even at very large 𝛤.  

  



 125 

 

Figure 7.4  Change of crater radius during Stage 0. (a)-(b) Linear elasticity results for 

different 𝛼  and 𝛽 . 𝛼 = 1  or 𝛽 =0 indicates unreinforced craters. Note that radius 

change is proportional to 𝛤. (c)-(d) Comparison among linear and nonlinear analytical 

results and FEM results for different 𝛼, 𝛽, and 𝛤. 
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7.3.2 Crater Volume at the end of Stage 1 

Section 7.3.1 quantified the effect of surface tension for unreinforced and 

reinforced craters during Stage 0. To generate suction force, the crater must be compressed 

to squeeze out the air, which is represented by Stage 1. Intuitively, larger volume loss 

during compression is preferred because more air can be driven out. However, will the 

reinforcing shell, though plays an important role in protecting the crater shape, also resist 

the deformation during compression?  

During Stage 1, compressive load 𝜖 is applied remotely. We first examined the 

effects of surface tension on unreinforced craters (𝛼 = 1 or 𝛽 = 0). FEM results of 

𝑉1/𝑉𝑡 as a function of 𝜖 are plotted for four different 𝛤 = 0, 0.5, 1, 2 in Figure 7.5. Note 

that when  𝜖 = 0, 𝑉1 is the same as the crater volume at the end of Stage 0, i.e., 𝑉1|𝜖=0 =

𝑉0 . The red markers plot the results for  𝛤 = 0. 𝑉1 decreases as 𝜖 increases and it goes 

to zero when 𝜖 reaches 0.5, at which point the crater surface fully touches the flat plate 

and air inside the crater has been completely squeezed out. The red dashed curve is obtained 

from an analytical solution based on Eshelby formulism [180], which is only valid for small 

strains. When surface tension is taken into account, the starting values of 𝑉1  are 

significantly smaller than 𝑉𝑡 due to the volume loss at Stage 0. 𝑉1 also decays slower 

than no surface tension case and almost reaches the same values at 𝜖 = 0.5 for three 

different 𝛤 = 0.5, 1, 2, i.e., 𝑉1/𝑉𝑡|𝜖=0.5~0.08. The reason it is more difficult for 𝑉1 to 

vanish under nonzero 𝜂 is that surface tension penalizes large curvature near the rim of 

the crater. 
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Effects of reinforcing shell are illustrated by fixing 𝛤 = 1 and varying 𝛼 and 𝛽. 

The stiffness effect is presented in Figure 7.5 (b) with 𝛤 = 1, 𝛽 = 1 and 𝛼 = 1, 2, 10, 30. 

It clearly shows that 𝛼 = 10 (blue) and 30 (green) not only protect the crater shape 

during Stage 0, but also resist crater compression during Stage 1. Such a limited volume 

change during compression is not favorable for suction generation. In comparison, smaller 

𝛼 affords larger volume change during Stage 1. However, small 𝛼 also yields small 𝑉0, 

which leads to a tradeoff. The thickness effect is illustrated in Figure 7.5 (c) with 𝛤 =

1, 𝛼 = 30  and 𝛽 = 0, 0.025, 0.05, 0.1, 0.2, 0.5.  Encouragingly, we find that thin 

shells with 𝛽 =  0.025, 0.05, 0.1 can protect the crater shape during demolding (i.e. 

large 𝑉0 ) without imposing too much constraints during compression (i.e. small 𝑉1 ), 

which have a potential in generating high pressure drop according to Eq. (7.3). 
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Figure 7.5  Volume of the compressed crater 𝑉1  normalized by 𝑉𝑡 = 2𝜋𝑅𝑡
3/3  as a 

function of preload  𝜖 : (a) Unreinforced crater with  𝛽 = 0, 𝛤 = 0, 0.5, 1, 2 ; (b) 

Reinforced crater with 𝛤 = 1, 𝛽 = 1, 𝛼 = 1, 2, 10, 30 ; (c) Reinforced crater with  𝛤 =

1, 𝛼 = 30, 𝛽 = 0, 0.025, 0.05, 0.1, 0.2, 0.5. 
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7.3.3 Pressure Drop and Suction Force at the end of Stage 2 

When unloaded, crater springs back. At equilibrium, aside from the surface tension 

induced normal traction, the crater is also subjected to a negative pressure, −Δ𝑝 . 

Therefore, ambient pressure is taken into account by introducing a new dimensionless 

parameter, 𝛿 = 𝜇𝑚/𝑝𝑎. Following the FEM procedure for Stage 2 described in Section 

7.2.3, we can obtain 𝑉2 after unloading. Plugging 𝑉1 and 𝑉2 in Eq. (7.3) and Eq. (7.4), 

we would be able to obtain the pressure drop and the suction force, respectively. We can 

first investigate surface tension effect for unreinforced craters. Results are plotted in Figure 

7.6 with 𝛿 = 1, 𝛼 = 1  and 𝛤 = 0, 0.5, 1, 2.  All scenarios show that pressure drop 

monotonically increases with  𝜖. When 𝛤 = 0, vacuum is achieved at Stage 2 when  𝜖 =

0.5, hence −Δ𝑝 𝑝𝑎⁄ = 1. When 𝜂 increases, the pressure drop reduces, which clearly 

states that surface tension has a negative effect on pressure drop. The reason is two folds. 

Equation (7.3) suggests that large pressure drop comes from large 𝑉2  and small 𝑉1 . 

According to our three-stage analysis, we know that large 𝑉2 relies on large 𝑉0. Surface 

tension shrinks 𝑉0 hence limits 𝑉2. The second effect is on 𝑉1. As mentioned in Figure 

7.5 (a) , surface tension resists compression, hence preventing the specimen from achieving 

small 𝑉1. 

By fixing 𝛤 = 1, we can examine the effect of the stiffness of the polymer matrix 

on suction generation. The pressure drop for three different 𝛿 = 0.5, 1, 10, i.e., 𝜇𝑚 ~50 

kPa, 100 kPa, 1 MPa which are close to the moduli of commonly used PDMS, are plotted 

in Figure 7.6(b). The difference between the three specimens is very small because a 
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narrow range of 𝛿 is studied here. Thereafter, we can study the effect of reinforcing shell 

by simply fixing 𝛿 = 1. Figure 7.6 (c) and (d) plot the pressure drop and the suction force 

for 𝛤 = 1, 𝛿 = 1, 𝛼 = 30 and 𝛽 = 0, 0.025, 0.05, 0.1, 0.2, 0.5. The suction force 𝐹 

is normalized by 𝐹𝑡 = 𝑃0𝐴𝑡, where 𝐴𝑡 = 𝜋𝑅𝑡
2 is the projected area of the hemi-spherical 

dome of the molding template. Both pressure drop and suction force show non-monotonic 

dependence on 𝛽 at  𝜖 = 0.5. They first increase as 𝛽 increases and then drop after  𝛽 

goes beyond a certain value. This agrees with the prediction we made in Figure 7.5 (c) that 

𝛽 = 0.025, 0.05, 0.1 should yield better suction because they may sustain large 𝑉0 after 

demolding and are capable of reaching small 𝑉1  after compression. An interesting 

observation when comparing Figure 7.6 (c) and Figure 7.6 (d) is that large pressure drop 

does not necessarily lead to large suction force because 𝐴2 also contributes to 𝐹 For 

example, the red curve (𝛽 = 0) has large pressure drop at  𝜖 = 0.5 in Figure 7.6 (c) but 

the generated suction force is low in Figure 7.6 (d). This is because the 𝐴2 is small due to 

the volume loss during Stage 0.  

