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a b s t r a c t

Many high performance flexible and stretchable electronics are manufactured by trans-
ferring inorganic semiconductor nanomembranes from their rigid donor substrates to soft
receiving substrates via elastomeric rubber stamps. As nanomembrane thickness reduces
to nanometers or subnanometers (e.g., 2D materials), they can be easily ruptured during
the stamping process by shear stresses. Through analytical modeling, this paper reveals the
membrane stress in the nanomembrane induced by stamp compression as a function of
the stamp and nanomembrane property and geometry, as well as the traction–separation
relation between the nanomembrane and the donor substrate. While membrane stress
in the nanomembrane increases monotonically with the compressive loading applied on
the stamp, an abrupt increase appears when nanomembrane–substrate interface starts to
fail. While the stamp is assumed to be incompressible material in the main text, more
general solutions for compressible stamps are offered in the supplementary material (see
Appendix B).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Inorganic semiconductors such as silicon (Si), gallium
arsenide (GaAs), and gallium nitride (GaN) are, by far,
the most well-established materials for high performance
electronics and optoelectronics. Although these materi-
als are intrinsically rigid and brittle, when exploited in
mechanically optimized layouts, they can be integrated
on soft polymer supports to yield integrated flexible or
stretchable functional devices. The result is an electron-
ics/optoelectronics technology that offers the performance
of conventional wafer-based systems, but with the me-
chanics of a piece of paper or a rubber band. Examples
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include flexible displays [1], solar cells [2,3], stretchable
optoelectronics [4] and photovoltaics [5], as well as bio-
inspired [6,7] and bio-integrated [8–10] electronics.

Semiconductors in these examples are in the form of
nanomembranes (NMs) and nanoribbons (NRs) due to
their ultra-low flexural rigidities and small strains even
when bent or buckled to small radii of curvature. Since
high quality crystalline NMs are usually formed by wafer
bonding and polishing or controlled fracture [11], or by
epitaxial growth on crystalline substrates [3,12], they need
to be integrated onto substrates of choice in a controlled,
deterministic fashion by the techniques of transfer print-
ing [13–15]. An important feature of this process is that
it exploits the known, lithographically defined positions
and orientations of undercut-etched nanostructures. As
a common example, Si NMs can be formed by releasing
the top Si layer of a silicon-on-insulator (SOI) substrate
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after etching away the buried oxide layer with hydroflu-
oric acid [16,17]. Other SOI-like structures that can serve
as routes to different semiconductor nanomaterials in-
clude germanium-on-insulator (GOI), silicon–germanium-
on-insulator (SGOI), as well as III–V semiconductors and
many other combinations [18–21]. Retrieval from these
predetermined sites, followed by release onto other sub-
strates, can be accomplished with rubber stamps such as
the polydimethylsiloxane (PDMS). The procedure involves
switching the strength of adhesion between these struc-
tures and PDMS from strong to weak states by exploiting
viscoelastic and/or geometric effects [13,14,22,23].

Although transfer printing has been proved effective for
many semiconductor NMs, the difficulty escalates when
NM thickness drops below 100 nm, which gains optical
transparency [24] and biodegradability [25] in the case
of Si NM. Cracks and wrinkles easily form in ultrathin
NMs picked up by PDMS stamps from our own experi-
mental experience. This is why transparent thin film tran-
sistors (TFTs) based on Si NMs have been rarely reported
and state-of-the-art transient or biodegradable electronics
[26,27] are still using Si NMs with thickness in the hun-
dreds of nanometers regime. Similar problems exist when
peeling or exfoliating nanometer or subnamometer thick
two-dimensional (2D) atomic layers using PDMS stamps.
In our recent paper [28], few layer molybdenum disulfide
(MoS2) flakes were exfoliated from a synthetic MoS2 crys-
tal by either adhesive tapes or PDMS stamps. In either case,
cracks, wrinkles, and buckle delaminations are clearly vis-
ible in exfoliated samples.

So far, the cause of failure when stamping on ultrathin
NMs remains unclear and it hence lacks a guideline
for minimizing stamping induced NM failure. To tackle
this problem, we decide to first find out the stamp–NM
interaction and then set up a boundary value problem
(BVP) to solve for the membrane stress developed in the
NM, as described in Section 2. Our results reveal that the
compressive load applied on the stamp plays a significant
role. The size and mechanical properties of the stamp
can affect the stamp–NM interaction and can be used to
tilt the membrane stress to avoid cracking. Results are
summarized in Section 3 and discussed in Section 4 with
manufacturing guidelines provided.

