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We present a technique for measuring the interfacial fracture energy, I';, between a hard thin film
and a soft substrate. A periodic array of hard thin islands is fabricated on a soft substrate, which is
then subjected to uniaxial tension under an optical microscope. When the applied strain reaches a
critical value, delamination between the islands and the substrate starts from the edge of the
islands. As the strain is increased, the interfacial cracks grow in a stable fashion. At a given applied
strain, the width of the delaminated region is a unique function of the interfacial fracture energy.
We have calculated the energy release rate driving the delamination as a function of delamination
width, island size, island thickness, and applied strain. For a given materials system, this
relationship allows determination of the interfacial fracture energy from a measurement of
the delamination width. The technique is demonstrated by measuring the interfacial fracture energy
of plasma-enhanced chemical vapor deposition SiN, islands on a polyimide substrate. We
anticipate that this technique will find application in the flexible electronics industry
where hard islands on soft substrates are a common architecture to protect active devices from

fracture. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4810763]

. INTRODUCTION

Many flexible-electronics applications rely on a simple
architecture that consists of a soft substrate with islands of a
thin hard film. The islands contain active devices and serve
to isolate these devices from any deformation of the sub-
strate. Examples include deformable displays, eye-like cam-
eras, and biomedical sensors.' Debonding of the islands is
an important reliability issue, because many of these com-
posite structures undergo large deformation during fabrica-
tion or in use.* The conditions for debonding have been
explored for various geometric factors including island size
and thickness,® and some solutions have been suggested. For
example, soft interlayers combined with plasma treatments
are used to delay debonding.”’ The lack of a reliable and
convenient method for measuring the interfacial fracture
energy between a hard film and a soft substrate precludes a
quantitative approach to solving this problem.

Quantitative experimental techniques for measuring I';
in thin-film systems are limited, because it is generally diffi-
cult to introduce well-defined interface pre-cracks and to
apply precise loads.® Classical techniques include the peel
test,g’lo the double cantilever beam test,ll and the four-point
bend test.'> These methods often employ steady-state condi-
tions because the mechanics is simpler and accurate mea-
surement of the crack length is not required. These
techniques are widely used in the microelectronics industry.
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They are, however, not readily applicable to flexible elec-
tronics: the substrates used for flexible electronics are too
compliant to generate significant crack extension forces in
the four-point bend or the double cantilever beam tests,
while the peel test may result in large-scale yielding, which
makes quantitative interpretation of the results quite difficult.
Furthermore, the peel test has a mode mixity that differs in
sign and magnitude from the mode mixity associated with
most practical decohesion problems.'?

In terms of non-steady-state measurements of interfacial
toughness, He, Evans, and Hutchinson analyzed the conver-
gent debonding problem using finite elements, and found
that the interfacial cracks begin to sense the edge of the film
when the length of the remaining bonded interface is approx-
imately 5-40 times the film thickness.'* They suggested that
quantitative statements could be made about I'; by measuring
the distance between the edge and the arrested crack tip, but
this approach was never developed into a practical technique
for measuring the adhesion of very thin films. Here, we
describe a technique for measuring interfacial fracture
energy in which a soft substrate with a periodic array of hard
thin islands is subjected to uniaxial tension under an optical
microscope. When the applied strain reaches a critical value,
delamination between the islands and the underlying sub-
strate starts from the edge of the islands. As the strain
increases, the interfacial cracks grow in a stable fashion. At a
given applied strain, the width of the delaminated region is a
unique function of the interfacial fracture energy. Using the
finite element method (FEM), we have calculated the energy
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release rate driving the delamination as a function of delami-
nation width, island size, island thickness, and applied strain.
For a given materials system, this relationship can be used to
determine the interfacial fracture energy from a measure-
ment of the delamination width. We present results obtained
for SiNj islands (see Fig. 1(a)) on polyimide (PI) substrates.