To offer a comprehensive understanding of the effects of 𝛼 and 𝛽, more FEM 

simulations within the parameter space 𝛼 ∈ (0,100)  and 𝛽 ∈ (0,0.5)  are conducted 

with fixed 𝛤 = 1  and 𝛿 = 1 . Contour plots of pressure drop and suction force for 

different combinations of 𝛼 and 𝛽 are shown in Figs. 6e and 6f, respectively. Both −Δ𝑝 

and 𝐹 show non-monotonic dependence on 𝛼 and 𝛽. Both figures suggest that large 𝛼 

and large 𝛽, i.e., thick and stiff shells, are not preferred. This is because although they can 

help sustain crater shape during demolding, they also greatly resist crater compression 
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during compression. Small 𝛼 and small 𝛽 does cannot offer large 𝐹 either because they 

are not effective in protecting the crater shape during demolding. Therefore the optimal 

choice of 𝛼 and 𝛽 for large 𝐹 lies in the domain 𝛼 ∈ (20,50) and 𝛽 ∈ (0.025,0.15) 

as shown in Figure 7.6 (f). To quantify the suction enhancement by the reinforcing shell, 

we can compare the suction force generated by an optimally reinforced specimen (e.g. 𝛼 =

50, 𝛽 = 0.05) and an unreinforced specimen (𝛼 = 1). According to Figure 7.6 (f), the 

amplification factor can be determined to be 0.80/0.31=2.58. When 𝛼 is large and 𝛽 is 

small, some results are unattainable due to surface instabilities of the crater [180]. 
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Figure 7.6  (a)-(c) Normalized pressure drop as a function of 𝜖 with (a)  𝛽 = 0, 𝛿 =

1 , 𝛤 = 0, 0.5, 1, 2 ; (b)  𝜂 = 1, 𝛽 = 1, 𝛿 = 0.5, 1, 10 ; (c) 𝛤 = 1, 𝛿 = 1, 𝛼 = 30, 𝛽 =

0, 0.025, 0.05, 0.1, 0.2, 0.5 . (d) Normalized suction forces correspond to (c). (e)-(f) 

Contour plots of (e) normalized pressure drop and (f) normalized suction force as functions 

of 𝛼 and 𝛽 with 𝛤 = 1, 𝛿 = 1, 𝜖 = 0.5.  
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 CHAPTER SUMMARY  

Suction forces generated by macroscopic craters depend on crater geometry, 

material properties, and applied preload. As craters miniaturize, surface tension can play a 

significant role especially when the micro- or even nano-craters are engineered on soft 

materials. In this chapter, we have obtained analytical solutions for the demolding process. 

By implementing a user-element subroutine, we have developed a three-stage FEM process 

to quantify the effects of surface tension on suction forces. We found that overall, surface 

tension is detrimental to suction forces because it shrinks crater volume after demolding 

and resists full closure of crater during compression. We propose that a stiff reinforcing 

shell can be added to prevent the crater from contraction during demolding. However, the 

reinforcing shell cannot be too stiff or too thick because it will then prevent crater from 

collapsing during compression. Extensive simulations for various combinations of shell 

thickness and stiffness have revealed the optimal parametric choices. We also noticed that 

large pressure drop does not necessarily lead to large suction force because suction force 

is also dependent on the projected area after unloading. This is why adding the reinforcing 

shell can enhance the suction force against surface tension.  
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Chapter 8 Isolated Craters Underwater7 

In this chapter, we follow the framework developed in Chapter 6 to analyze isolated 

craters underwater. Utilizing experimental, computational, we characterize the relation 

between suction force and preload for liquid-filled hemi-spherical craters and spherical-

cap-shaped craters. Distinct from the air-filled craters, the water inside the crater is 

assumed as incompressible liquid. Direct comparison between fluid and air-filled craters 

has been carried out. We find that the suction forces generated by underwater craters scale 

with specimen modulus but exhibit non-monotonic dependence on the aspect ratio of the 

craters.  

  

                                                 
7 S. Qiao‡, L. Wang‡, K. Ha, N. Lu*. Suction effects of craters under water, Soft Matter. 14(42): 8509-8520. 

2018 Oct 11; (‡ represents equal contribution. L. Wang conducted the numerical simulations and experiments, 

and wrote the analysis section in the paper.) 
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  PROBLEM DESCRIPTION 

Similarly with air-filled craters, we consider a specimen containing a hemi-

spherical crater with radius 𝑎 at its bottom (Figure 8.1). The specimen rests on the flat 

bottom of a rigid container. The liquid inside the crater is the same as in the ambient 

environment, and it is characterized by the volume 𝑉0, 𝑁0 molecules and the hydrostatic 

pressure 𝑝0 which can be written as  

 𝑝0 = 𝑝𝑎 + 𝛾𝑤ℎ  

where 𝑝𝑎 is still the atmospheric pressure, 𝛾𝑤 is the specific weight of the liquid, and ℎ 

is the distance from the cratered surface to the liquid surface. The loading and unloading 

process has been established in Chapter 6 and suction force upon full unloading is defined 

as  

 𝐹 = −Δ𝑝𝐴2 (8.1) 

where −Δ𝑝 is the pressure drop as defined in Eq. (7.1). A complete analysis of the two-

stage process requires one to model the liquid flow. We avoid this task by adopting the 

following assumptions:  

1. The liquid flows freely out of the crater upon loading, so that 𝑝1 = 𝑝0.  

2. No liquid exchange takes place upon unloading, so that 𝑁1 = 𝑁2.  

3. The entire process is isothermal and the liquid is incompressible, so that 𝑉1 = 𝑉2.  
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Figure 8.1  A loading-unloading cycle that produces suction force underwater: (a) A 

specimen with an isolated hemi-spherical crater of radius 𝑎 resting on the flat bottom of 

a tank filled with liquid (blue); (b) The specimen is preloaded in compression and the liquid 

is squeezed out of the crater; (c) The preload is released, and the crater springs back, 

resulting in pressure drop in the crater. The symbols p, V, A and N denote the pressure, 

volume, projected area, and number of liquid molecules inside the crater at each state  
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The first assumption that the liquid can flow out freely when compressed is inspired 

by prior works on thin-walled suction cups [163, 167, 169]. In these models[163, 167, 169], 

analytical relationship between preload and suction-cup deformation has been obtained by 

neglecting gas or liquid resistance during compression. As for the second assumption that 

there is no leakage during unloading, it is consistent with experimental observations for 

thin-walled suction cups [163, 167, 169] as well as surface craters[69]. The third 

assumption of incompressible fluid is widely adopted for many liquids. With these three 

assumptions, the dynamics of liquid flow is regarded as a sequence of static equilibrium 

states. Consequently, it becomes sufficient to analyze the two-stage process in the context 

of solid mechanics,  

One must be aware that our first assumption is only valid when there is finite 

amount of liquid left inside the crater at Stage 1. When the crater is fully closed, i.e. when 

all the liquid is squeezed out of the crater, complete vacuum is achieved inside the crater. 

As a result, the negative pressure is simply −Δ𝑝 = 𝑝𝑎 + 𝑤ℎ , and will be maintained 

throughout the unloading process (Stage 2) if no backflow is allowed. The third assumption 

would break down once there is significant vaporization inside the crater, which occurs 

when the liquid pressure drops close to the saturated vapor pressure of this liquid. These 

extreme situations are elusive in the current model but we will offer in-depth discussions 

for them in Section 8.4 
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 EXPERIMENTAL MEASUREMENTS 

The experimental setup was designed so that it realized the two-stage process under 

conditions that well represent the adopted assumptions. First, polydimethylsiloxane 

(PDMS, Sylgard 184 Dow Corning) with the base-to-curing-agent mass ratio equal to 30:1 

was cured at 70℃ for 12 hours to mold a cylindrical specimen with diameter 25.40 mm 

and height 35.13 mm. A hemi-spherical crater of diameter 12.70 mm was placed at the 

center of a circular face. The material constitutive behavior was measured to fit an 

incompressible neo-Hookean model with shear modulus 𝜇 = 47.3 kPa in Chapter 6. Note 

that a hydrostatic pressure will not induce any deformation in an incompressible 

polymer[187]. During the entire loading-unloading process, as long as there is still 

incompressible fluid inside the crater, the whole specimen would be subjected to a 

hydrostatic pressure 𝑝0 = 𝑝𝑎 + 𝑤ℎ. On top of that, a negative pressure is applied inside 

the crater during the unloading stage. Superimposing an imaginary hydrostatic tensile 

stress 𝜎 = 𝑤ℎ to the whole specimen changes its hydrostatic stress state to 𝑝0 − 𝜎 = 𝑝𝑎, 

yet introducing no deformation due to its incompressibility. In other words, the specimens’ 

response is independent of the liquid depth ℎ, yielding a depth-independent suction effect. 