2. Boundary value problem

The stamping process with an unstructured, flat stamp
is illustrated by cross-sectional schematics in Fig. 1(a) and
(b). First, the PDMS stamp backed by a rigid layer (e.g., a
glass slide) is making a gentle contact on the NM which
is sitting on its donor substrate (e.g., Si NM on undercut
oxide or chemical vapor deposited (CVD) graphene on
seed copper (Cu)) (Fig. 1(a)). Then an external compression
characterized by the compressive strain ϵ is applied to the
stamp to form an intimate contact with the NM such that
the NM can later be peeled off from the donor substrate
by the stamp. Due to the Poisson’s effect, the vertically
compressed stamp would expand laterally, resulting in
shear stresses on the stamp–NM interface [29–31], which
rubs the NM and may eventually lead to cracked NM
(Fig. 1(b)).

Assuming the stamp is an infinitely long strip into the
paper, Fig. 1(c) draws the stresses experienced by the NM
in a 2D plane strain model. The shear stress applied by
the stamp on the top surface of the NM is labeled as τtop
whereas the shear stress applied by the donor substrate on
the bottom surface of the NM is labeled as τbottom. A free
body diagram (FBD) for the boxed part of the NM is pro-
vided as an inset in Fig. 1(c), which suggests that the edge
on the right is a traction free surface while the membrane
stress in the NM at the cut can be given by the equilibrium
condition:

σ (x) =

 a
x


τtop(η) − τbottom(η)


dη

hm
(1)

where x starts form themiddle of the NM (Fig. 1(a)), a is the
half size of the stamp andNMand hm is the thickness of the
NM. Eq. (1) offers a simple explanation why ultrathin NMs
are more prone to fracture during stamping: as the mem-
brane stress is inversely proportional to the NM thickness,
whenNM thickness drops fromhundreds of nanometers to
few nanometers, the membrane stress can be elevated by
hundred times. Given hm, the central goal of this paper is
to quantify σ (x) as a function of the stamp geometry and
property, the NM–substrate interface property, as well as
the compressive load ϵ applied on the stamp.

τbottom is the shear stress developed to balance τtop. Be-
fore discussing τtop, we assume that the evolution of τbottom
has to follow the shear traction–separation relation (TSR)
along the NM–substrate interface. Various TSRs have been
developed and applied to describe physical phenomena
of interface fracture. For simplicity, a rectangular TSR as
shown in Fig. 1(d) is adopted,where τ0 is theNM–substrate
interface adhesion strength, δc is the critical separation be-
tween NM and substrate, and the area within this rectan-
gle is the interface adhesion energy. As the substrate is as-
sumed rigid and non-deformable, separation between the
NM and the substrate is identical to the NM displacement
in the x direction, u (x). Whenever |u (x)| exceeds δc , the
NMwill fully andpermanently detach from the substrate at
that point and there is no more interaction between them.
Re-adhesion is not allowed in this model. Hence τbottom, a
function of u (x), could be written as

τbottom =

0 ∼ τ0 |u (x)| = 0
τ0 0 < |u (x)| < δc
0 |u (x)| ≥ δc .

(2)

τtop captures the interaction between the stamp and the
NM. Since the rubber stamp is sandwiched between the
rigid backing layer and the rigid NM-on-substrate and the
bottomof the stamp canbe assumed fixeddue tominimum
deformation in both the lateral and vertical direction of
the stiff NM. Thus, we can adopt our previous solutions
for an infinitely long elastic layer bonded and compressed
between two rigid plates (Eqs. (44) and (48) in [29]):

τtop (x) = ϵA sinh

α
x
h


(3)

where A and α, determined by the mechanical properties
and geometry of the stamp, are given by the following
equations

