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a b s t r a c t 

Beam theories have been extensively studied for applications in structural engineering. Space curved 

beams with large displacements, however, have been explored to a much less extent, not to mention 

explicit solutions concerning instabilities and critical loadings. In this paper, by carefully accounting for 

geometric nonlinearity and different scalings of kinematic variables, we present a variational framework 

for large-displacement space curved beams. We show that the variational formulation is consistent with 

the classic field equations, derive the appropriate boundary value problems for a variety of loading con- 

ditions and kinematic constraints, and generalize the Kirchhoff’s helical solutions. Explicit planar solu- 

tions for semi-circular arches are obtained upon linearization. Further, two nonlinear asymptotic theories 

are proposed to address ribbon-like and moderately deformed curved beams, respectively. Based on the 

method of trial solutions, we obtain explicit approximate solutions to critical loadings for semi-circular 

arches losing stabilities due to twisting and out-of-plane displacement. The variational framework, non- 

linear asymptotic theories, stability analysis and explicit solutions are anticipated to have novel applica- 

tions in stretchable electronics and biological macromolecules. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Upon making suitable kinematic hypotheses, there are two

pproaches to formulating an effective theory for lower dimen-

ional elastic bodies. In the field-equation approach, the concept

f forces/moments is primitive, the balance laws relating inter-

al forces/moments and external forces/moments are derived by

ree-body-diagram analysis, and finally, constitutive laws relating

nternal forces/moments and kinematic variables are postulated

o close the system. In the variational approach, the concept of

ree/strain energy is primitive, and upon postulating the functional

ependence of strain energy on kinematic variables, the field equa-

ions follow as the Euler–Lagrange equations of the variational

rinciples, e.g., the Hamilton’s principle or the principle of mini-

um free energy. The two approaches shall always yield equiva-

ent, though sometimes not obvious, boundary value problems for
∗ Corresponding author at: Department of Mechanical Aerospace Engineering, 

utgers University, NJ 08854, USA. Tel.: +1 8484457969. 

E-mail address: liu.liping@rutgers.edu (L. Liu). 

2  

s  

(  

p  

(  

ttp://dx.doi.org/10.1016/j.ijsolstr.2016.02.032 

020-7683/© 2016 Elsevier Ltd. All rights reserved. 

Please cite this article as: L. Liu, N. Lu, Variational formulations, instab

Journal of Solids and Structures (2016), http://dx.doi.org/10.1016/j.ijsols
elf-consistency if the kinematic and constitutive hypotheses are

he same in these two approaches. 

In this paper we formulate nonlinear variational theories for

urved beams, which are motivated by novel applications in

tretchable electronics and biological macromolecules. To achieve

igh electrical performance and mechanical reliability, stretchable

lectronics have to leverage intrinsically stiff but well established

norganic materials like metal and silicon. A reliable way to build

ontinuous, stretchable structure out of stiff materials is the ser-

entine design, i.e., meandering ribbons or wires ( Fig. 1 ). When

tretched end-to-end, serpentine ribbons or wires can rotate in

lane as well as buckle out of plane to accommodate the applied

isplacement, resulting in greatly reduced local elastic strains and

uch lower effective stiffness ( Li et al., 2005; Su et al., 2012; Wid-

und et al., 2014; Zhang et al., 2014 ). These features enable applica-

ions ranging from tissue-like bio-integrated electrodes ( Kim et al.,

011; Yeo et al., 2013 ), micro-heaters ( Yu et al., 2013 ), deformable

olar cells ( Tang et al., 2014 ), transparent stretchable conductors

 Yang et al., 2015 ), soft nanogenerators ( Ma et al., 2013 ) to de-

loyable sensor networks ( Lanzara et al., 2010 ) and coronary stents

 Mani et al., 2007 ). However, in spite of recent effort s in plane
ilities and critical loadings of space curved beams, International 
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Fig. 1. A serpentine ribbon buckles out of plane when stretched end-to-end: (a) experimental observation of a paper ribbon with 30% end-to-end elongation, and (b) finite 

element model (FEM) results showing the maximum principle strain in the corresponding ribbon. 
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strain modeling of freestanding serpentines ( Widlund et al., 2014 ),

buckling analysis of thin freestanding serpentine ribbons ( Zhang

et al., 2013 ), and analytical and numerical modeling of self-similar

serpentines ( Su et al., 2015; Zhang et al., 2014 ), the designs of the

serpentine shape are still largely empirical, particularly for serpen-

tines of extreme cross-sectional aspect ratios and undergoing large

out-of-plane deformations. A general, preferably variational, frame-

work will be convenient for stability analysis and rational design

of high-performance serpentines for stretchable electronics. Mean-

while, it has been a standard practice to model macromolecules

such as DNA, polymers and proteins, as an elastic rod for their

mechanical behaviors, see e.g. the textbook of Doi and Edwards

(1989) , review article of Manning (1985) , series of works of Zhou

et al. (1999, 20 0 0, 20 02) , and references therein. Though it has

been shown that the worm-like-chain (WLC) model, i.e., a uni-

form circular elastic rod under bending, predicts reasonable force-

versus-extension relation of DNA strands beyond a few kilobase-

pair range ( Smith et al., 1996, 1992 ). At a lengthscale of tens of

base pairs, a more precise description of DNA is necessary to ac-

count for the anisotropy, twisting and kinks of DNA structures

( Hoffman, 2004; Noy and Golestanian, 2012; Wiggins et al., 2005 ).

Moreover, depending on the salt concentration of the ambient so-

lution, the natural (i.e., stress-free or ground) state of the DNA is

not a straight chain, but admits a variety of supercoiling config-

urations ( Manning, 1985 ). It is of great interest to include effects

of charge screening and electrostatic interactions and to carry out

statistical mechanics analysis for DNA. These purposes demand a

variational framework, i.e., a Hamiltonian in terms of reasonable

set of kinematic variables. 

Though many of the essential components of a general 3D

curved beam theory have been investigated more than 150 years

ago in the works of Kirchhoff ( Love, 1944 ), our variational frame-

work accounting for the geometric nonlinearity of large displace-

ments is simple, self-contained and ready for novel applications

in stretchable electronics and biological macromolecules. We sys-

tematically derive general boundary conditions and find some in-

consistency in earlier works. The variational formulation is par-

ticularly convenient for rigorous analysis by the direct method of

calculus of variations and for investigating beams with extreme

cross-sectional aspect ratios (i.e., ribbons). However, the fully non-

linear theory is not prone to explicit solution on one hand, on the

other hand, the linearized theory cannot address instabilities due

to twisting and out-of-plane displacement. Therefore, we propose

some simplified nonlinear theories and explicitly calculate the crit-

ical loadings by the method of trial solutions. More accurate solu-

tions on the critical loadings and stabilities of equilibrium states

can be achieved by numerical methods. 