However, this argument breaks down when the incompressibility of the filling liquid no 

longer holds. For example, when the liquid is fully squeezed out at the end of Stage 1 or 

when the liquid starts to vaporize. Both situations will be discussed in detail in Section 2.4. 

Neglecting the two extreme cases at this point, we can simply fill the crater with 

incompressible fluid and perform the experiments in air at the sea level, i.e., ℎ = 0 and 

𝑝0 = 𝑝𝑎 in our experiment. 
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To realize experimental conditions that well represent the adopted assumptions, we 

built a special platform as illustrated by the schematic in Figure 8.2 (a). The corresponding 

photograph is offered in Figure 8.2 (b). The cratered specimen was compressed against a 

stiff acrylic platform. At the center of the platform, we drilled a ventilation hole with a 

diameter of 0.8 mm, which was used for releasing and trapping liquid in the crater. During 

Stage 1 (loading), consistent with the first assumption, the vent hole was kept open. During 

Stage 2 (unloading), consistent with the second assumption, the hole was sealed. Without 

the vent hole, we noticed that there was resistance against liquid flowing out. Therefore, 

future studies should be carried out accounting for such resistance. 

Direct measurements of the suction force upon unloading are difficult. Therefore 

we performed the loading-unloading-pulling-off experiments on the specimens and 

measured the pull-off force rather than the suction force. These data will be used to extract 

the suction force. We conducted a series of uniaxial compression and retraction tests using 

a Dynamic Mechanical Analyzer (DMA) (RSA-G2, TA Instruments) and a Mechanical 

Testing System (MTS Servohydraulic load frame with Instron 8500R controller). The load 

cell of the DMA has good resolution (10 N) but limited range (up to 35 N), whereas the 

load cell in the MTS (Omega LCHD-50) has sufficient range (222 N) but lower resolution 

(0.22 N). Thus, experiments with loading forces greater than 35 N were performed with 

the MTS, while the rest were done using the DMA. In both testing systems, the top and 

bottom surfaces of the specimen were lubricated by performance oil (Fellowes Powershred 

Performance Shredder Oil) such that the specimen was free of friction and loaded under 
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uniaxial stress. The loading velocity was set at 3 mm/min, which corresponds to a nominal 

strain rate of 1.42×10-3 s-1, so that the deformation was dominated by rubber elasticity.  

To measure the pull-off force, Stage 2 involved not only unloading but also 

retraction. That is, during Stage 1, the specimen was stretched beyond the unloading point, 

until the cratered surface was pulled off from the platform. This pull-off force is denoted 

as 𝐹′. To extract the suction force, we performed the same loading-unloading experiments 

with the vent hole open throughout the test and the collected pull-off force is denoted as 

𝐹′′. Representative load-displacement curves for both cases are plotted in Figs. 2c and 2d 

where we identify the loading, unloading, and retraction stages, as well as the pull-off 

forces. Note that the two sets of data are qualitatively similar. Nevertheless, quantitative 

differences are significant enough to reveal the suction effect. For comparison purpose, the 

pull-off force 𝐹′ was also measured when the crater was filled with air.  

The experimentally collected pull-off force 𝐹′ can be thought as a resultant force 

of the adhesion strength over the specimen/platform interface and the suction force over 

the crater, whereas 𝐹′′ only consists of the interface adhesion. Thus, the difference in 

value  

 𝐹 = 𝐹′ − 𝐹′′ (8.2) 
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Figure 8.2  A schematic (a) and a photograph (b) of the experimental setup. The small 

ventilation hole drilled in the bottom platform is open during loading and closed during 

unloading. Load-displacement curves with vent hole open (c) and closed (d) during 

unloading. Peak compressive strain was 10%. Loading, unloading, retraction stages, and 

the pull-off points are identified. (e) A schematic of the free body diagram of a specimen 

at pull-off. (f) Comparisons of experimentally measured suction forces (𝐹′ − 𝐹′′) of air-

filled (blue markers) and liquid-filled (red markers) craters. Data obtained by DMA are 

represented by solid dots and MTS by hollow circles. 
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Figure 8.3  (a) A finite element mesh for an axisymmetric crater model.  (b) Two 

deformation sequences of specimens in a loading-unloading test with different fillings: top 

row for air-filled crater and bottom row for liquid-filled crater. 
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  FINITE ELEMENT ANALYSIS 

Following the framework developed in Chapter 6, we can model the specimen to 

be incompressible neo-Hookean material with shear modulus 𝜇 = 47.3 kPa. Further, to 

simplify the analysis, we applied axisymmetry and the specimen/substrate interface was 

assumed to be frictionless (Figure 8.3 (a)). Also we neglected any surface tension effects 

simply because  

 
𝛾

𝑎𝜇
≈

2 × 10−2𝑁 𝑚⁄

(10−2 𝑚) × (4 × 104𝑁 𝑚2⁄ )
= 5 × 10−5 ≪ 1  

where 𝛾 is the surface tension of PDMS[171]. We have considered the effects of surface 

tension only when the crater size is sufficiently small [188]. If we assume the liquid inside 

the crater is incompressible and there is no liquid exchange during Stage 2, it means that 

there should be no volume change during Stage 2. As a result, the negative pressure 

generated at the end of Stage 2 should be fully controlled by the crater volume at the end 

of Stage 1, which is determined by the preload.  

We used nonlinear finite element simulations to compute the relationship between 

the suction force and the preload 𝜖 . All simulations were conducted using ABAQUS 

Version 6.14. We built an axisymmetric model with frictionless contact at the bottom and 

uniform compressive displacement on the top. The finite element model with mesh formed 

by CAX4H elements is displayed in Figure 8.3 (a). This mesh was selected using basic 

convergence tests. We used the option *FLUID CAVITY which is ideal for modeling both 

stages of the liquid-solid interactions. 
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In simulations, during unloading, liquid-filled craters recover differently from air-

filled craters. The deformation snapshots of liquid- and air-filled craters are displayed in 

Figure 8.3 (b). The first and last panels in each sequence are the initial (before loading) and 

final (end of unloading) configurations, respectively. The third panels correspond to the 

end of loading (Stage 1) with 𝜖 =  0.35, and the rest are intermediate states. A 

Supplementary Movie is provided which allows one to visualize the deformation process. 

At the end of the unloading (Stage 2), the finite element results indicate that the air-filled 

crater maintains the spherical symmetry, whereas the liquid-filled crater doesn’t. 
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 RESULTS 

8.4.1 Hemi-spherical crater 

In this section, we first examine the difference between air-filled craters and liquid-

filled craters, and explicitly discuss the effect of the depth of water. We will then compare 

the experimental and simulation results for both cases. In addition, we present linear 

analysis results of this problem based on Eshelby’s formalism [172].  