A =
ανE

2 (1 + ν) (1 − 2ν) cosh


αa
h

 (4)
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Fig. 1. (a) A stamp (pink) backed by a rigid layer (blue) is just in contact with a NM (red) bonded on its donor substrate (green). Young’s modulus, Poisson’s
ratio and thickness of the stamp are E, ν, and h respectively. The Lamé constants and thickness of the NM are µm , λm , and hm , respectively. The stamp and
NM have the same width of 2a. (b) The stamp is compressed vertically and hence expands laterally, which applies shear stress on the top surface of the
NM that may result in NM rupture. (c) Stresses applied to the right half of the NM. τtop is applied by the stamp and τbottom is applied by the donor substrate.
The inset shows a free body diagram of the boxed part of the NM. (d) A rectangular traction–separation relation (TSR) is assumed for the NM–substrate
interface. τ0 is the adhesion strength and δc is the critical separation. (e) The distribution of normalized τtop when two stamps have the same Poisson’s
ratio (ν = 0.45) but different aspect ratios (red: a/h = 8 vs. black: a/h = 10). (f) The distribution of normalized τtop when stamps have the same aspect
ratio (a/h = 5) but different Poisson’s ratios (ν = 0.3, 0.48, 0.495 and 0.5). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

where E and ν are the Young’s modulus and Poisson’s ratio
of the stampmaterial, h is the stamp thickness, and α is the
positive root of Eq. (5):

α = (3 − 4ν) sin (α) (−1 ≤ ν < 1/2). (5)

Fig. 1(e) and (f) demonstrate the effects of stamp aspect
ratio (a/h) and Poisson’s ratio (ν), respectively, with τtop
normalized by Eϵ. In Fig. 1(e), with a given Poisson’s ratio
(ν = 0.45) but different aspect ratios of the stamp (red
curve: a/h = 8 vs. black curve: a/h = 10), both interfacial
shear stresses are monotonically increasing from zero at
the center of the stamp towards the edge of the stamp. This
observation suggests that if the NM is much smaller than
the stamp and is located towards the center of the stamp,
the shear stress applied on the NM can be minimal. More-
over, since the stamp with higher aspect ratio generates
lower shear stress, we can increase the lateral dimension
of the stamp to further reduce the shear stress experienced
by the NM. However, such effect of aspect ratio vanishes

if the stamp is made of strictly incompressible material as
discussed in the next paragraph. Hence the strategy of en-
larging stamp aspect ratio to lower τtop does not work for
incompressible stamps.

In Fig. 1(f), the stamp aspect ratio a/h is set to be
5 while the Poisson’s ratio changes from 0.3 to 0.5. The
incompressible solution (ν = 0.5) is achievedby taking the
limit ν → 0.5 in Eqs. (3)–(5), which yields α → 0, A →

∞, A sinh (αx/h) → 2Ex/h, and hence:

τtop (x) = 2Eϵ
x
h

(6)

which recovers the linear interfacial shear stress distribu-
tion observed in Gent’s experiments for compressed rub-
ber blocks [31]. According to Fig. 1(f), stamps with smaller
Poisson’s ratio generate lower τtop due to weaker Poisson’s
effect, which agrees with our intuition. A straightforward
strategy following this result is that materials with smaller
Poisson’s ratio are preferred stampmaterials when stamp-
ing on the NMs. However, in most cases, PDMS, which is
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Fig. 2. (a)–(c) The applied shear stresses, displacement, and membrane stress distribution in the NM when ϵ/ϵ2 = 0.8 where ϵ2 = τ0h/(Ea). τbottom
reaches τ0 in Zone AC, which is a partially damaged NM–substrate interface. (d)–(f) ϵ/ϵ2 = 1, which is the critical moment before the NM–substrate
interface starts to have fully damaged zone. (g)–(i) ϵ/ϵ2 = 1.3, where NM is fully detached from the substrate in Zone BC and hence τbottom = 0 in Zone
BC. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

perfectly incompressible, are used as stamps for transfer
printing due to their desirable surface energy and mold-
ability. So from now on, we will just focus on incompress-
ible stamps with τtop given by Eq. (6) in the following main
text. More general solutions and results for stamps made
out of compressiblematerials, with τtop given by Eq. (3), are
summarized in the supplementary material (see Appendix
B).