For classical applications in structural engineering, there are

many works on elastic theories of rods in the literature which

are too voluminous to recount here. For historical references, the

reader may consult Love’s treatise ( Love, 1944 ) and Antman’s sur-

vey ( Antman and Truesdell, 1973 ). As for space curved beams,

Reissner (1973) ; 1981 ) pioneered a finite strain theory that was

later refined by subsequent works of Simo (1985) , Simo and

Vu-Quoc (1986) , and Iura and Atluri (1988, 1989) . The numerical
 e  
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spect of space-curved beam models has been a particularly ac-

ive research area in the last thirty years with contributions from,

.g., Petrov and Geradin (1998) , Ishaquddin et al. (2012) , Saje et al.

2012) and references therein. Alternatively, the theory of an elastic

od can be reformulated as a one-dimensional Cosserat or microp-

lar theory ( Cosserat and Cosserat, 1909 ); kinematic relations and

alance laws can be conveniently explored using Clifford or geo-

etric algebra ( McRobie and Lasenby, 1999 ). In this model, each

aterial point admits rotational degrees of freedom represented

y a triad of orthonormal vectors in additional to the usual trans-

ational degrees of freedom. Some of the fundamental questions

uch as the existence, uniqueness and stability of a solution may

e more conveniently addressed in the Cosserat framework ( James,

981; Steigmann and Faulkner, 1993 ). 

The paper is organized as follows. We begin with the kine-

atic hypotheses and calculate the strain energy in Section 2.1 .

e formulate the variational principle and derive the associated

uler–Lagrange equations and boundary conditions in Section 2.2 ,

nd find that Kirchhoff’s helical solutions can be applied to more

eneral boundary conditions in Section 2.3 . In Section 2.4 and

.5 , the geometrically nonlinear theory is linearized and solved

or semi-circular arches with clamped supports, simple supports

nd cantilever. We propose two simplified nonlinear theories in

ection 3.1 , and obtain explicit solutions to critical loadings in

ection 3.2 . We conclude and summarize in Section 4 . In the Ap-

endix, we show our variational formulation is consistent with the

xisting field-equation approach. 

Notation. We employ direct notation for brevity if possible.

ectors are denoted by bold symbols such as e, u , etc. When

ndex notations are in use, the convention of summation over

epeated index is followed. The inner (or dot) product of two vec-

ors a , b ∈ R 

3 is defined as a · b := ( a ) i ( b ) i , and the cross product

(a × b ) i := E i jk (a ) j (b ) k , where E i jk is the Levi-Civita symbol. 

. A variational formulation for space curved beams 

.1. Kinematics and strain energy 

Consider a curved beam in space as illustrated in Fig. 2 . In the

eference configuration ( Fig. 2 (a)), the centroid line of the beam is

 space curve with arc-length parameterization given by { c 0 (ξ 1 ) :

 ≤ ξ 1 ≤ L } ⊂ R 

3 . For simplicity, we assume the centroid curve re-

ains to be of C 3 -class (continuously differentiable up to the third

rder) with nonzero curvature in Sections 2 - 3 and postpone our

iscussion about less regular curves to Section 4 . Let 

˜ 
 1 (ξ

1 ) = c 0 
′ (ξ 1 ) , ˜ e 2 (ξ

1 ) = 

c 0 
′′ (ξ 1 ) 

| c 0 ′′ (ξ 1 ) | , 
˜ 
 3 (ξ

1 ) = 

˜ e 1 (ξ
1 ) × ˜ e 2 (ξ

1 ) 

e the local orthogonal Frenet frame ( ′ = d /d ξ 1 ), and 

0 (ξ
1 ) = 

˜ e 2 (ξ
1 ) · ˜ e ′ 1 (ξ 1 ) ( resp. τ0 (ξ

1 ) = 

˜ e ′ 2 · ˜ e 3 (ξ
1 )) 

e the curvature (resp. torsion) of the space curve. Denote by

 0 (ξ
1 ) the cross-sectional area normal to ˜ e 1 (ξ

1 ) and B 0 the refer-

nce, stress-free and undeformed elastic body of the beam. In the
ilities and critical loadings of space curved beams, International 

tr.2016.02.032 
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Fig. 2. Frenet frames associated with the reference and deformed centroid lines: The top insets show the cross-sectional areas of (a) undeformed / reference beam, (b) 

deformed beam and relative twist angle. 
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1 This kinematic hypothesis neglects the shearing of cross-sections, see ( Simo, 

1985 ). 
2 The lateral normal strains will be accounted for later by ( H3 ). 
ocal curvilinear frame { ̃ e 1 , ̃  e 2 , ̃  e 3 } , we represent a material point

 ∈ B 0 by its local coordinates ( ξ 1 , ξ 2 , ξ 3 ) such that 

 = c 0 (ξ
1 ) + ξ 2 ˜ e 2 + ξ 3 ˜ e 3 . 

y the Frenet equations : 

˜ 
 

′ 
1 = κ0 ̃  e 2 , ˜ e ′ 2 = −κ0 ̃  e 1 + τ0 ̃  e 3 , ˜ e ′ 3 = −τ0 ̃  e 2 , (1) 

e have 

∂x 

∂ξ 1 
= (1 − κ0 ξ

2 ) ̃ e 1 − ξ 3 τ0 ̃  e 2 + τ0 ξ
2 ˜ e 3 , 

∂x 

∂ξ 2 
= 

˜ e 2 , 
∂x 

∂ξ 3 
= 

˜ e 3 . 

herefore, the distance between two material points ( ξ 1 , ξ 2 , ξ 3 )

nd (ξ 1 , ξ 2 , ξ 3 ) + d(ξ 1 , ξ 2 , ξ 3 ) in the reference configuration is

iven by 

 s 2 0 = 

˜ g i j d ξ
i d ξ j , (2) 

here the metric tensor 

˜ 
 i j = 

∂x 

∂ξ i 
· ∂x 

∂ξ j 

= 

[ | 1 − κ0 ξ
2 | 2 + | ξ 2 τ0 | 2 + | ξ 3 τ0 | 2 −ξ 3 τ0 τ0 ξ

2 

−ξ 3 τ0 1 0 

τ0 ξ 2 0 1 

] 