Still considering hemi-spherical craters with 𝜇 = 47.3 kPa, finite element simulation 

results for different parameters at the end of unloading as functions of 𝜖 are plotted in 

Figure 8.4: (a) normalized pressure drop −Δ𝑝/𝑝𝑎, which is positive as Δ𝑝 is the negative 

pressure, (b) phase diagram of pressure drop as a function of liquid depth ℎ and preload 

𝜖, (c) normalized projected area 𝐴2/𝐴0, and (d) normalized suction force, defined as  

 𝐹̂ = −Δ𝑝𝐴2/(𝑝𝑎𝐴0) 
(8.3) 

Full closure of the hemi-spherical craters happens at 𝜖𝑓 = 0.47 , which is 

independent of the type of the filling and denoted by vertical magenta dashed lines in all 

plots. After full closure, complete vacuum, i.e., 𝑝2 = 0 is achieved for craters of both 

fillings such that further compression will no longer increase suction. Therefore, the 

maximum preload was chosen as  𝜖 = 0.5  in all finite element simulations. 
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Figure 8.4  End results of the loading-unloading test are computed and plotted as 

functions of the preload 𝜖: (a) normalized pressure drop – Δ𝑝/𝑝𝑎 , (b)  phase diagram 

of pressure drop as a function of liquid depth ℎ and preload 𝜖, (c) normalized projected 

area 𝐴2/𝐴0 , and (d) normalized suction force 𝐹̂ = −Δ𝑝𝐴2/(𝑝0𝐴0). Craters filled with 

incompressible fluid are represented by circular makers and ideal gas by triangular 

markers.  
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Figure 8.4 (a) clearly shows craters of both fillings experience an increase in 

pressure drop with growing preload 𝜖 , whereas the liquid-filled craters exhibit faster 

increase due to the stronger constraint on the polymer matrix under volume conservation, 

i.e., 𝑉1 = 𝑉2, compared with ideal gas relation 𝑝1𝑉1 = 𝑝2𝑉2. It can be safely predicted that 

both craters should achieve vacuum when fully closed, i.e., 𝑝2 = 0, such that the pressure 

drop for air-filled crater and liquid-filled crater should be −𝛥𝑝 = 𝑝𝑎 and −𝛥𝑝 = 𝑝𝑎 +

𝑤ℎ, respectively. As shown by the blue curve in Figure 8.4 (a), air-filled craters indeed 

reach −𝛥𝑝 = 𝑝𝑎 at full closure, which is consistent with our prediction. However, liquid-

filled craters show a plateau of pressure drop of −𝛥𝑝 = 2.2 𝑝𝑎 at full closure, which is 

contradictory to the fact that pressure drop is dependent on liquid depth at full closure, i.e., 

−𝛥𝑝 = 𝑝𝑎 + 𝑤ℎ. This discrepancy results from the assumption of incompressible fluid 

behavior which enforces zero crater volume, i.e., 𝑉2 = 0 , throughout the unloading 

process in finite element simulation. Such a rigid constraint of volume conservation 𝑉2 =

𝑉1 = 0 at full closure contradicts with reality, thus the finite element results of 𝜖 > 𝜖𝑓 in 

Figure 8.4 (a) (as shown by magenta makers) for liquid-filled craters are not meaningful. 

In reality, when the pressure inside the crater approaches the saturated vapor pressure of 

the liquid (denoted by 𝑝v ), the liquid vaporizes rapidly (e.g., boiling), violating the 

assumption of incompressibility. In this case, vaporization models should be incorporated 

to accurately predict the negative pressure, which is out of the scope of this paper. The 

saturated vapor pressure of water and oil at room temperature is very small compared with 

atmospheric pressure, e.g., 𝑝v ≈ 2 kPa for water and 𝑝v ≈ 0.1 kPa for the performance 

oil (99 wt% canola oil) used in our experiment according to the product sheet. Herein, we 
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simply assume that the liquid vaporizes when the pressure inside the crater drops to zero, 

i.e., when 𝑝2 = 0 and −𝛥𝑝 = 𝑝𝑎 + 𝑤ℎ. The vaporization consideration actually sets an 

upper bound for the validity of the finite element results shown in Figure 8.4 (a). For 

example, consider a hemisphere-cratered specimen filled with liquid at sea level, i.e., ℎ =

0, and the vaporization occurs when −𝛥𝑝 = 𝑝𝑎. A horizontal line of −𝛥𝑝 = 𝑝𝑎 (black 

dashed line) intersects with the curve of −𝛥𝑝/𝑝𝑎(𝜖), showing a critical preload 𝜖v
0 =

0.35. When the preload is smaller than 𝜖v
0, we simply assume that no vaporization will 

happen as the pressure inside the crater is still positive, i.e., 𝑝2 > 0. Therefore, finite 

element results below 𝜖v
0 are valid while those above 𝜖v

0 are not. The critical preload for 

vaporization 𝜖v depends on the liquid depth ℎ in that the pressure drop simply equals to 

the ambient pressure when vaporization occurs, i.e., −𝛥𝑝 = 𝑝𝑎 + 𝑤ℎ. If we simply fit the 

finite elements results of liquid-filled craters in Figure 8.4 (a) by using −𝛥𝑝/𝑝𝑎 = 𝑓(𝜖) 

for 0 ≤ 𝜖 ≤ 𝜖𝑓  (red curve), 𝜖v can be obtained by solving the equation 𝑓(𝜖v) = 1 +

𝑤ℎ/𝑝𝑎 for a given liquid depth ℎ. When 𝜖 < 𝜖v, i.e. when 𝑓(𝜖) < 𝑓(𝜖v) = 1 + 𝑤ℎ/𝑝𝑎, 

no vaporization would occur. As a result, we can write the pressure drop as a function of 

liquid depth ℎ and preload 𝜖: 

 

−
Δ𝑝

𝑝𝑎
 (𝜖, ℎ)

= {

𝑓(𝜖)
𝑓(𝜖)

Vaporization, no solution
1 + 𝑤ℎ/𝑝𝑎

     

0 ≤ 𝜖 < 𝜖v
0, ∀ ℎ

𝜖v
0 ≤ 𝜖 < 𝜖𝑓 & 𝑤ℎ/𝑝𝑎 > 𝑓(𝜖) − 1

𝜖v
0 ≤ 𝜖 < 𝜖𝑓 & 𝑤ℎ/𝑝𝑎 ≤ 𝑓(𝜖) − 1

𝜖 ≥ 𝜖𝑓  

  

(8.4) 
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Equation (8.4) can be illustrated by a phase diagram as Figure 8.4(b) where the 

horizontal axis is the preload 𝜖 and the vertical axis is the normalized liquid depth 𝑤ℎ/𝑝𝑎. 

The solution to pressure drop will be different in different regimes. The brown regimes are 

non-vaporizations zones where the pressure drop is simply characterized by −𝛥𝑝/𝑝𝑎 =

𝑓(𝜖), the red regime is where vaporization would occur, and the cyan regime represents 

complete vacuum. When 𝜖 < 𝜖v
0 = 0.35, the pressure inside the crater after unloading is 

always above zero, i.e., non-vaporization, and the pressure drop is given by −𝛥𝑝/𝑝𝑎 =

𝑓(𝜖) which is independent of liquid depth ℎ as the hydrostatic pressure 𝑤ℎ does not 

deform the incompressible specimen. When 𝜖v
0 ≤ 𝜖 < 𝜖𝑓 = 0.47 , vaporization occurs 

when −𝛥𝑝 ≥ 𝑝𝑎 + 𝑤ℎ, i.e., 𝑤ℎ/𝑝𝑎  ≤  −𝛥𝑝/𝑝𝑎 − 1 = 𝑓(𝜖) − 1, as highlighted by the 

red regime. Hence, when 𝑤ℎ/𝑝𝑎 > 𝑓(𝜖) − 1, no vaporization happens and our finite 

element results are useful. Interestingly, according to the finite element results in Figure 

8.4 (a), when the preload approaches 𝜖𝑓, the pressure drop is capped at −𝛥𝑝/𝑝𝑎 = 2.2, 

corresponding to a maximum normalized liquid depth for vaporization 𝑤ℎ/𝑝𝑎 = 1.2. It 

means that for normalized liquid depth higher than 1.2, the craters will be fully closed prior 

to the significant vaporization of the liquid. Such a critical liquid depth is about 12 m for 

water if we simply take 𝑤 ≈ 104 N/m3. When 𝜖 ≥ 𝜖𝑓, the hemispherical crater attains 

full closure and realizes complete vacuum, giving rise to −𝛥𝑝 = 𝑝𝑎 +𝑤ℎ, regardless of 

the flawed finite element simulation at full closure. Therefore, when the crater is fully 

closed, craters in deeper waters will produce higher suction force. We need to point out 

again that the vaporization discussed in this paper refers to the rapid liquid-to-vapor phase 
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transition, e.g., boiling, rather than the slow evaporation that is always ongoing on the 

liquid surface. 