Il. EXPERIMENTAL

We have fabricated periodic SiN, islands on 25 um thick
PI substrates (Upilex-S, UBE Industries) using techniques
that have been described previously,”® combined with the
following lift-off procedure: The PI substrates were ultra-
sonically cleaned using methanol and acetone and attached
to a 3mm thick aluminum (Al) plate using double-sided
tape. The PI/Al assemblies were kept in a vacuum chamber
for 24 h to eliminate any air bubbles. A 3.2-um-thick posi-
tive photoresist (S1818, Microposit) was then spin-coated on
top of the PI substrates. The coated substrates were baked for
2min at 115 °C and exposed for 3 s through a chromium reti-
cule using an MJB4 mask aligner (SUSS MicroTec) with a
G-line light intensity of 59.1 mW/cm?. The samples were
developed in a MF-319 photoresist developer (Microposit),
rinsed in DI water for 1 min, and dried with N, gas. The PI
substrates were then cut into 7mm X 60 mm rectangular
strips while still attached to the Al plate. Low-stress SiN,
films, with a residual stress smaller than 20 MPa, were de-
posited by plasma-enhanced chemical vapor deposition
(PECVD) in a NEXX system with a base pressure of
5% 107 Torr. The depositions were performed at a working
pressure of 10 mTorr and with gas flows of 40 sccm of Ar-
3% SiHy, 5.8 sccm of Ny, and 20 sccm of pure Ar. A micro-
wave power of 265 W was used during the depositions and
the substrate temperature was maintained at 22°C. After
deposition, the SiN, coatings were patterned by stripping the
photoresist along with the extra SiNy in acetone. Samples
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FIG. 1. An array of SiN, islands on a PI sub-
strate  stretched in uniaxial tension. (a)
Schematic of the in-situ tensile test system
under an optical microscope; (b) and (c)
Micrographs of 500nm thick SiNy islands
20 pum in size, subjected to (b) 2.12%, (c) 3.04%
strain. The ligament length, d, is measured as a
function of applied strain as indicated in the
figure.
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with square islands of width L ranging from 20 ym to 40 um
and of thickness % ranging from 500 nm to 1 um were pre-
pared. The island pitch S was held constant at 1.5 x L for all
specimens.

After removing the samples from the Al plate, they were
uniaxially stretched in a screw-driven tensile device as shown
schematically in Fig. 1(a). A’ 5 mm x 5mm square array of
islands was placed in the middle of the two grips to achieve a
uniform tensile state. All tensile tests were performed under
an optical microscope with a CCD camera. Applied strains
were measured directly on recorded micrographs by compar-
ing initial and current average island spacings.

lll. EXPERIMENTAL RESULTS

The optical images in Figs. 1(b) and 1(c) show a typical
array of SiNy islands subjected to two different levels of
strain. The bright fringes in the figures are caused by the pres-
ence of an air gap between the island and the substrate,'” and
they indicate where the islands have debonded from the sub-
strate. A fringe typically starts at the edge of an island when
the applied strain reaches a critical value, denoted by ¢, and
propagates more or less parallel to the edge of the island as
the applied strain is increased. Both one-sided (symmetric)
and two-sided (asymmetric) debondings are observed at a
given strain level, but all islands show a similar ligament
length d regardless of whether debonding is one- or two-sided.
We define the total debond length as the difference between
island side and ligament length, 2a =L —d. The issue of
debonding symmetry is further explored in Sec. V.

Figure 2 shows the total debond length as a function of
applied strain for various island dimensions. It is evident
from the figure that the critical strain for the onset of debond-
ing is quite small and that it increases with decreasing island
size and thickness. After the onset of debonding, the total
debond length initially increases proportionally with
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FIG. 2. The delaminated lengths of the stretched islands are measured exper-
imentally as a function of applied strain. The delaminated length is defined
as the island size minus the ligament length (2a =L — d).

increasing applied strain and saturates as it approaches the
width of the island. We determine the interfacial toughness
I'; from the total debond length in the linear regime.