. (3) 

We now consider deformations of the beam ( Fig. 2 (b)). Let

 c ( ξ 1 ): 0 ≤ ξ 1 ≤ L } be the parametrization of the centroid line of

he deformed beam. Similarly, we can establish the local orthogo-

al Frenet frame associated with the deformed centroid line: 

 1 (ξ
1 ) = 

c ′ (ξ 1 ) 

| c ′ (ξ 1 ) | , e 2 (ξ
1 ) = 

e ′ 1 (ξ 1 ) 

| e ′ 
1 
(ξ 1 ) | , 

 3 (ξ
1 ) = e 1 (ξ

1 ) × e 2 (ξ
1 ) . 

et 

 = γ (ξ 1 ) = 

∫ ξ 1 

0 

| c ′ (t) | dt 

e the arc-length parameter of the deformed centroid line, 

(ξ 1 ) = 

1 

γ ′ e 2 (ξ
1 ) · e ′ 1 (ξ 1 ) 

(
resp . τ (ξ 1 ) = 

1 

γ ′ e 
′ 
2 · e 3 (ξ

1 ) 

)
e the curvature (resp. torsion) of the deformed centroid curve,

nd denote by A (ξ 1 ) the cross-section area normal to e 1 ( ξ
1 ) and

the deformed elastic body of the beam. The Frenet equations for

he deformed curve read 

de 1 
dξ 1 

= γ ′ κe 2 , 
de 2 
dξ 1 

= γ ′ (−κe 1 + τe 3 ) , 
de 3 
dξ 1 

= −γ ′ τe 2 . (4) 

o establish the one-to-one correspondence of material points

etween the reference stress-free configuration and the current

eformed configuration, we postulate the following kinematic

ypotheses: 
Please cite this article as: L. Liu, N. Lu, Variational formulations, instab
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(H1) The point c 0 ( ξ
1 ) on the centroid line in the reference con-

figuration moves to the point c ( ξ 1 ) in the deformed config-

uration. That is, the mapping γ : [0, L ] → [0, l ] characterizes

the stretching of the centroid line ( l is the length of the de-

formed centroid curve). 

(H2) As for the conventional theories of straight beams or

curved planar beams, we assume that each reference ma-

terial cross-sectional area A 0 (ξ
1 ) together with the normal

˜ e 1 (ξ
1 ) , aside from the lateral deformation due to the Pois-

son’s effect, moves as a ‘rigid body’ and becomes A (ξ 1 ) with

the normal e 1 ( ξ
1 ). This is referred to as the Bernoulli–Euler

hypothesis. 1 

(H3) The lateral normal Cauchy stress is negligible in the beam,

i.e., σ 22 ≈ σ 33 ≈ 0 in B. 

Subsequently, we refer to the above kinematic hypotheses as

he Bernoulli–Euler kinematics . The hypothesis ( H2 ) implies that

pon deformation, the material frame { ̃ e 1 , ̃  e 2 , ̃  e 3 } is transformed

nto a new orthogonal frame 

 i = Q ̃

 e i (i = 1 , 2 , 3) 

or some rigid rotation Q ∈ R 

3 ×3 satisfying 

 1 = Q ̃

 e 1 = e 1 , Q 

−1 = Q 

T , det Q = 1 . (5) 

herefore, a material point x = c 0 (ξ
1 ) + ξ 2 ˜ e 2 + ξ 3 ˜ e 3 on A 0 (ξ

1 ) in

he reference configuration moves to the point 2 

 = c (ξ 1 ) + Q (ξ 2 ˜ e 2 + ξ 3 ˜ e 3 ) ∈ A (ξ 1 ) . (6) 

oreover, since { Q ̃

 e 2 , Q ̃

 e 3 } and { e 2 , e 3 } are two orthogonal bases

or the plane normal to e 1 , we can define the relative twist angle

 such that (see Fig. 2 (b)) 

f 2 = Q ̃

 e 2 = cos ϕ e 2 + sin ϕ e 3 , 
f 3 = Q ̃

 e 3 = − sin ϕ e 2 + cos ϕ e 3 . 
(7) 

e remark that the relative twist angle ϕ = ϕ(ξ 1 ) is different from

he elastic twist angle if the deformed curve is a space curve with

onzero torsion. 

Inserting (7) into (6) we write the deformation y : B 0 → B in

erms of curvilinear coordinates ( ξ 1 , ξ 2 , ξ 3 ) as 

 (ξ 1 , ξ 2 , ξ 3 ) = c (ξ 1 ) + ξ 2 ( cos ϕ(ξ 1 ) e 2 (ξ
1 ) + sin ϕ(ξ 1 ) e 3 (ξ

1 )) 

+ ξ 3 (− sin ϕ(ξ 1 ) e 2 (ξ
1 ) + cos ϕ(ξ 1 ) e 3 (ξ

1 )) . (8) 
ilities and critical loadings of space curved beams, International 
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By the chain rule and Frenet Eq. (4) we find that ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂y 

∂ξ 1 
= ζ1 e 1 + ζ2 e 2 + ζ3 e 3 , 

∂y 

∂ξ 2 
= ( cos ϕ e 2 + sin ϕ e 3 ) , 

∂y 

∂ξ 3 
= (− sin ϕ e 2 + cos ϕ e 3 ) , 

where 

{ 

ζ1 = γ ′ (1 − ξ 2 κ cos ϕ + ξ 3 κ sin ϕ) , 
ζ2 = (ϕ 

′ + τγ ′ )(−ξ 2 sin ϕ − ξ 3 cos ϕ) , 
ζ3 = (ϕ 

′ + τγ ′ )(ξ 2 cos ϕ − ξ 3 sin ϕ) . 

Therefore, for two material points with coordinates ( ξ 1 , ξ 2 , ξ 3 ) and

(ξ 1 , ξ 2 , ξ 3 ) + d(ξ 1 , ξ 2 , ξ 3 ) , the distance between them in the de-

formed configuration is given by 

d s 2 = g i j d ξ
i d ξ j , (9)

where the metric tensor is given by 

[ g i j ] = 

[
∂y 

∂ξ i 
· ∂y 

∂ξ j 

]

= 

[ 

ζ 2 
1 + ζ 2 

2 + ζ 2 
3 ζ2 cos ϕ + ζ3 sin ϕ −ζ2 sin ϕ + ζ3 cos ϕ 

ζ2 cos ϕ + ζ3 sin ϕ 1 0 

−ζ2 sin ϕ + ζ3 cos ϕ 0 1 

] 

.