After fully understanding the pressure drop, we are ready to look at the suction 

force 𝐹̃ given in Eq. (8.3). The projected area 𝐴2 is affected by the instabilities in the 

craters subjected to large preload. In Figure 8.4 (a), the horizontal dashed green line 

represents the critical Δ𝑝𝑐 , beyond which the hemispherical shape of the crater breaks 

down upon unloading, irrespective of the filling or the depth of liquid. This critical load 

−Δ𝑝𝑐 = 0.83𝑝𝑎 is obtained by analyzing the surface instability of a spherical void in an 

infinitely large block (See Appendix). And the corresponding critical preload 𝜖𝑐 is 0.33 

and 0.43 for liquid- and air-filled craters, respectively.  

As observed in finite element simulation results in Figure 8.3(b), once instability 

happens upon unloading, the partially recovered crater shows shallower but wider profile, 

giving rise to increased projected area, i.e. larger 𝐴2. This explains the slight increase of 

the 𝐴2/𝐴0  at 𝜖𝑐  for both liquid-filled and air-filled craters plotted in Figure 8.4(c). 

However, for liquid-filled craters, the instability induced increase in 𝐴2 doesn’t last. This 

is because the volume conservation constraint also gets stronger with increasing preload 𝜖 

and eventually overwhelms other factors, leading to the re-decrease of 𝐴2, as shown in 

Figure 8.4(c). For liquid-filled craters, 𝐴2 eventually drops to 0 with fully closed craters 

due to the volume conservation enforced in the finite element simulation. The increasing 

Δ𝑝 and the overall decreasing 𝐴2 together produce an 𝐹̂ that varies non-monotonically 

with 𝜖 for liquid-filled craters, as plotted in Figure 8.4. But as we discussed before, for 

liquid-filled craters at sea level, vaporization begins at 𝜖v
0 = 0.35, which is represented by 
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the black dashed lines in Figure 8.4 (c)-(d). Therefore, the finite element results for 𝐴2 

and 𝐹̂ of liquid filled craters (the red curves) are no longer meaningful beyond the black 

dashed lines. However, the blue curves for air-filled craters should be valid all the way till 

full closure, i.e. 𝜖𝑓 = 0.47. 

Comparison of simulation (solid curves) and experimental (circular markers) 

results for hemi-spherical craters is conducted in (a), where the suction force is plotted 

versus the preload 𝜖. Results corresponding to liquid-filled craters are plotted in red, and 

air-filled craters are in blue for comparison. In the range of 0 ≤ 𝜖 ≤ 0.3, experimental and 

simulation results are in good agreement for both types of craters. This validates the 

theoretical framework we developed and also justifies applying the framework on craters 

of other shapes under moderate preload. We also calculated the suction force using linear 

(infinitesimal strain) analysis based on Eshelby’s formalism[172]. This approach is 

possible because of the assumptions that the specimen is large compared with the crater, 

the interface is frictionless, and the surface tension effects are negligible. It is clear that the 

linear analysis is valid for small strains, and deviates significantly from the experimental 

and simulation results for 𝜖 > 0.1, and therefore its usefulness is rather limited. 

Under large preload, especially when the crater reaches full closure, finite element 

simulation shows considerable discrepancy from experimental results for both air-filled 

craters and liquid-filled craters. For air-filled craters, we recognize that the source of the 

discrepancy comes from the different definitions of suction force used in experiments and 

simulations. In experiments, 𝐹′ − 𝐹′′ (Eq. (8.2)) represents the suction force inside the 

crater at pull-off, while in simulations, −Δ𝑝𝐴2 (Eq. (8.1)) is used to calculate suction 



 152 

force at the end of unloading, without any retraction. At small to moderate preload, it is 

fair to argue that the crater has similar a configuration at pull-off and full unloading, so that  

 𝐹′ − 𝐹′′ ≈ −Δ𝑝𝐴2 (8.5) 

is expected. This is true under loading range 0 ≤ 𝜖 ≤ 0.3 based on the observation from 

Figure 8.5 (a). However, this approximation will no longer hold when the crater shapes are 

very different at pull-off and full unloading. To verify this hypothesis, we applied 

experimentally measured retraction strain at pull-off, 𝜖𝑡  in simulation beyond full 

unloading. Resulted suction forces, 𝐹 = −Δ𝑝′𝐴2
′ , are plotted as solid blue diamonds in 

(a), where Δ𝑝′ and 𝐴2
′  represent the finite element results of pressure drop inside the 

crater and the projected area of the crater at pull-off, respectively, at the pull-off point. 

Figure 8.5 (b) depicts the profiles of air-filled craters at unloading (blue curve) and pull-

off (red curve) and visible difference can be found at full closure. In Figure 8.5 (a), the 

good agreement between 𝐹 = −Δ𝑝′𝐴2
′  (the diamond markers) and 𝐹′ − 𝐹′′ (the circular 

markers) indicates that, for air-filled craters, the discrepancy between the finite element 

results of suction force (the solid curve) and the experimentally measured pull-off force 

(the circular markers) can be fully explained by the difference in unloading vs. pull-off 

points. In other words, for air-filled craters, our finite element simulation is valid all the 

way up to the preload that fully closes the crater in terms of predicting the suction force at 

full unloading before retraction.  

For liquid-filled craters, finite element results start to deviate from experiments 

when the preload 𝜖 > 0.3. In addition to the difference between suction and pull-off forces 
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discussed above, there are other reasons which are only pertinent to liquid fillings. As we 

already know, the liquid inside the crater may undergo liquid-to-vapor phase transition 

when preload approaches the critical value 𝜖v
0 = 0.35 as experiments are carried at sea 

level in air, i.e., ℎ = 0 . Vaporization would enlarge pressure inside the crater, thus 

compromising the suction force and hence the measured pull-off force. Moreover, the 

critical preload for vaporization 𝜖v
0 = 0.35 was obtained without considering retraction 

strain 𝜖𝑡 in the simulation while the experimental results were measured at the pull-off 

points. Applying retraction strain to the specimen beyond full unloading will further reduce 

the liquid pressure inside the crater, causing the liquid to vaporize prior to the critical 

preload 𝜖v
0 = 0.35. This can explain why deviation between finite element results and 

experiments starts after 𝜖 = 0.3  rather than 0.35 . Thus, for liquid-filled craters, the 

applicability of finite element simulation under large preload is limited to moderate 

preload. For the specimens used in this paper, the deviation between finite element 

simulation and experiments occurs at 𝜖 ≈ 0.3. One should note that the deviation may 

occur at different preload 𝜖 if the specimens are made of different materials or the crater 

shape is different or the specimen is at different depth of liquid. 

It is also obvious that experimentally, craters with both fillings produced similar 

suction forces after full closure, validating our expectation that at full closure, the pressure 

drop in both types of craters should equal the ambient pressure at sea level, i.e., −𝛥𝑝 =

𝑝𝑎.   

To accurately predict the pull-off force, one needs the traction-separation behavior 

of the specimen/platform interface, and the vaporization process of the liquid, which are 
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out of our current focus. So, we would focus on the study of the suction force given by Eq. 

(8.1). 

 

 

 
 

Figure 8.5  (a) Comparisons of suction forces obtained by experimental measurements 

(circular markers), analytical modeling (dashed curves) and finite element simulation 

(solid curves and diamond markers). Craters filled with incompressible fluid are 

represented by red (0 ≤ 𝜖 < 𝜖𝑓 ), magenta (𝜖𝑓 ≤ 𝜖 < 0.5)  and ideal gas by blue. (b) 

Profiles of air-filled craters at undeformed (black dashed curve), full unloading (blue 

curve), and pull-off (red curve) conditions. 
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8.4.2 Spherical-cap-shaped craters 

In this section, we extend the experimental and simulation approach established for 

hemi-spherical craters to spherical-cap-shaped (SCS) craters that are filled with 

incompressible fluid. Our objective is to investigate the effects of crater shape and preload 

so we fix the material modulus to be 𝜇 = 47.3 kPa. In fact, according to dimensional 

analysis, the pressure drop and hence the suction force for underwater craters have to scale 

with the modulus of the specimen 𝜇  as 𝑝𝑎  is not relevant except when considering 

vaporization or full closure. In this section, however, we will continue to use 𝑝𝑎 in the 

normalization just to be consistent with Figure 8.4, where air-filled craters were compared 

with liquid-filled ones. Since our analysis is limited to large specimens, the only 

dimensionless geometric parameter involved is the crater aspect ratio, i.e. 𝑏/𝑎, where 𝑎 

is crater base radius and 𝑏 is the crater height (Figure 8.6(a)). Finite element results of 

pressure drops as a function of preload for SCS craters with various aspect ratios (𝑏/𝑎 =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1) are plotted in Figure 8.6 (b). For each  𝑏/𝑎, 

the location of the preload of full closure is marked by the arrow. It is evident that shallower 

craters reach full closure at smaller preload than the deeper ones. Particularly, SCS craters 

with aspect ratio  𝑏/𝑎 < 0.5  reach full closure before 𝜖v
0 = 0.35 , meaning that no 

vaporization will take place before such craters are fully closed. For SCS craters with 

aspect ratios 𝑏/𝑎 ≥ 0.5, our simulation result indicates that they have the same critical 

preload for vaporization, i.e. the curves all intersect at 𝜖v
0 = 0.35 as evidenced in Figure 

8.6 (b). At this moment, we do not have an explanation for this observation. To validate 
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our finite element simulation results for SCS craters with different aspect ratios, we 

conducted extra experiments on two SCS craters with aspect ratios 𝑏/𝑎 = 0.25 and 0.5. 