Neglecting the deformation in the thickness direction of
the NM, the constitutive relation between the membrane
stress and displacement is given by

σ (x) = (2µm + λm)
du
dx

(7)

where µm and λm are the two Lamé constants of the NM
material. Plugging Eq. (7) into Eq. (1) and then taking the
first order derivative yield:

d2u(x)
dx2

+
τtop (x) − τbottom(ux(x))

(2µm + λm)hm
= 0. (8)

With boundary conditions (BCs) defined as u (0) = 0
due to symmetry and u′ (a) = 0 due to the traction free
edge, we have established a BVP for the NM. The solution
to the 2nd order ODE of Eq. (8) is the lateral displacement
u(x) of the NM. Once u(x) is solved, the membrane stress
can be readily obtained through Eq. (7).

3. Solutions

The BVP in Section 2 can be solved analytically with
parameters that characterize τtop and τbottom given by

Eqs. (3) and (6). Assuming that the compressive load on
the stamp increases quasi-statically, different solutions of
Eq. (8) can be obtained through the following segmental
analysis:

When ϵ is very small, Eq. (6) suggests that τtop is propor-
tional to ϵ andhence is also small. τtop can therefore be fully
balanced by τbottom till the 1st critical point, τtop (a) = τ0,
where τ0 is the NM–substrate adhesion strength as shown
in Fig. 1(d) and is hence the maximum possible τbottom. The
condition τtop (a) = τ0 corresponds to the 1st critical load-
ing ϵ1 = τ0h/(2Ea), before which no membrane stress or
displacement can develop in theNM, i.e., when 0 ≤ ϵ ≤ ϵ1,

u (x) = σ (x) = 0 (0 ≤ x ≤ a). (9)

When ϵ1 < ϵ ≤ ϵ2, where ϵ2 is the 2nd critical loading
to be determined later, τtop gets too large to be balanced
by τ0, and hence displacement and membrane stress in
the NM emerge in Zone AC (Fig. 2(a)). The corresponding
displacement and membrane stress are found to be

u (x) =


0 (0 ≤ x ≤ x1)

(x − x1)2

(2µm + λm)hm


τ0

2
−

Eϵ

3h
(x + 2x1)


(x1 < x ≤ a)

(10)

σ (x) =


0 (0 ≤ x ≤ x1)

(x − x1)

τ0 −

Eϵ

h
(x + x1)


(x1 < x ≤ a)

(11)
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where x1 ∈ (0, a) represents the location of Point A in
Fig. 2(a)–(c), which can be obtained from the traction free
BC σ (a) = 0:

x1 =
τ0h
Eϵ

− a. (12)

Fig. 2(b) and (c) plot Eqs. (10) and (11), respectively. Start-
ing from Point A, although u (x) is monotonically increas-
ing till reaching the maximum at x = a (Fig. 2(b)), σ (x) is
proportional to the first derivative of u (x), which is non-
monotonic and maximizes somewhere within Zone AC
(Fig. 2(c)). During this time, the maximum NM–substrate
separationu (a) is still below the critical separationdefined
in the TSR (Fig. 1(d)), i.e. u (a) < δc , which means the NM
over Zone AC is bounded to the substratewith partial dam-
age.

Further increasing ϵ would arrive at the 2nd critical
point when τbottom = τ0 is reached along the entire
NM–substrate interface (Fig. 2(d)), i.e. x1 = 0, which yields
the 2nd critical loading ϵ2 = τ0h/(Ea). Note that ϵ1 =

0.5ϵ2. If u (a) = δc is also reached at this critical point, then
δc = δ0, where

δ0 =
τ0a2

6(2µm + λm)hm
(13)

is a characteristic length scale of the NM–substrate sys-
tem,which is independent of the stamp. TakingCVDmono-
layer graphene on seed Cu as an example, hm = 0.34 nm,
µm = 427.4 GPa and λm = 220.2 GPa can be calculated
from the Young’s modulus (1 Ta [32]) and Poisson’s ratio
(0.17 [33]) of graphene. According to a recent double can-
tilever adhesion test [34], CVD graphene to seed Cu adhe-
sion energy is measured to be Γ = 6 J/m2 with an ultra-
long range interaction of δc = 4 µm. Assuming a rectan-
gular TSR, we can estimate τ0 ∼ Γ /δc to be 1.5 MPa. With
a graphene flake of size a = 100 µm, δ0 is found to be
6.8 µm, which can be close to δc . Fig. 2(e)–(f) plot the dis-
placement, and membrane stress in the NM when ϵ = ϵ0
by setting x1 = 0 in Eqs. (10) and (11).