(10)

We now proceed to calculate the linearized elastic strain, stress

and energy. For simplicity, we restrict ourselves to small elastic

strains in the sense that | ds − ds 0 | 	 ds 0 , i.e., 

γ ′ (ξ 1 ) − 1 ∼ η 	 1 , ξ 2 κ ∼ ξ 3 κ ∼ ξ 2 τ ∼ ξ 3 τ ∼ η 	 1 . 

By (2) - (3) and (9) - (10) , to the leading order O ( η) we find that 

ds − ds 0 
ds 0 

≈ d s 2 − d s 2 0 

2 | ds 0 | 2 = 

1 

2 

(g i j − ˜ g i j ) 
dξ i 

ds 0 

dξ j 

ds 0 

= εi j (ξ
1 , ξ 2 , ξ 3 ) 

dξ i 

ds 0 

dξ j 

ds 0 
, (11)

where 

εi j ≈

⎡ 

⎢ ⎣ 

ε11 ξ 3 (τ0 − ϕ 

′ − τγ ′ ) / 2 ξ 2 (ϕ 

′ + τγ ′ − τ0 ) / 2 
ξ 3 (τ0 − ϕ 

′ − τγ ′ ) / 2 0 0 
ξ 2 (ϕ 

′ + τγ ′ − τ0 ) / 2 0 0 

⎤ 

⎥ ⎦ 

,

ε11 = γ ′ − 1 + ξ 2 (−κγ ′ cos ϕ + κ0 ) + ξ 3 κγ ′ sin ϕ. 

(12)

We identify the above tensor ε ij as the usual linearized strain ten-

sor since the tensor ( dξ i 

ds 0 

dξ j 

ds 0 
) = ( ̃  g i j ) 

−1 = δi j + O (η) . ( δij is the Kro-

necker delta) For isotropic materials with Young’s modulus E and

Poisson’s ration ν (shear modulus G = 

E 
2(1+ ν) 

), it is clear that the

stress 

σi j = 

E 

1 + ν
εi j + 

Eν

(1 + ν)(1 − 2 ν) 
δi j (13)

violates the hypothesis ( H3 ); we shall correct the above linearized

strain tensor by setting the lateral normal strains ε22 = ε33 =
−νε11 according to the familiar Poisson’s effects. 3 

From the above discussion, we can now write the strain energy

in terms of the deformed centroid line parametrization c : (0 , L ) →
3 With this ‘correction’, the linearized strain tensor will generally violate the 

compatibility condition, i.e., it cannot be written as 1 
2 
(∇u + (∇u ) T ) for a (contin- 

uous) vector field u : B 0 → R 
3 . This inconsistency exists even in the classic theory 

for straight beams. 

F  

B  

r

m  

Please cite this article as: L. Liu, N. Lu, Variational formulations, instab

Journal of Solids and Structures (2016), http://dx.doi.org/10.1016/j.ijsols
 

3 and the relative twist angle ϕ : (0 , L ) → R as 

 e [ c , ϕ; c 0 ] = 

∫ 
B 0 

1 

2 

εi j σi j 

= 

∫ L 

0 

∫ 
A 0 (ξ 1 ) 

1 

2 

{ E| ε11 | 2 + G [(| ξ 2 | 2 + | ξ 3 | 2 ) 
× (τ0 − ϕ 

′ − τγ ′ ) 2 ] } d ξ 2 d ξ 3 d ξ 1 

= 

1 

2 

∫ L 

0 

{
EA (γ ′ − 1) 2 + GJ(ϕ 

′ + τγ ′ − τ0 ) 
2 

+ 

[ −κγ ′ cos ϕ + κ0 

κγ ′ sin ϕ 

] 

· EI 

[ −κγ ′ cos ϕ + κ0 

κγ ′ sin ϕ 

] }
dξ 1 ,

(14)

here A = A (ξ 1 ) is the area of cross-section A 0 (ξ
1 ) and the mo-

ent of inertia tensor I (resp. polar moment of inertia J ) is defined

s 

 (ξ 1 ) = 

∫ 
A 0 (ξ 1 ) 

[| ξ 2 | 2 ξ 3 ξ 2 

ξ 3 ξ 2 | ξ 3 | 2 
]

d ξ 2 d ξ 3 ( resp. J = Tr I ) . (15)

e remark that the approximations “≈” in (11) follow from our

ssumption of small elastic strain (i.e., | ds − ds 0 | 	 ds 0 ) instead of

mall displacements. The strain energy functional (14) does apply

o space curved beams with large displacements and is suitable for

ost-buckling analysis ( Su et al., 2012 ). 

.2. Variational principles and boundary value problems 

For simplicity, from now on we assume inextensible line of cen-

roid, i.e., γ ′ ( ξ 1 ) ≡ 1 ( s ≡ ξ 1 ), and I = diag [ I 3 , I 2 ] . By (14) we write

he strain energy functional as 

 e [ c , ϕ; c 0 ] = 

∫ L 

0 

{ 

E I 3 
2 

(−κ cos ϕ + κ0 ) 
2 + 

E I 2 
2 

(κ sin ϕ) 2 

+ 

GJ 

2 

(ϕ 

′ + τ − τ0 ) 
2 
} 

dξ 1 . (16)

he free energy of the system depends on the external loadings

nd boundary conditions. For the moment, we consider only dis-

ributed “dead” force q : (0 , L ) → R 

3 acting on the centroid line

hat is independent of deformation of the beam with clamped

oundary conditions: 

(i ) c (0) = c 0 (0) + u 0 , c (L ) = c 0 (L ) + u L , 

(ii ) (c − c 0 ) 
′ = 0 at s = 0 & L, 

(iii ) sin ϕ = 

˜ e 2 · e 3 , 
(17)

here constant vectors u 0 , u L ∈ R 

3 can be interpreted as the dis-

lacements of the ends of the beam. Also, being clamped the

igid rotation defined by (5) and (7) shall be such that the de-

ormed material frame { Q ̃

 e 1 , Q ̃

 e 2 , Q ̃

 e 3 } coincides with the unde-

ormed frame { ̃ e 1 , ̃  e 2 , ̃  e 3 } , meaning that ˜ e 1 = e 1 , 

˜ e 2 = cos ϕ e 2 + sin ϕ e 3 
˜ e 3 = − sin ϕ e 2 + cos ϕ e 3 

at s = 0 & L, 

nd hence part (ii) & (iii). Other boundary conditions, e.g., applied

oint forces, simple supports and a free end will be discussed later.