To eliminate the effect of 𝐴0, the crater base radius 𝑎 = 6.35 mm was fixed in all three 

specimens. All experiments were conducted in air with liquid filling at sea level under 

room temperature.  Numerical (curves and diamond markers) and experimental (circular 

markers) results of suction forces for SCS craters with 𝑏/𝑎 = 0.25, 0.5,  and 1  are 

plotted together in Figure 8.6(c). It is obvious that the simulated suction forces only agree 

with measured pull-off forces at small to moderate preload. The shallower the crater, the 

earlier the deviation. For craters with 𝑏/𝑎 = 0.25, 0.5 and 1, the preload at deviation are 

𝜖𝑑 =  0.05, 0.13 and 0.3, respectively. For hemispherical crater, i.e., 𝑏/𝑎 = 1, towards 

the end of Section 2.4, this discrepancy was partially attributed to the possible vaporization 

when preload approaches 𝜖v
0 = 0.35 (as shown by the black dashed line in Figure 8.6 (b)). 

However, for craters with 𝑏/𝑎 = 0.25 and 0.5, no vaporization would occur under such 

small preload, i.e., 𝜖𝑑 = 0.05  and 0.13, according to Figure 8.6 (b). Therefore, we 

hypothesize that the deviation is due to the difference between simulated suction forces 

given by Eq. (8.1) and measured pull-off forces extracted using Eq. (8.2). To prove it, we 

added a retraction stage in finite element simulation where the applied retraction strain is 

the same as the pull-off strain in experiments. In this way, we can numerically obtain the 

suction force at the pull-off point for craters with 𝑏/𝑎 = 0.25 and 0.5. Simulated results 

are plotted as diamond markers in Figure 8.6 (c), which agree well with the experiments. 

This agreement validates our hypothesis and implies that our finite element simulated 

suction forces (the solid curves), which are defined to be the attachment force at the end of 
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unloading and before retraction, are valid. But adding retraction strain for fluid-filled 

craters should be conducted with caution because retraction strain would further reduce the 

hydrostatic pressure in the liquid, expediting vaporization. For instance, for craters with 

𝑏/𝑎 = 0.5 under preload 𝜖 = 0.29, no vaporization happens at the end of unloading. 

However, after applying retraction, the pressure drop further increases beyond 1, which 

means although vaporization does not take place the end of unloading, it could happen at 

the pull-off point. Therefore, the critical preload for vaporization at pull-off, 𝜖v
po

, is 

smaller than that at the end of unloading, 𝜖v. We use blue dashed line to represent 𝜖v
po

 in 

Figure 8.6 (c).. Left to this line, finite element simulated suction forces at the pull-off point 

(blue diamonds) and experimentally measured pull-off forces (blue dots) match perfectly. 

Right to this line, evaporation kicks in so finite element simulation becomes useless. For 

craters with 𝑏/𝑎 = 0.25, the maximum preload used in experiment was 0.2, by which no 

vaporization would occur according to the finite element results at the pull-off point. 

Therefore, the modified finite element results (yellow diamonds) can fully capture the 

measured pull-off forces (yellow dots). From such exercise, we learned that as long as the 

crater is not fully closed and the liquid inside remains as incompressible, i.e. no 

vaporization, the discrepancy between the finite element curves and experimental dots 

purely stems from the different definitions of suction force, rather than the numerical 

approach itself. Therefore, it is reasonable to believe that the finite element curves before 

the black dashed curve (𝜖v
0 = 0.35) are able to capture the true suction forces at the end 

of unloading. 
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To summarize the effects of preload and aspect ratio on suction forces, we offer a 

contour plot for the normalized suction force 𝐹̃ at full unloading (Eq. (8.3) in Figure 8.6 

(d).. First, the white regime represents vacuum due to full closure. If the crater reaches 

vacuum, the pressure drop is simply given by – 𝛥𝑝 = 𝑝𝑎 + 𝑤ℎ , which is obviously 

dependent on the depth of liquid, h. When ℎ = 0 and the crater reaches vacuum, our 

previous results for air-filled craters at full closure (fig. 6b in ref [189] ) are applicable. 

Second, before the crater is fully closed, the liquid vaporizes when the preload is beyond 

𝜖v
0 = 0.35 when ℎ = 0  (shown by the black dashed curve). Note that 𝜖v   changes 

with h and the dependence is shown in Figure 8.4. Our simulation results beyond 𝜖v  are 

not meaningful due to liquid vaporization. Third, below 𝜖v is the non-vaporization zone, 

where our numerical results have been validated by experiments as discussed in Figure 8.6 

(c) and such results are independent of h. It is clear that the suction force has a non-

monotonic dependence on the aspect ratio of the craters. The highest suction force 𝐹̃ =

0.69  can be generated by a SCS crater with 𝑏/𝑎 = 0.8  under preload 𝜖 ≈ 0.34, as 

highlighted by the white star in Figure 8.6(d)  
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Figure 8.6  (a) Schematics of spherical-cap-shaped (SCS) crater. (b) Finite element results 

of pressure drop as a function of preload for various SCS craters. Arrows indicate full 

closure point. (c) Suction force as a function of applied strain for SCS craters with aspect 

ratios of 𝑏/𝑎 = 0.25, 0.5 and 1. Curves and diamonds represent finite element results at 

full unloading and pull-off point, respectively. Solid (DMA) and open (MTS) circular dots 

are experimental data. (d) A contour plot for the normalized suction force at full unloading  

𝐹̂ = −𝛥𝑝𝐴2/(𝑝𝑎𝐴0) as a function of 𝑏/𝑎 and 𝜖. The white star highlights the highest 

suction force in the non-vaporization regime while the capital “V” represents the 

vaporization zone when 𝜖 > 𝜖v
0 = 0.35 .  
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 CHAPTER SUMMARY  

In this paper, we try to elucidate adhesion generated by cratered surface underwater 

or more generally, immersed in incompressible fluid. Such enhanced adhesion is purely 

enabled by suction force due to pressure difference between the crater and the ambient, 

thus is reversible. We restricted ourselves to isolated macroscopic SCS craters, for which 

surface tension and other microscopic mechanisms were assumed to be negligible. The 

restriction to SCS craters is dictated by manufacturing considerations, but of course one 

can consider other shapes. Both experimental and simulation results focused on specimens 

resting on frictionless substrates with small vent holes. Clearly, friction would weaken the 

suction effect as it requires large force to close the crater. Therefore, reducing friction 

should be desirable for all practical purposes. Vent holes are necessary to satisfy our 

assumption of zero resistance to fluid flow. In reality, nonzero resistance may exist and 

hence would further weaken the suction effects. Under such idealized assumptions, our key 

findings are summarized as follows: 

 As long as the specimen is immersed in incompressible fluid and the fluid inside 

the crater does not vaporize or fully disappear, the suction forces generated are 

independent of the depth of the liquid and can be confidently predicted by the 

framework established in this paper even under large preload. 