IV. ANALYTICAL RESULTS

If a thin film delaminates from a substrate and the tip of
the interfacial crack is sufficiently far away from the edge of
the film, the energy release rate is independent of crack
length and is given by

(1 —v?)ath

Gss - ) Ef

6]

where Efis Young’s modulus of the film, v/is Poisson’s ratio
of the film, g is the film stress, and / is the film thickness.
This expression represents the elastic energy per unit area
released under plane-strain conditions. If the energy release
rate is greater than the interfacial fracture energy at the rele-
vant mode mixity, I';, spontaneous delamination will occur
given a sufficiently long initial crack.'® Since the energy
release rate is independent of crack length, delamination of
the film proceeds indefinitely.

If, on the other hand, a debond crack converges onto the
edge of the film or another debond, the crack begins to relax
the strain energy stored in the attached segment of the film.
This occurs over remarkably large distances, where the
attachment width d is still many times the film thickness.'*
As a consequence, the energy release rate drops below the
steady-state value, even when d/h is quite large. This gradual
decrease in energy release rate was exploited in Ref. 17 to
measure the interface fracture energy of films that had been
stressed to the point where G, exceeded the interfacial frac-
ture energy. He er al.'* carried out finite element calculations
for convergent debonding of thin films. They also found an
analytical solution for the case where cracks from two
opposing edges of an island approach each other in the limit
that the remaining bonded interface is very short. In this
case, both film and substrate can be considered as half planes
and the energy release rate is given by

J. Appl. Phys. 113, 223702 (2013)
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where E* = E/(1 — %) and &, is the strain applied to the
substrate.

If there is a residual stress o, in the film, we show that
the effect of the residual stress is similar to that of an addi-
tional substrate strain (Fig. 3). The energy release rate in the
presence of a residual stress in the film is given by

-1
T /Cre 2 1 1
_ (e e N (L —2a) [ — = .
G 16<E;+F"">( a)(E:—FE;) 3)

If the substrate is much more compliant than the island,
E,; < Er, Eq. (3) reduces to

T, (Ore 2
GBES{E—;JFS,,,,,,} (L - 2a). @)

When the substrate is very compliant, Eq. (4) fits the energy
release rate obtained from FEM calculations well over the
entire range of crack lengths.'® This result is understood as
follows. When E; < Ey, the film is nearly rigid, and the
thickness of the film does not affect the elastic field in the
substrate, so that the energy release rate is independent of
the thickness of the film. Thus, an approximate value of the
interfacial fracture energy can be calculated from the applied
strain and the experimental ligament lengths without resort-
ing to full computational simulations.

V. COMPUTATIONAL RESULTS

Using the commercial finite element code ABAQUS, we
have constructed two plane-strain models to analyze the
delamination of an array of thin-film islands from a sub-
strate: one model represents symmetric, the other asymmet-
ric debonding. Schematic views of the unit cells of the
models are shown in Figs. 4(a) and 4(b). For the symmetric
debonding model, two interfacial cracks of length “a” were
introduced at each edge of the island; for the asymmetric
model, one crack of length “2a” was introduced at one of the
edges. The islands and the substrate were taken as homoge-
nous, isotropic, linear elastic solids with Young’s moduli
Esine =200GPa and Ep;=9.2GPa, and Poisson’s ratios
Vsing = Vpr = 0.3. A uniform displacement u,,,; was applied
to the substrates in the x;-direction, i.e., the applied strain
was given by eyppl = 2Uqppl /S. In the absence of a residual
stress, dimensional considerations dictate that the energy
release rate should take the following form:

Ei¢, L (a H h
G = ™ (4 N 5
2 g(L’L’L)’ )

where g is a dimensionless function that can be determined
using finite elements and H is the thickness of the substrate.
The energy release rates of the interface cracks for sym-
metric and asymmetric crack propagation are plotted as a func-
tion of interfacial crack length in Fig. 4(c). H/L and h/L are
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fixed at 1.25 and 0.05, respectively, in this figure. As shown in
Fig. 4(c), symmetric and asymmetric debondings show identi-
cal energy release rates if the ligament lengths are the same.
Furthermore, the energy release rate is very close to the value
given by the analytic solution for convergent debonding. Thus,
there is no need to distinguish between symmetric or asymmet-
ric debonding when using this approach to measure the interfa-
cial energy; it is sufficient to measure the ligament length as a

J. Appl. Phys. 113, 223702 (2013)
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FIG. 3. A residual stress in the film can
be accompanied with an applied strain in
the substrate. (a) The interface stress in-
tensity factors in mode I and mode II
loading, K|, Ky, are affected by both re-
sidual stress in the film and applied
strain in the substrate. (b) The interface
stress intensity factors K| and K| are
zero because there is no strain mismatch
across the interface. (¢) The interface
stress intensity factors in this state are
same as in state (a).
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function of the applied strain. The energy release rate can be
calculated using the analytic expression or derived from the
FEM simulations if better accuracy is required. In the limit of
no pre-crack, i.e., 2a =0, the energy release rate is zero, but it
rises sharply with crack length to reach a maximum at a length
that is significantly smaller than the film thickness.

A direct consequence of the maximum in the energy
release rate is that there exists a critical applied strain at

0.5 T T T T T T T T T
L —m— Symmetric debonding
0.4 —8— Asymmetric debonding |
L — = - Analytical solution, Eq.(4)
a I ~N
N~°_ 0.3} .
W | AN
= 02t LY ]
w | X
= ~
O 01- HiL=1.25 \\ -
| hIL=0.05 "
o_o 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5

alL

FIG. 4. Plane strain models of (a) symmetric, (b) asymmetric debonding propagation. S/L = 1.5 is fixed in all the experiments and simulations. (c) The normal-
ized energy release rate is plotted as a function of the normalized debonded length. Symmetric and asymmetric debondings show almost the same energy

release rate when the ligament size is the same.
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FIG. 5. FEM results of (a) normalized energy release rate and (b) mode angle as a function of debonded length for symmetric debonding. The energy release

rates for convergent debonding (Eq. (4)) are shown by the dashed lines.

which the maximum value of the energy release rate is equal
to interfacial fracture energy. Once the strain in the substrate
reaches this critical value, the islands start to delaminate.
When the substrate is strained further, the debond cracks
continue to grow, but they grow in a stable fashion because
the energy release rate decreases with increasing crack
length—cracks arrest as soon as the energy release rate drops
below interfacial fracture energy, I';. Thus, the experimen-
tally measured debond length can be converted into an
energy release rate using either the FEM simulations or the
analytical solution given by Eq. (4), which in turn is equal to
the interfacial fracture energy.

Figure 5(a) plots the energy release rate as a function of
debond crack length for the case of symmetric debonding.
Curves are shown for various values of island and substrate
thickness. The energy release rate increases and approaches the
analytical prediction given by Eq. (4) as the value of A/L
increases; by contrast the effect of H/L is relatively small.
Because large islands crack rather than debond,6 the ratio of
island thickness to island size cannot be decreased below
h/L =0.025, thus establishing an upper bound of approximately
21% on the error associated with using the analytical expression.
As pointed out by Lu ef al.,'® this error is further reduced as the
compliance of the substrate increases. For instance, SiNy islands
on a PDMS substrate, E/E; = 0.001, have an energy release rate
that differs less than 5% from the analytical prediction.

The mode angle of the interface crack, , is defined by
the ratio of the stress intensity factors under shear and nor-
mal loading conditions

tantﬁ:ﬂ (6)
K"

where K| and K| are the stress intensity factors for mode
| and mode || loading, respectively. Figure 5(b) plots the
mode angle as a function of crack length for various island
sizes and thicknesses. The mode angle is nearly constant for
crack lengths below 25% of the island size and increases rap-
idly for longer cracks—debonding becomes progressively
shear dominated.