In account of the external distributed load q : (0 , L ) → R 

3 , the

otal free energy of the system is given by 

 [ c , ϕ; c 0 ] = U e [ c , ϕ; c 0 ] −
∫ L 

0 

q · c ds. (18)

y the principle of minimum free energy, the equilibrium configu-

ation is determined by the minimization problem 

in { F [ c , ϕ; c 0 ] : c , ϕ satisfy boundary conditions in (17) } , (19)
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c  

(

nd a minimizing pair ( c , ϕ) necessarily satisfy that (| ε| 	 1) 

dF [ c + εv , ϕ + εϕ 1 ; c 0 ] 

dε 

∣∣∣
ε=0 

= 0 

for any admissible variations v and ϕ 1 . (20) 

e now derive the Euler–Lagrange equations for the centroid line

arametrization c = c (s ) and relative twist angle ϕ = ϕ(s ) by cal-

ulus of variations. Consider a variation of the centroid line of the

eformed beam: c (s ) → c (s ) + εv (s ) . Then the Frenet frame of the

aried centroid line is given by 

 1 ε = e 1 + εv ′ , e 2 ε = 

c ′′ + εv ′′ 
| c ′′ + εv ′′ | , e 3 ε = e 1 ε × e 2 ε . (21) 

o ensure the parameter s to be the ‘arc-length’, we shall require 

 e 1 ε | = 1 + εv ′ · e 1 + o(ε) = 1 i.e. , v ′ · e 1 = 0 . (22) 

y tedious but direct calculations we find that 

 2 ε = e 2 + ε 
v ′′ − (e 2 · v ′′ ) e 2 

| c ′′ | + o(ε) , 

 

′ 
2 ε = −κe 1 + τe 3 + ε 

[ 
v ′′ − (e 2 · v ′′ ) e 2 

| c ′′ | 
] ′ 

+ o(ε) , 

 3 ε = e 3 + ε 
{ 

1 

κ
e 1 × [ v ′′ − (e 2 · v ′′ ) e 2 ] + v ′ × e 2 

} 

+ o(ε) . (23) 

herefore, the curvature and torsion of the varied centroid line are

iven by 

ε = e 2 ε · e ′ 1 ε = κ + ε e 2 · v ′′ + o(ε ) , 

ε = e ′ 2 ε · e 3 ε = τ + ε 

{ 

(κe 3 + τe 1 ) · v ′ + 

(
e 3 · v ′′ 

κ

)′ } 

+ o(ε) , 

(24) 

nd henceforth the first variation of the strain energy with respect

o the centroid line parametrization is given by 

dF [ c + εv , ϕ; c 0 ] 

dε 

∣∣∣
ε=0 

 

∫ L 

0 

{
[(E I 3 cos 2 ϕ + E I 2 sin 

2 ϕ) κ − E I 3 κ0 cos ϕ] e 2 · v ′′ 

+ GJ(ϕ 

′ + τ − τ0 ) 

[
(κe 3 + τe 1 ) · v ′ + 

(
e 3 · v ′′ 

κ

)′ ]
− q · v 

}
ds 

 

∫ L 

0 

{
Me 2 · v ′′ + T 

[
(κe 3 + τe 1 ) · v ′ + 

(
e 3 · v ′′ 

κ

)′ ]
− q · v 

}
ds, 

(25) 

here, for brevity, we have introduced quantities 

 = (E I 3 cos 2 ϕ + E I 2 sin 

2 ϕ) κ − E I 3 κ0 cos ϕ, T = GJ(ϕ 

′ + τ − τ0 ) . 

(26) 

he physical meanings of scalar functions M, T will be explored

ater (cf., (38) ). By (20) , we conclude that a minimizing pair ( c , ϕ)

f (19) necessarily satisfy that 

 Me 2 ] 
′′ − [ T (κe 3 + τe 1 ) + λe 1 ] 

′ −
[

T ′ 
κ

e 3 

]′′ 
− q = 0 on (0 , L ) , 

(27) 

here λ : (0 , L ) → R is the Lagrangian multiplier associated with

he constraint (22) . Moreover, consider variations of relative twist

ngle: ϕ → ϕ + εϕ 1 . It is straightforward to find the associated

rst variation of the free energy: 
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dF [ c , ϕ + εϕ 1 ; c 0 ] 

dε 

∣∣∣
ε=0 

 

∫ L 

0 

{ [ E I 3 (−κ cos ϕ + κ0 ) κ sin ϕ + E I 2 κ
2 sin ϕ cos ϕ] ϕ 1 

+ GJ(ϕ 

′ + τ − τ0 ) ϕ 

′ 
1 } ds. (28) 

ogether with (27) , by (20) we conclude that the Euler–Lagrange

quations associated with the variational principle (19) is given

y 

 

 

 

 

 

[ Me 2 ] 
′′ − [ T (κe 3 + τe 1 ) + λe 1 ] 

′ −
[

T ′ 
κ

e 3 

]′′ 
− q = 0 , 

−T ′ + E I 3 (−κ cos ϕ + κ0 ) κ sin ϕ + E I 2 κ2 sin ϕ cos ϕ = 0 , 

(29) 

hich shall be satisfied by an equilibrium state ( c , ϕ) on (0, L ).

upplemented with the boundary conditions (17) we can solve the

bove differential equations for the unknown centroid line c and

elative twist angle ϕ. It is worthwhile to notice that the kine-

atic boundary conditions (17) for clamped supports are exactly

uch that there is no boundary contribution for all admissible vari-

tions v and ϕ 1 in (20) when (25) and (28) are integrated by parts

or deriving the Euler–Lagrange Eq. (29) . 

Further, denote by 

 (ξ 1 ) = 

∫ ξ 1 

0 

q (s ) ds, Q i = Q · e i , ˜ Q i = Q · ˜ e i , (i = 1 , 2 , 3) . 