Now let us use the ratio between the critical separation
δc and the system length scale δ0, denoted as m = δc/δ0,
to categorize the different situations of this problem. For
m = 1, when ϵ > ϵ2, fully damaged interface propagates
from C to B (Fig. 2(g)–(i)) and the corresponding τbottom = 0
is drawn as red dashed line in Fig. 2(g). The displacement
and membrane stress can be found as

u (x) =



x
x2

δ0 +
x(x − x2)

(2µm + λm)hm
τ0

2
−

Eϵ

3h
(x + x2)


(0 ≤ x ≤ x2)

x
x2

δ0 +
x2(x − x2)

(2µm + λm)hm
τ0

2
−

Eϵ

3h
x
x2

(x + x2)


(x2 < x ≤ a)

(14)

σ (x) =



τ0a2

6x2hm
+

1
hm

τ0

2
(2x − x2) −

Eϵ

3h


3x2 − x22


(0 ≤ x ≤ x2)

τ0a2

6x2hm
+

1
hm

τ0

2
x2 −

Eϵ

3h


3x2 − x22


(x2 < x ≤ a)

(15)

where x2 ∈ (0, a) is the position of Point B in Fig. 2(g)–(i),
which like x1 is also determined by the traction free BC
σ (a) = 0:

Eϵ

τ0h
=

a2 + 3x22
2x2(3a2 − x22)

. (16)

Fig. 2(h) and (i) plot representative displacement and
membrane stress when ϵ > ϵ2. In this case, σ (x) shows
a kink at Point B where there is sudden change of τbottom
and the max (σ ) always occurs at this kink.

If further increasing ϵ to approach infinity, the entire
NM–substrate interface would completely fail, i.e., x2 = 0,
which yields the following result:

u (x) =
Eϵ

3(2µm + λm)hhm
x

3a2 − x2


(0 ≤ x ≤ a) (17)

σ (x) =
Eϵ

hhm


a2 − x2


(0 ≤ x ≤ a) . (18)

So far, all the results are given for the scenario m =

1 for simplicity. Results for arbitrary m > 0 are sum-
marized in the Appendix A with non-dimensionalized
parameters:

x̂ = x/a, û = u/δ0, and σ̂ = σhm/(τ0a). (19)

The applied compressive load ϵ is reformulated as k =

ϵ/ϵ2. Similar results for compressible stamps are summa-
rizedwith the same non-dimensionalization in the supple-
mentary material (see Appendix B).

4. Discussion

Since the failure criterion of brittle NM is simply
max (σ ) = σcr, we would like to extract max (σ ) from
the solutions provided in Section 3 (Eqs. (11) and (15)) and
discuss its evolution with the applied compressive load ϵ.
Normalized max (σ ) are plotted against ϵ/ϵ2 in Figs. 3 and
4.

All the results presented so far are under the assump-
tion that the stamp has the same lateral dimension with
the NM. To account for different NM and stamp sizes, from
now on we use 2a to denote stamp size and 2b the NM
width. Hence the stamp–NM size ratio can be written as
β = b/a, which in general may be any positive number.
But in reality, the stamp size is most often as large as or
larger than the NM size, so we will only discuss β = 1 and
0 < β < 1 cases in 4.1 and 4.2, respectively.
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Fig. 3. (a) Normalized max (σ ) vs. ϵ/ϵ2 for m = 0.5, 1, and 1.5. The abrupt jump corresponds to the sudden failure of the NM–substrate interface when
the critical separation is first reached. (b) Normalized σ (x) at ϵ = ϵ2 (black curve) and ϵ → ϵ+

2 (red curve) show a sudden transition. No solutions are
available between the curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1. When NM size = stamp size (i.e., β = 1)

When NM is as large as the stamp, i.e., the edge of the
NMalignswith that of the stamp, Fig. 3(a) plots normalized
max (σ ) as a function of ϵ/ϵ0 when a/h = 5 is fixed but
m (i.e., δc/δ0) varies. Let us first focus on the results of
m = 1. The behavior of the maximum stress in the NM can
be categorizes into three stages which well corresponds to
the analysis in Section 3: In Stage I (0 ≤ ϵ/ϵ2 ≤ 0.5), ϵ
is too small to produce any stress in NM so max (σ ) =