 In this case, suction force measurement for underwater crater can be simply carried 

out in air with liquid filled in the crater. 

 In this case, suction force produced by underwater crater scales with the modulus 

of the polymer material.  
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 In this case, for specimen of 𝜇 = 47.3 kPa examined in this paper, with the same 

crater geometry, underwater craters are capable of producing stronger suction force 

than craters in air. 

 In this case, for specimen of 𝜇 = 47.3 kPa examined in this paper with liquid 

filling, the largest suction forces 𝐹̂ = 0.69 can be generated by a SCS crater with 

𝑏/𝑎 = 0.8 under preload 𝜖 ≈ 0.34.  

 If the crater is fully closed during loading, vacuum is generated in the crater and 

the resulting suction force should be independent of the filler but dependent on the 

depth of the liquid. 

 The depth of the liquid and the preload together dictate when the liquid inside the 

crater would vaporize. When 𝑤ℎ/𝑝𝑎 > 1.2, the liquid would never vaporize at the 

end of unloading even up to full closure. 
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Chapter 9 Crater Arrays8  

In this chapter, we extend the study from isolated craters to crater arrays where 

craters can be closely packed. Adopting a SCS crater as a representative shape, we take the 

crater area fraction into account and consider three different crater patterns that are a single 

crater, square-patterned array, and hexagon-patterned array. Using finite element modeling 

(FEM) where the polymer matrix is modeled as 30:1 PDMS, we quantitatively present the 

preload-dependent suction forces of three patterns with various crater area fractions. We 

find for all three patterns, when the preload is small suction force increases with crater area 

fraction. 

  

                                                 
8 L. Wang, K. Ha, S. Qiao, N. Lu*, Suction Effect in Crater Arrays. (To be submitted). (L. Wang conducted 

the numerical simulations, experiments and wrote the paper.) 
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 ISOLATED CRATERS 

Following experimental data for the pure prismatic specimens (see experiment in 

Chapter 6), we assume that the cratered specimens are also taking the incompressible neo-

Hookean constitutive law with shear modulus 𝜇 =47.3 kPa. Three axisymmetric models 

with 𝑅/𝑎 =2, 3 and 10 are first built to examine the assumption of isolated craters. The 

schematic of FEM model is depicted in Figure 9.1 (a) where a hemispherical crater (i.e., 

𝑎/𝑏 = 1) is adopted for 𝑅/𝑎 =2, 3 and 10 cases. The lubricated specimen/substrate 

interface was assumed to be frictionless, i.e., roller boundary condition in simulation. The 

preload-stretch relationships under uniaxial compression are extracted from simulation and 

plotted in Figure 9.1 (b), along with experimental data and fitting curve for the pure 

prismatic specimen. Note that the pure prismatic specimen represents the extreme 

condition when area fraction approaches zero, i.e., 𝜙 = 0 , which can be rigorously 

regarded as isolated craters scenario. When 𝑅/𝑎 = 10, corresponding to 𝜙 = 1% , finite 

element results shown by the square black makers almost overlap with that of 𝜙 = 0. 

Actually, when 𝑅/𝑎 = 3 (i.e., 𝜙 = 11.1% shown by the diamond blue makers), finite 

element result also agree very well with that from the pure prismatic specimen, suggesting 

that such a small crater with radius 𝑎 = 𝑅/3 does not affect the overall behavior of the 

specimen under uniaxial compression test. In other words, crater arrays with 𝜙 ≤ 11.1% 

can be approximately treated as isolated craters where each crater does not affect its 

neighbors. Therefore, by fixing 𝑅/𝑎 = 3, simulations were carried out to account for the 

following four crater geometries: two SCS craters (see Figure 6.7 (a)) with 𝑏/𝑎 = 2/3 
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and 1; and other two CS craters with 𝑏/𝑎 = 2/3 and 1. All simulation were conducted 

using commercial FEM package ABAQUS 6.13 in which the built-in function *FLUID 

CAVITY was implemented to model the ideal gas behavior in the crater.  

 

 

 

Figure 9.1  (a) Schematic of axisymmetric FEM model of isolated craters. (b) Preload-

stretch relationship for pure prismatic specimen and cratered specimens. Hollow markers 

represent the finite element results for cratered specimen with different 𝑅/𝑎 ratios. Solid 

red dots are experimental data for pure prismatic specimen whose behavior can be 

successfully captured by a fitting curve from incompressible neo-Hookean material with 

shear modulus 𝜇 = 47.3 kPa (shown by the red curve).   
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  CRATER ARRAYS 

In this section, we extend the simulation developed for isolated craters to crater 

arrays with patterns. Our focus is looking for the optimal design of the cratered surface that 

maximizes the suction force over a specific area, say the polymer sheet has total area 𝐴𝑡.  

9.2.1 Simulation 

Here we propose three designs. The first is the single crater and the other two are 

square-patterned array (SPA) and hexagon-patterned array (HPA), as illustrated in Figure 

9.2. To better elucidate how crater area fraction and pattern affect the suction force, in what 

follows the crater geometry is fixed as a SCS crater with aspect ratio 𝑏/𝑎 = 2/3 and 

material properties is assumed to be incompressible neo-Hookean with shear modulus 𝜇 =

47.3 kPa. Different from simulation for isolated craters where axisymmetric models were 

used, simulations for patterned craters call for three-dimensional models. Invoking the 

nature of its periodicity, a representative volume element of SPA and HPA, i.e., unit cell, 

is studied with periodic boundary conditions. The finite element simulation schemes are 

graphically expressed in Figure 9.2 (b) and Figure 9.2 (c), respectively. For SPA, the unit 

cell is a square containing a crater at the center. The side of the unit square and radius of 

crater are denoted as 𝐷𝑠  and 𝑎, respectively. Geometric symmetries allow us to only 

consider a quarter of the unit. The x and y planes are symmetric plane as shown by dash-

dotted line. The periodicity in both 𝑥 and 𝑦 directions dictates the square unit remains 

as a square under uniaxial compression. In other words, the displacement in the 𝑦 

direction of all nodes on 𝑦 = 𝐷𝑠 plane are constrained to be the same, i.e., 𝑢𝑦
𝑎𝑙𝑙 = 𝑢𝑦

𝑟  
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where superscript ‘all’ represents all nodes on that plane and ‘r’ corresponds to the 

reference node which is highlighted by the red. Similarly, the displacement in the 𝑥 

direction of all nodes on 𝑥 = 𝐷𝑠 plane is also identical, i.e., 𝑢𝑥
𝑎𝑙𝑙 = 𝑢𝑥

𝑟 . As for HPA, the 

unit cell is a hexagon which remains as a hexagon under uniaxial compression. Therefore, 

a 30°-60°-90° triangle suffices for the simulation by enforcing 𝑢𝑦
𝑎𝑙𝑙 = 𝑢𝑦

𝑟  on 𝑦 = 𝐷ℎ 

plane and 60° plane remains 60°, i.e., 𝑢𝑦
𝑖 = √3𝑢𝑥

𝑖  where superscript ‘i’ denotes each 

individual node itself. It is worth noting that modeling a unit cell rather than the entire 

specimen is for the sake of simplicity. But one should be aware that such a simplification 

is only valid when the surface contains an infinite number of unit cells. In other words, this 

simplification is just an approximation for large crater arrays in which very few craters are 

near the surface margin where periodic boundary conditions are violated. 
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Figure 9.2  (a) Three designs for cratered surfaces: single crater, SPA, HPA. (b)-(c) 

Schematic of the representative volume element (RVE) used in simulation: (b) SPA; (c) 

HPA. Geometric periodicity and symmetry are implemented for simplification. 
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 RESULTS 

The finite element results of total suction (𝐹𝑡)  produced by three different 

cratered surfaces i.e., single crater, SPA and HPA, are given in Figure 9.3 (a)-(c). The total 

area the polymer surface are assumed to be the same for three designs, denoted as 𝐴𝑡. For 

single crater and SPA, the largest crater area fraction is 𝜋/4 ≈ 78.5% thus we consider 

following 𝜙 = 8.73, 19.6, 34.9, 54.5, 64.9  and 71.2 %, corresponding to 𝐷𝑠/𝑎 =

3, 2, 1.5, 1.2, 0.1 and 1.05; while for HPA, a higher crater area fraction 𝜙 = 80% is also 

studied.  