VI. MEASURING THE INTERFACIAL FRACTURE
ENERGY

Here, we further pursue the idea that when the relation
between energy release rate G and crack length is known,
quantitative conclusions about I'; can be drawn from meas-
urements of the distance between the edge and the arrested
crack tip. By combining the results in Figs. 2 and 5, the frac-
ture energy for the interface between the SiNy film and the
PI substrate can be calculated. When the strain applied to the
substrate exceeds the critical value, interfacial cracks form
and grow in a stable fashion, such that at any given substrate
strain the energy release rate is equal to the interfacial frac-
ture energy. Thus, the debond crack length associated with
the applied strain in Fig. 2 can be directly converted into a
fracture energy using the data in Fig. 5. The resulting interfa-
cial fracture energies, and the corresponding mode angles,
are plotted in Fig. 6. The values of the fracture energy are in-
dependent of film thickness or island size, which provides
confirmation of the measurement technique, and increase
slightly with applied strain. Note that the energies calculated
using the FEM models have a very tight distribution. Those
obtained from the analytical expression are not quite as tight,
but still provide a reasonable measure for the fracture energy
for many practical applications. The experimental values of
the fracture energy lie in the 10~15 J/m” range, which is con-
sistent with values estimated from the scotch-tape peel test
and the fragment test.'>'? The mode angle increases slightly
with increasing strain, and this change may be associated
with the slight increase in fracture energy observed in Fig.
6(a). An increase of the fracture energy with increased mode
angle has also been observed for the plexiglass/epoxy
system.13

The technique is ideal for use in the field of flexible
electronics because it makes use of an architecture that is
routinely used in these applications, i.e., the device itself can
be used to measure the interfacial toughness without prepar-
ing extra testing samples. Since debonding of many islands
can be observed at the same time, the technique lends itself
for statistical analysis. The analytical solution, Eq. (4), for
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FIG. 6. Combining Figs. 2 and 5, (a) the interfacial toughness between SiNj islands and polyimide substrate and (b) the mode angle are plotted as a function of
applied strain for various island thicknesses and island sizes. The open symbols in (a) are calculated from Eq. (4) and the filled symbols are calculated from the
computed energy release rate. Very consistent interfacial toughness and mode angle are obtained regardless of island size, island thickness, and applied strain.

the convergent debonding problem is in good agreement
with more accurate FEM calculations, and Eq. (4) can be
used to obtain approximate values of the interface fracture
energy from measurements of the ligament length and the
applied strain.

VIl. CONCLUDING REMARKS

A technique for measuring the interface adhesion energy
I'; of hard thin films on soft substrates has been devised, ana-
lyzed, and demonstrated. When subject to uniaxial stretching,
stiff ceramic islands on soft polymeric substrates exhibit
debonding. Debond lengths of each island are measured as a
function of applied strain, while the relationship between
energy release rate and debond length is calculated using the
finite element method. By combining the experimental debond
length and the FEM results, the fracture energy of the inter-
face can be calculated. We have also developed an approxi-
mate analytical expression, Eq. (4), for energy release rate,
which can be used to convert the observed ligament length to
the fracture energy for most practical purposes. The technique
is ideal for use in the field of flexible electronics because it
makes use of an architecture that is routinely used in these
applications and lends itself for statistical analysis because
debonding of many islands can be observed at the same time.

ACKNOWLEDGMENTS

This research was performed in part at the Center for
Nanoscale Systems at Harvard University, which is sup-
ported by the National Science Foundation under Award No.
ECS-0335765. Financial support from the National Science
Foundation under Grant DMR-0906892 and under Grant
DMR-0820484 (MRSEC) is also gratefully acknowledged.