0 and there is no displacement in the NM; in Stage II
(0.5 < ϵ/ϵ2 ≤ 1) as represented by Eqs. (10) and (11)
and Fig. 2(a)–(c), non-zero displacement and stress emerge
in NM and max (σ ) increases with ϵ monotonically, but
the displacement is smaller than the critical separation
so the NM is bonded to the substrate with some partial
interface damage; when it comes to Stage III (ϵ/ϵ2 > 1)
as represented by Eqs. (14) and (15) and Fig. 2(g)–(i), part
of the NM–substrate interface becomes fully damaged and
a sudden jump of max (σ ) is visible at ϵ/ϵ2 = 1. The red
dashed line in Fig. 3(a) plots

max (σ ) =
Ea2

hhm
ϵ (20)

which is obtained by setting x = 0 in Eq. (18) as well
as in the Appendix A (Eq. (A.11)) for the scenario of zero
NM–substrate adhesion everywhere, i.e. τbottom ≡ 0.
Neglecting interface re-adhesion, as ϵ/ϵ2 keeps increasing,
the fully damaged zone keeps growing, thus the black
curve will eventually converge to the red dashed line.

To look into the sudden jump of max (σ ) at ϵ2, σ (x)
is plotted in Fig. 3(b) where the black curve represents σ
when ϵ = ϵ2 (Eq. (11) when x1 = 0) and the red curve
plots σ when ϵ → ϵ+

2 (Eq. (15) when x2 = a). No solution
is availablewithin the area confined between the black and
red curves if monotonically increasing ϵ is considered. The
sudden change of max (σ ) from the black curve to the red
curve in Fig. 3(b) explains the jump of max (σ ) at ϵ/ϵ2 = 1
in Fig. 3(a).

When m (i.e., δc/δ0) differs from 1, the results are
offered in the Appendix A and the max (σ ) ∼ ϵ relations
are also plotted in Fig. 3(a) (e.g., m = 0.5 and 1.5). It
is evident that max (σ ) behaves similarly under different

m but the abrupt jump of max (σ ) occurs at smaller ϵ
when m is smaller. This makes sense because smaller m
indicates smaller δc , which means the interface is more
prone to complete damage. In reality,m can bemuch larger
or smaller than 1 because δc and δ0 can be differed by
orders of magnitude. Fig. 3(a) suggests that when m ≫ 1,
the NM–substrate interface hardly fails hence Stage III is
pushed way back and the max (σ ) has to follow the Stage
II black curve closely. When m ≪ 1, the NM–substrate
interface is so weak that Stage III starts at very small ϵ
and max (σ ) has to follow the red dashed line (Eq. (20))
closely.

Given the fracture criterion of the NM, max (σ ) = σcr,
the critical compressive load can be found through Fig. 3(a)
by finding the intersections of the black dashed line and the
black curves. Beyond this critical load the NM will rupture
due to stamping.

4.2. When NM size < stamp size (i.e., 0 < β < 1)

When the width of the NM (2b) is smaller than that
of the stamp (2a), due to the negligible thickness and the
significantly larger stiffness of the NM compared with the
stamp, the shear stress at the bottom of the stamp does not
change but only shear stress within the region of |x| ≤ b is
exerted on the NM. Therefore the substitution a → b has
to be applied to Eqs. (3) and (6) to properly describe the
stamp–NM interface shear stress. Assuming the traction
free boundary condition of the NM still holds as the stamp
expands laterally, the BVP when 0 < β < 1 remains
the same and hence all the results in the main text and
Appendix A have the same expressions as long as we take
the following substitutions: a → b, δ0 → δ′

0, m → m′,
x̂ → x̂′, û → û′, σ̂ → σ̂ ′ and k → k′, where

δ′

0 =
τ0b2

6(2µm + λm)hm
, m′

= δc/δ
′

0,

x̂′
= x/b, û = u/δ′

0, σ̂ ′
= σhf /(τ0b),

k = ϵ/ϵ′

2 and ϵ′

2 = τ0h/(Eb).