(30) 

ith respect to the frame { e 1 , e 2 , e 3 }, by (4) we can rewrite

q. (29) as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mκ + T τ + Q 1 + λ + V 1 = 0 , 

M 

′ + 

T ′ τ
κ

− Q 2 − V 2 = 0 , 

Mτ − T κ −
(

T ′ 
κ

)′ 
− Q 3 − V 3 = 0 , 

−T ′ + E I 3 (−κ cos ϕ + κ0 ) κ sin ϕ 

+ E I 2 κ
2 sin ϕ cos ϕ = 0 

∀ s ∈ (0 , L ) , (31) 

here V i = V · e i and V ∈ R 

3 is a constant vector arising from in-

egration. Note that V i generally depends on position since e i ( i =
 , 2 , 3 ) vary along the space curve. In the Appendix, we compare

he above equilibrium equations with earlier works of Reissner

1973) , Simo (1985) , and Simo and Vu-Quoc (1986) , and conclude

hat they are consistent. 

The above variational framework can be applied to general

oundary conditions. A key advantage of the variational framework

ies in that it facilitates a systematic method of deriving consistent

oundary conditions which have inspired many discussions in the

iterature. Besides the clamped boundary conditions, we consider

nother two types of boundary conditions frequently encountered

n engineering applications. 

Simple supports. By a curved beam with two ends simply sup-

orted, we mean the following kinematic boundary conditions (cf.,

i) in (17) ): 

(i ) c (0) − c 0 (0) = u 0 , c (L ) − c 0 (L ) = u L . (32) 

he free energy of the system remains the same as in (18) . To

onform with (32) , we have v = 0 at s = 0 & L . Then the first vari-

tion of the free energy with respect to change of centroid line

 → c + εv and relative twist ϕ → ϕ + εϕ 1 gives rise to (recall (25),

26) and (28) ) 
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tr.2016.02.032 

http://dx.doi.org/10.1016/j.ijsolstr.2016.02.032


6 L. Liu, N. Lu / International Journal of Solids and Structures 0 0 0 (2016) 1–13 

ARTICLE IN PRESS 

JID: SAS [m5G; March 22, 2016;12:31 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

d  

T⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

 

w  
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c(
t

e

e

T

V
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s
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(  

(  

e
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ϕ  

t  

a  

fi  

s

|  

w  

a

ε  

W  

o  

s  

c  

o

κ

�  
dF [ c + εv , ϕ + εϕ 1 ; c 0 ] 

dε 

∣∣∣
ε=0 

= 

∫ L 

0 

EL1 · v + EL2 · ϕ 1 ds 

+ 

[ 
T 

e 3 · v ′′ 
κ

+ Me 2 · v ′ − T ′ 
κ

e 3 · v ′ + T ϕ 1 

] ∣∣∣L 

0 

, (33)

where EL1 and EL2 stand for the first and second equation on

the left hand side of (29) , respectively. Since the values of ϕ 1 , v ′ 
and v ′ ′ at the boundary s = 0 & L can be independently assigned,

by (20) and (33) we conclude the following Neumann-type bound-

ary conditions ( κ is nonzero and finite at the two ends): 

T = T ′ = 0 , M = 0 at s = 0 & L. (34)

Replacing (ii) and (iii) of (17) , the above boundary conditions con-

form with the notion of “simple supports”, i.e., they cannot provide

bending moment or twisting torque to the beam. 

Cantilever. For a curved “cantilever”, we can apply a point force

at the free end: 

(i ) c − c 0 = c ′ − c ′ 0 = sin ϕ − ˜ e 2 · e 3 = 0 at s = 0 , 

(ii ) A point “dead ” force p acting on the free end s = L. (35)

The free energy of the system shall include the potential energy

associated with the point force and is given by 

F [ c , ϕ; c 0 ] = U e [ c , ϕ; c 0 ] −
∫ L 

0 

q · c ds − p · c (L ) . (36)

By the principle of minimum free energy, the equilibrium state of

the beam shall be determined by minimizing the total free energy

subject to the kinematic constraints in (35) (i). By (25), (26) and

(28) , we integrate by parts and obtain 

dF [ c + εv , ϕ + εϕ 1 ; c 0 ] 

dε 

∣∣∣
ε=0 

= 

∫ L 

0 

EL1 · v + EL2 · ϕ 1 ds 

+ 

[ 
T 

e 3 · v ′′ 
κ

+ Me 2 · v ′ − T ′ 
κ

e 3 · v ′ + T ϕ 1 

] ∣∣∣
s = L 

+ 

{ [ 
T ′ 
κ

e 3 − Me 2 

] ′ 
+ T (κe 3 + τe 1 ) − p 

} 

· v 

∣∣∣
s = L 

. (37)

Therefore, we identify that ( λ again arises from the constraint (22)

as a Lagrange multiplier) 

M := Me 2 − T ′ 
κ

e 3 + T e 1 , 

P := (λ + T τ ) e 1 −
(

M 

′ + 

T ′ τ
κ

)
e 2 + 

[ (
T ′ 
κ

)′ 
+ T κ − Mτ

] 
e 3 (38)

as the internal moment and force, respectively. Moreover, at the

absence of applied boundary moment and dead force p we shall

have M = 0 and P = p at s = L, i.e., 

T = T ′ = 0 , M = 0 , λe 1 − M 

′ e 2 + 

(
T ′ 
κ

)′ 
e 3 − p = 0 , (39)

which shall be supplemented to the kinematic boundary condi-

tions (35) 1 at s = 0 for solving the Euler–Lagrange Eq. (31) . 

In summary, the boundary conditions for clamped support, sim-

ple support and free end are given by (17), (32) & (34) , and (39) ,

respectively. Other types of boundary conditions may be similarly

discussed in our variational framework. 