Figure 9.3 (a) clearly tells that when the crater area fraction is larger than the critical 

value, i.e.,  𝜙 > 𝜙𝑐 = 11.1% , single crater shows a non-monotonic suction-preload 

relation. The suction force first increase with preload and then drop as the preload further 

grows. When crater area fraction is high, e.g., 64.5% and 71.2%, the suction force 

dramatically decreases to zero when full closure is achieved. This is because, for a single 

crater with high 𝜙, the overall structural stiffness is low due to the thin walls. As a result, 

there is no enough elastic energy stored in the deformed polymer matrix for the recovery 

of the crater and the crater sticks to the substrate at unloading, i.e., 𝐴2 = 0 at State 2. The 

maximum suction force that a single crater can provide is around 0.17 𝑝𝑎𝐴
𝑡, which occurs 

under 𝜎𝑝𝑟𝑒 = 40 kPa for 𝜙 = 54.5% and 𝜎𝑝𝑟𝑒 = 60 kPa for 𝜙 = 34.9%, as shown in 

Figure 9.3. 
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Figure 9.3  (a)-(c) Normalized total suction force as a function of preload 𝜎𝑝𝑟𝑒 with (a) 

a single crater; (b) SPA; (c) HPA   
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SPA and HPA exhibit similar suction-preload relationship as plotted in Figure 9.3 

(b) and Figure 9.3 (c), respectively. When the preload 𝜎𝑝𝑟𝑒 ≤  80 kPa, larger crater area 

fraction leads to higher suction force for both SPA and HPA. The reasons are twofold. 

First, arrays with larger crater area fraction have lower structural stiffness, thus tend to 

have smaller crater volume at the end of loading under the same preload, i.e., small 𝑉1 

leads to large 𝐹 according to Eq.(7.4). Second, larger crater area fraction means more 

craters are contributing to the total suction force. However, under larger preload, craters 

may attain full closure so that arrays with larger crater area fraction produce lower suction 

force due to the relatively small crater volume after unloading,  i.e., small 𝑉2 at Stage 2. 

For instance, for HPA with 𝜙 = 80 %, the total suction force reaches maximum 

0.34 𝑝𝑎𝐴
𝑡at 𝜎𝑝𝑟𝑒 =  80 kPa , i.e., suction-induced adhesive strength is 34 kPa in the air 

(𝑝𝑎 = 101 kPa) but drops to 0.24 𝑝𝑎𝐴
𝑡  when 𝜎𝑝𝑟𝑒 = 100 kPa. After full closure is 

attained, vacuum is realized inside the crater and further preload will not enhance the 

suction force. For both SPA and HPA, we found the non-monotonic suction-preload 

relationship emerges when crater area fraction reaches 54.5%, as shown by the blue 

markers in Figure 9.3 (a) and Figure 9.3 (b). It is also worth noting that all three designs, 

i.e., a single crater, SPA and HPA, show exact the same suction performance when crater 

area fraction is lower than the critical value (e.g., 𝜙 = 8.53% as shown by black markers 

in Figure 9.3 (a)-(c) )below which all can be regarded as isolated. 

The suction-based dry adhesion intrinsically depends on the preload. A fair 

comparison of suction forces generated by three patterns can be made under the same 
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preload. For example, by fixing 𝜎𝑝𝑟𝑒 = 120 kPa where full closure of craters are achieved 

for all three scenarios, suction forces as a function of crater area fractions is plotted in 

Figure 9.3. It clearly shows that SPA and HPA outperform a single crater, having a 

maximum suction force which is about three times higher than that produced by a single 

crater. Also, it is evident that suction forces have a non-monotonic dependency on the 

crater area fraction for all three cratered surfaces. At full closure, the optimal crater area 

fraction that yields highest suction force for SPA and HPA are 54.5% and 64.9%, 

respectively. One can also conclude that HPA shows a little bit higher suction force than 

that of SPA when they have the same crater area fraction.  
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 CHAPTER SUMMARY  

Suction forces generated by cratered surfaces depend on the crater gometry, crater 

area fraction, array pattern, and applied preload. In this chapter, we first established a 

loading-unloading framework for quantifying the suction produced by an isolated crater, 

i.e., craters are sparsely distributed using both numerical simulation and experimental 

approaches. The crater geometry including spherical-cap-shaped and cylinder-shaped 

craters with various height-to-radius ratios are investigated and the suction-preload 

relationship are quantitatively obtained. Then we extended the study from isolated craters 

to crater arrays where craters are can be closely packed. Two cratered arrays, i.e., square-

patterned array and hexagon-patterned array, with various crater area fractions are 

systematically analyzed using finite element simulation. We found that the suction force 

has non-monotonic dependency on the crater area fraction. Overall, the hexagon-patterned 

array exhibits the best suction performance, having the maximum adhesive strength around 

34 kPa in the air. Our results also show that full closure of the crater induced by large 

preload may impair the suction effect. To achieve the highest suction force, a moderately 

large preload is desired. This study provides an insight to the design of the cratered surfaces 

which may find remarkable applications such as dry adhesives for bio-tissues. 
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Chapter 10 Conclusions and Outlook 

The last chapter summarizes this dissertation and proposes suggested directions for 

future research.  
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 SUMMARY AND CONCLUDING REMARKS 

In this dissertation, conformal electronics toward applications such as bio-

electronics have been discussed. Two topics are covered: mechanics of conformability 

under vdW interaction, and crater-enabled dry adhesives.  

 

Mechanics of Conformability 

Conformability of a thin elastic membrane conforming to soft and rough substrate 

has been analytically quantified in Chapter 3. Three contact modes, i.e., non-conformed, 

partially conformed, and fully-conformed, can be readily predicted by the energy 

minimization method. The external compression/stretching has also been investigated in 

Chapter 4, where critical parameters for structural design are updated for a fully conformed 

scenario to take place. These two studies offer simple but effective guidelines for the 

optimization of conformable bio-electronics. 

 

Crater-enabled Dry Adhesives 

The adhesion mechanism of crater-enabled dry adhesives has been revealed via a 

framework of modeling suction effect. A variety of factors that may affect the suction force, 

such as the craters shape, matrix stiffness, crater area fraction, preload, surface tension, and 

dry/wet ambient environment, have been investigated in Chapter 6 to Chapter 9, using 

experiments, numerical simulation, and analytical approaches. Some key finding read as 

follows 
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 Craters are capable of producing stronger suction force under water rather than in 

air.  

 In soft matrix, large suction forces require crater reinforcement to prevent 

capillarity-induced collapse of microscale craters.  

 Under full closure, the maximum suction force of 30:1 PDMS SCS crater with 

height-to-radius ratio equals 2/3 is achieved when optimal crater area fraction is 

~65%. 

 

 

 SUGGESTIONS FOR FUTURE WORK 

 

Mechanics of Conformability 

Current conformability analysis only focuses on a sinusoidally wavy surface, which 

has been markedly simplified for characterizing the morphology of soft substrate like skin. 

Actually, conformable electronics may encounter rough surfaces with different textures, 

for example, deep creases/grooves on the brain or spherical-doom retina in the eye. In 

addition to the widely used meshed, serpentine, and buckled patterning strategies, new 

structural design such as cutting may also be implemented to minimize folds or ridges of 

the electronics when conforming to different terrains. Theoretical analysis, experiments, 

and numerical simulations may be conducted in this direction.  
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Crater-enabled Dry Adhesives 

First, the current modeling framework presumes a frictionless contact between the 

crater and substrate and the separation is governed by a uniform pull-off strength. Future 

work may take the friction into consideration and analyze the pull-off behavior with 

traction-separation law assigned at the interface. Second, it has been reported crater arrays 

with the exact same pattern, crater shape, and area fraction may exhibit different adhesion 

strength when the size of the crater is different. The comprehensive understanding of the 

size effect still remains unavailable yet which is indeed worth studying in the future. 
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