(21)

To recover the results under the same non-dimension-
alization given by Eq. (19),we just need to plug resultswith
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Fig. 4. (a) Distribution of normalized τtop with fixed NM size b/h and two different stamp sizes: a1/h = 5 and a2/h = 10. The τtop applied on the NM is
given by the solid curve which is the same under different a/h. (b) Normalized max (σ ) in the NM is the same when only a/h is changing. (c) Distribution
of normalized τtop with fixed stamp size a/h and two different NM sizes: b1/h = 5 and b2/h = 4. Solid curve represents the τtop applied on the smaller NM
whereas solid and dashed curves together represent the τtop applied on the larger NM. (d) Normalized max (σ ) is higher for systems with larger b/h.

‘‘prime’’ into Eq. (22):

û = û′
δ′

0

δ0
= û′β2, σ̂ = βσ̂ ′,

k = k′/β, and m = m′
δ′

0

δ0
.

(22)

Fig. 4 plots normalized τtop and max (σ ) for different
stamp–NM size combinations. In Fig. 4(a) and (b), NM size
is fixed (b/h = 5) but stamp size is changing (a1/h = 5
vs. a2/h = 10). In Fig. 4(a), the solid curve represents the
τtop exerted on the NM and the dashed curve represents
the shear stress induced by the larger stamp outside of the
NM zone. The two stamps, though of different sizes, al-
ways induce the same τtop/ (Eϵ) at the stamp–NM inter-
face (|x/h| ≤ b/h), which is no longer true if the stamps
are made of compressible materials, such as those plot-
ted in Fig. 1(e) whose ν = 0.45. Since τtop exerted on
the NM is the same for stamps with different a/h, the NM
would exhibit the same max (σ ) ∼ ϵ relation, as plot-
ted in Fig. 4(b) where a1 is used to normalize the results:
σ̂ = σhf /(τ0a1) and ϵ2 = τ0h/(Ea1). Thus, for incompress-
ible stamps, changing the aspect ratio a/h does not affect
stress in the NM during the stamping process.

In Fig. 4(c) and (d), stamp size is fixed (a/h = 5), but NM
size is changing (b1/h = 5 vs. b2/h = 4). In Fig. 4(c), the
solid curve represents the interface shear stress applied on
the NM with b2/h = 4 while the solid and dashed curves
together represent the interface shear stress applied on the

NMwith b1/h = 5. As the larger NM is subjected to higher
τtop near the edge, the larger NM tends to have higher
membrane stress as shown in Fig. 4(d). Therefore, smaller
NMs are less prone to rupture under the same applied load
ϵ. More generically, smaller b/h is effective in reducing
max (σ ). Since we already concluded from Fig. 4(a) and (b)
that a/h does not affect the NM stress for incompressible
stamps, the other way to lower b/h is to simply use a
thicker stamp (i.e., larger h).

5. Conclusions

When using stamps to pick up high quality NMs from
their donor substrates, stamping induced rupture becomes
a dominant failure mode as the NM thickness drops
to nanometers. We applied the analytical solutions we
previously obtained for elastic layers compressed between
parallel plates as the stamp–NM interface shear stress and
analytically solved a BVP to yield the membrane stress
distribution in the NM. The membrane stress depends on
not only the applied load, the stamp and NM geometry and
property, but also the NM–substrate interaction, which
is assumed to be a rectangular TSR. We therefore found
several ways to limit the maximum membrane stress in
the NM: first the stamp cannot be compressed too much;
second, the NM size should be small; and third, the thicker
stamps are preferred. Although results in the main text
are obtained for incompressible stampmaterial, results for
compressible materials are offered in the supplementary
material (see Appendix B).
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Appendix A

This Appendix solves Eq. (8) for arbitrary m > 0
with dimensionless parameters defined in Eq. (19) and
k = ϵ/ϵ2. m = δc/δ0 is the ratio between the critical
separation at the NM–substrate interface and the intrinsic
length scale of the NM–substrate system as defined in Eq.
(13). Although δc and δ0 are similar in the example of CVD
graphene on seed Cu as mentioned in the main text, in
general they can be differed by orders of magnitude. So
here, assuming NM is as large as the stamp (β = 1),
we offer the detailed dimensionless solutions for three
different scenarios:m = 1,m > 1 and 0 < m < 1.