2.3. Kirchhoff’s helical solutions 

The full geometrically nonlinear system (29) for curved beams

are not amenable to explicit solutions. Exceptions include the case
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hat the beam is initially straight, symmetric with equal bend-

ng stiffness in the two lateral directions and at the absence of

istributed load q . In this case, κ0 = τ0 = 0 , I 3 = I 2 =: I , M = EI κ,

 = GJ(ϕ 

′ + τ ) , and by (31) we obtain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EIκ2 + GJ(ϕ 

′ + τ ) τ + λ + V 1 = 0 , 

(EIκ) ′ + 

1 

κ
GJ(ϕ 

′ + τ ) ′ τ − V 2 = 0 , 

EIκτ − GJ(ϕ 

′ + τ ) κ −
[

GJ(ϕ 

′ + τ ) ′ 
κ

]′ 
− V 3 = 0 , 

GJ(ϕ 

′ + τ ) = T 0 , 

(40)

here V ∈ R 

3 and T 0 are integration constants. For a trial solution

f helix with constant κ , constant torsion τ , and parametrization

s 

 (ξ 1 ) = (a cos αξ 1 , a sin αξ 1 , bξ 1 ) , 

α = (κ2 + τ 2 ) 1 / 2 , a = 

κ

α2 
, b = 

τ

α

)
, 

he Frenet frame is given by 

 1 = (−aα sin αξ 1 , aα cos αξ 1 , b) , 

 2 = (− cos αξ 1 , − sin αξ 1 , 0) , e 3 = e 1 × e 2 . 

herefore, if V = (0 , 0 , V z ) is a constant vector along z -axis, then 

 1 = e 1 · V = 

τV z 

α
, V 2 = e 2 · V = 0 , V 3 = e 3 · V = 

κV z 

α

appen to be constant as well. By inspection, we see that (40) are

atisfied if 

(EIκ2 + T 0 τ ) = V 1 + λ, EIκτ − T 0 κ = V 3 . (41)

or given V z and T 0 , we can solve the above equations for κ and τ ;

he loading conditions at the ends and Lagrangian multiplier λ can

hen be determined by (39) . We remark that the helical solution

41) is slightly more general than the classic Kirchhoff’s solution

 Love, 1944 , pg. 414) since it allows a twisting torque T 0 at the

nds. 

.4. Linearized theory 

The nonlinear boundary value problem formed by the differen-

ial system (29) and one of the boundary conditions: (i) clamped

upports (17) , (ii) simple supports (32) and (34) , or (iii) cantilever

35) 1 and (39) , for the centroid line c and relative twist angle

, though can be used to determine the large-deformation, large-

wist and small strain equilibria, are not amenable to theoretical

nalysis. For many applications of practical importance, it may suf-

ce to consider small strain and small relative angle of twist in the

ense that 

 u 

′ (s ) | ∼ ε 	 1 , | ϕ(s ) | ∼ η 	 1 , (42)

here u (s ) = c (s ) − c 0 (s ) is the displacement. Moreover, we may

ssume the scaling relationship 

 = η. (43)

e remark that the scaling assumptions (42) and (43) are not the

nly possible asymptotic behavior of the minimizer (or minimizing

equence); the validity of these assumptions shall be a posteriori

hecked for self-consistency. In Section 3.1 we will present theories

f different asymptotic behaviors than (42) and (43) . 

By (42), (43) and direct calculation we find that (cf. (24) ) 

= κ0 + � κ + o(ε) , τ = τ0 + � τ + o(ε) , 

 κ := 

˜ e 2 · u 

′′ , � τ := (κ0 ̃  e 3 + τ0 ̃  e 1 ) · u 

′ + 

(
˜ e 3 · u 

′′ 
κ0 

)′ 
. (44)
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et u = u 1 ̃  e 1 + u 2 ̃  e 2 + u 3 ̃  e 3 . By the Frenet Eq. (1) we have 

u 

′ = (u 

′ 
1 − κ0 u 2 ) ̃ e 1 + (u 

′ 
2 + κ0 u 1 − τ0 u 3 ) ̃ e 2 + (u 

′ 
3 + u 2 τ0 ) ̃ e 3 , 

 

′′ = [ −κ0 (u 

′ 
2 + κ0 u 1 − τ0 u 3 )] ̃ e 1 

+ [ u 

′′ 
2 + (κ0 u 1 − τ0 u 3 ) 

′ − τ0 (u 

′ 
3 + u 2 τ0 )] ̃ e 2 

+ [ u 

′′ 
3 + (u 2 τ0 ) 

′ + τ0 (u 

′ 
2 + κ0 u 1 − τ0 u 3 )] ̃ e 3 , (45) 

here we have noticed that 

 

′ 
1 − κ0 u 2 = 0 whence [ c 0 (s ) + u (s )] ′ · [ c 0 (s ) + u (s )] ′ = 1 . 

(46) 

hen by (44) the change of curvature and torsion are given by 

 κ = u 

′′ 
2 + (κ0 u 1 − τ0 u 3 ) 

′ − τ0 (u 

′ 
3 + u 2 τ0 ) , 

 τ = κ0 (u 

′ 
3 +u 2 τ0 )+ 

{ 

1 

κ0 

[ u 

′′ 
3 +(u 2 τ0 ) 

′ +τ0 (u 

′ 
2 +κ0 u 1 − τ0 u 3 )] 

} ′ 
. 

(47) 

nserting (44) into (16), (29) and keeping only the leading-order

erms, we rewrite the strain energy (16) as: 

 e [ c , ϕ; c 0 ] = 

∫ L 

0 

{ 

E I 3 
2 

( � κ) 2 + 

E I 2 
2 

(κ0 ϕ) 2 + 

GJ 

2 

(ϕ 

′ + � τ ) 2 
} 

+ o(ε 2 ) . (48) 

s in (26) and with an abuse of notation, we denote the bending

oment and torque by 

 = EI 3 � κ, T = GJ(ϕ 

′ + � τ ) . (49) 

hen upon repeating the standard variational calculation for the

train energy (48) , we obtain the linearized differential equations

or the displacement u ( s ), twist angle ϕ( s ) and Lagrangian multi-

lier λ( s ) (cf. (7) and (31) ): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mκ0 + T τ0 + 

˜ Q 1 + λ + 

˜ V 1 = 0 , 

M 

′ + 

T ′ τ0 

κ0 

− ˜ Q 2 − ˜ V 2 = 0 , 

Mτ0 − T κ0 −
(

T ′ 
κ0 

)′ 
− ˜ Q 3 − ˜ V 3 = 0 , 

−T ′ + E I 2 κ
2 
0 ϕ = 0 

∀ s ∈ (0 , L ) , (50) 

here ˜ V i = V · ˜ e i and V ∈ R 

3 are integration constants. 