K.H.O is grateful for the support from National Research
Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (R11-2005-065).

. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju,
V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, Proc. Natl.
Acad. Sci. U.S.A. 98, 4835 (2001).

’H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C.-J.
Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, Nature
454, 748 (2008).

3D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A.
Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G.
Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, and J. A.
Rogers, Nature Mater. 9, 511 (2010).

“R. Bhattacharya, A. Salomon, and S. Wagner, J. Electrochem. Soc. 153,
G259 (2006).

51.-Y. Sun, N. Lu, J. Yoon, K.-H. Oh, Z. Suo, and J. J. Vlassak, J. Mater.
Res. 24, 3338 (2009).

°J.-Y. Sun, N. Lu, J. Yoon, K.-H. Oh, Z. Suo, and J. J. Vlassak, J. Appl.
Phys. 111, 013517 (2012).

T.-G. Woo, IL.-S. Park, K.-H. Jung, W.-Y. Jeon, Y.-K. Hwang, and K.-W.
Seol, Electron. Mater. Lett. 8, 151 (2012).

N Bagchi and A. G. Evans, Interface Sci. 3, 169 (1996).

°K.-S. Kim and N. Aravas, Int. J. Solids Struct. 24, 417 (1988).

19K .-S. Kim and J. Kim, J. Eng. Mater. Technol. 110, 266 (1988).

7. Suo and J. W. Hutchinson, Mater. Sci. Eng. A 107, 135 (1989).

'2G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, J. Appl.
Mech. 56, 77 (1989).

3J. W. Hutchinson and Z. Suo, “Mixed Mode Cracking in Layered
Materials,” in Advances in Applied Mechanics, Vol. 29 (Academic Press,
1992), pp. 63-191.

M. Y. He, A. G. Evans, and J. W. Hutchinson, Acta Mater. 45, 3481
(1997).

155, Tarasovs, J. Andersons, and Y. Leterrier, Acta Mater. 58, 2948 (2010).

'H. H. Yu, M. Y. He, and J. W. Hutchinson, Acta Mater. 49, 93 (2001).

A, V. Zhuk, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides,
J. Mater. Res. 13, 3555 (1998).

I3N. Lu, J. Yoon, and Z. Suo, Int. J. Mater. Res. 2007/08, 717 (2007).

"YH. Li, R. K. Sharma, Y. Zhang, A. A. O. Tay, E. T. Kang, and K. G. Neoh,
Langmuir 19, 6845 (2003).

Downloaded 27 Jun 2013 to 146.6.102.180. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jap.aip.org/about/rights_and_permissions


http://dx.doi.org/10.1073/pnas.091588098
http://dx.doi.org/10.1073/pnas.091588098
http://dx.doi.org/10.1038/nature07113
http://dx.doi.org/10.1038/nmat2745
http://dx.doi.org/10.1149/1.2165795
http://dx.doi.org/10.1557/jmr.2009.0417
http://dx.doi.org/10.1557/jmr.2009.0417
http://dx.doi.org/10.1063/1.3673805
http://dx.doi.org/10.1063/1.3673805
http://dx.doi.org/10.1007/s13391-012-1075-5
http://dx.doi.org/10.1007/BF00191045
http://dx.doi.org/10.1016/0020-7683(88)90071-6
http://dx.doi.org/10.1115/1.3226047
http://dx.doi.org/10.1016/0921-5093(89)90382-1
http://dx.doi.org/10.1115/1.3176069
http://dx.doi.org/10.1115/1.3176069
http://dx.doi.org/10.1016/S1359-6454(96)00395-3
http://dx.doi.org/10.1016/j.actamat.2010.01.023
http://dx.doi.org/10.1016/S1359-6454(00)00293-7
http://dx.doi.org/10.1557/JMR.1998.0484
http://dx.doi.org/10.3139/146.101529
http://dx.doi.org/10.1021/la0344074