1.m = 1

û

x̂


= σ̂

x̂


= 0 (0 ≤ x̂ ≤ 1) when 0 ≤ k ≤ 0.5 (A.1)

û

x̂


=


0


0 ≤ x̂ ≤ x̂1


x̂ − x̂1

2 
3 − 2k


x̂ + 2x̂1


x̂1 < x̂ ≤ 1


σ̂


x̂


=

0

0 ≤ x̂ ≤ x̂1


x̂ − x̂1

 
1 − kx̂1 − kx̂


x̂1 < x̂ ≤ 1


when 0.5 < k ≤ 1 (A.2)

û

x̂


=



x̂
x̂2

+ 3x̂

x̂ − x̂2


− 2kx̂


x̂2 − x̂22


0 ≤ x̂ ≤ x̂2


x̂
x̂2

+ 3x̂2

x̂ − x̂2


− 2kx̂


x̂2 − x̂22


x̂2 < x̂ ≤ 1



σ̂

x̂


=



1
6x̂2

+


x̂ −

x̂2
2


− k


x̂2 −

x̂22
3



0 ≤ x̂ ≤ x̂2


1
6x̂2

+
x̂2
2

− k

x̂2 −

x̂22
3



x̂2 < x̂ ≤ 1


when k > 1 (A.3)

where x̂1 = 1/k − 1, x̂2 is given by the traction free
boundary condition, σ̂ (1) = 0 and is reformulated as:

k =
1 + 3x̂22

2x̂2

3 − x̂22

 . (A.4)

2.m > 1:

When 0 ≤ k ≤ 0.5 and 0.5 < k ≤ 1, solutions are
the same as Eqs. (A.1) and (A.2), respectively. Otherwise,
solutions are given by the following equations:
û


x̂


= 3x̂(x̂ − 2) − 2kx̂(x̂2 − 3)

0 ≤ x̂ ≤ 1


σ̂


x̂


=

1 − x̂

 
kx̂ + k − 1


(0 ≤ x̂ ≤ 1)

when 1 < k ≤ k1 (A.5)

û

x̂


=



mx̂
x̂2

+ 3x̂

x̂ − x̂2


− 2kx̂


x̂2 − x̂22


0 ≤ x̂ ≤ x̂2


mx̂
x̂2

+ 3x̂2

x̂ − x̂2


− 2kx̂


x̂2 − x̂22


x̂2 < x̂ ≤ 1



σ̂

x̂


=



m
6x̂2

+


x̂ −

x̂2
2


− k


x̂2 −

x̂22
3



0 ≤ x̂ ≤ x̂2


m
6x̂2

+
x̂2
2

− k

x̂2 −

x̂22
3



x̂2 < x̂ ≤ 1


when k > k1 (A.6)

where k1 is given by the condition û (1)

k=k1

= m and
turns out to be

k1 =
m + 3

4
, (A.7)

and x̂2 is the root of σ̂ (1) = 0 in (0, 1) and, similarly to Eq.
(A.4), is rewritten as

k =
m + 3x̂22

2x̂2(3 − x̂22)
. (A.8)

3. 0 < m < 1:
When 0 ≤ k ≤ 0.5, the solution is the same as Eq. (A.1).

When 0.5 < k ≤ k2, the solution is the same with Eq.
(A.2), and k2 is obtained from the condition û (1)


k=k2

= m
togetherwith x̂1 = 1/k−1. After simplification, we can get
Eq. (A.9) from which k2 could be solved for:

m = k2 (2 − 1/k2)3 . (A.9)
Besides, when k > k2, the solution is the same with Eq.
(A.6).
If there is no interface adhesion, i.e. τbottom ≡ 0, the solution
is:

û

x̂


= 2k(3x̂ − x̂3) (0 ≤ x̂ ≤ 1)

σ̂

x̂


= k

1 − x̂2


(0 ≤ x̂ ≤ 1)

(A.10)

and the corresponding maximummembrane stress is

max(σ̂ ) = σ̂ (0) = k. (A.11)

Appendix B. Supplementary material

For stamps made of compressible materials, Eq. (3)
would be used in Eq. (1) and the corresponding analytical
results for both displacement and membrane stress are
summarized in the supplementary material expressed in
non-dimensional way as used in the main text as well
as Appendix A. Supplementary material related to this
article can be found online at http://dx.doi.org/10.1016/j.
eml.2016.02.002.
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