In particular, for planar curved beams with τ0 = 0 and at the

bsence of distributed load q (i.e., ˜ Q i = 0 ), the strain energy (48)

an be rewritten as 

 e [ u , ϕ; c 0 ] = 

∫ L 

0 

{ 

E I 3 
2 

[ u 

′′ 
2 + (κ0 u 1 ) 

′ ] 2 + 

E I 2 
2 

(κ0 ϕ) 2 

+ 

GJ 

2 

[ 
ϕ 

′ + κ0 u 

′ 
3 + 

(
u 

′′ 
3 

κ0 

)′ ] 2 } 

ds, (51) 

nd the differential system (50) can be rewritten as (recall that

 = EI 3 (u ′′ 
2 

+ (κ0 u 1 ) 
′ ) and T = GJ(ϕ 

′ + κ0 u 
′ 
3 

+ 

u ′′ 
3 

κ0 
) ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mκ0 + λ + 

˜ V 1 = 0 , 

M 

′ − ˜ V 2 = 0 , 

−T κ0 −
(

T ′ 
κ0 

)′ 
− ˜ V 3 = 0 , 

−T ′ + E I 2 κ
2 
0 ϕ = 0 

∀ s ∈ (0 , L ) . (52) 

.5. Explicit solutions for linearized circular beams 

For explicit solutions, we consider a planar semi-circle beam

 0 (s ) = 

1 
κ0 

( cos κ0 s, sin κ0 s ) ( 0 ≤ s ≤ L = π/κ0 ) of constant curva-

ure κ0 and uniform rectangular cross section area (see Fig. 2 (a)): 

 0 (ξ
1 ) = { ξ 2 ˜ e 2 + ξ 3 ˜ e 3 : ξ

2 ∈ (−w 

, 
w 

) , ξ 3 ∈ (− h 

, 
h } . 
2 2 2 2 
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t is clear that 

˜ 
 1 = (− sin κ0 s, cos κ0 s, 0) , 

˜ 
 2 = −( cos κ0 s, sin κ0 s, 0) , ˜ e 3 = (0 , 0 , 1) , 

nd the moment of inertia tensor is given by 

 = diag [ I 3 , I 2 ] , I 3 = 

hw 

3 

12 

, I 2 = 

h 

3 w 

12 

. (53) 

oticing that ˜ V ′ 
2 

= V · ˜ e ′ 
2 

= −κ0 V · ˜ e 1 = −κ0 ̃
 V 1 , we see that (52)

mplies 
 

 

 

 

 

 

 

 

 

 

 

 

 

M 

′′ + κ2 
0 M = λ, M = E I 3 (u 

′′ 
2 + κ2 

0 u 2 ) , (
T ′ 
κ0 

)′′ 
+ (κ0 T ) 

′ = 0 , 

−T ′ + E I 2 κ
2 
0 ϕ = 0 , T = GJ ̃  ϕ 

′ , ˜ ϕ = ϕ + κ0 u 3 + 

u 

′′ 
3 

κ0 

. 

(54) 

e can solve the linear differential system (54) or (52) for the un-

nown displacement u and relative twist angle ϕ upon specifying

he boundary conditions. Below we separately consider three dif-

erent boundary conditions as discussed in Section 2.2 . 

1. Clamped supports. If (17) is enforced with u 0 = δ ˜ e 2 / 2 =
−δ ˜ e x / 2 , u L = δ ˜ e 2 / 2 = δ ˜ e x / 2 , we have ⎧ ⎪ ⎨ 

⎪ ⎩ 

u 1 (0) = u 1 (L ) = 0 , u 2 (0) = u 2 (L ) = δ/ 2 , 

u 3 (0) = u 3 (L ) = 0 , 

u 

′ 
2 (0) = u 

′ 
3 (0) = u 

′ 
2 (L ) = u 

′ 
3 (L ) = 0 , 

κ0 ϕ(0) + u 

′′ 
3 (0) = 0 , κ0 ϕ(L ) + u 

′′ 
3 (L ) = 0 , 

(55) 

We remark that the mixed boundary conditions for ϕ and u 3 in

(55) 3 follow from part (iii) of (17) , i.e., ϕ = 

˜ e 2 · e 3 + o(ε) , and

(in account of (42) ) e 3 = 

˜ e 3 + { 1 
κ0 

˜ e 1 × [ u 

′′ − ( ̃ e 2 · u 

′′ ) ̃ e 2 ] + u 

′ ×
˜ e 2 } + o(ε) : 

ϕ = 

1 

κ0 

˜ e 2 · { ̃ e 1 × [ u 

′′ − ( ̃ e 2 · u 

′′ ) ̃ e 2 ] } = −u 

′′ 
3 /κ0 . 

It is not hard to verify that the boundary value problem

formed by (54) and (55) uniquely admits the following planar

solution: 

u 2 (s ) = 

δ0 

2 

+ 

δ − δ0 

2 

cos κ0 s + 

δ − δ0 

π
sin κ0 s 

− (δ − δ0 ) κ0 s 

π
cos κ0 s, ϕ = u 3 = 0 , 

u 1 (s ) = 

∫ s 

0 

κ0 u 2 (t ) dt , u 1 (L ) = 0 ⇒ δ0 = 

8 

8 − π2 
δ. (56) 

The associated critical free energy is given by 

F [ u , ϕ; c 0 ] 

= 

∫ L 

0 

{ 

E I 3 
2 

(u 

′′ 
2 +κ2 

0 u 2 ) 
2 + 

E I 2 
2 

(κ0 ϕ ) 2 + 

GJ 

2 

(
ϕ 

′ +κ0 u 

′ 
3 + 

u 

′′′ 
3 

κ0 

)2 } 

= 

π

π2 − 8 

E I 3 κ0 (δκ0 ) 
2 . (57) 

2. Simple supports . If (32) is enforced with u 0 = δ ˜ e 2 / 2 = −δ ˜ e x / 2 ,

u L = δ ˜ e 2 / 2 = δ ˜ e x / 2 (see Fig. 3 (b)), by (34) we have boundary

conditions (55) 1 , (55) 3 , and 

˜ ϕ 

′′ = 

(
ϕ + κ0 u 3 + 

u 

′′ 
3 

κ0 

)′′ 
= 0 , ˜ κ = u 

′′ 
2 + κ2 

0 u 2 = 0 , 

at s = 0 & L. (58) 

It is not hard to verify that the boundary value problem formed

by (54) and (58) uniquely admits the following planar solu-

tion: 

u 2 (s ) = 

δ

2 π
[(π − 2 κ0 s ) cos κ0 s − 2 sin κ0 s ] , 
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Fig. 3. Typical boundary conditions for curved space beams: (a) clamped supports with prescribed boundary displacements; (b) simple supports with prescribed boundary 

displacements; (c) cantilever with a point force on the free end. Dashed line: reference undeformed curved beam; solid line: deformed beam. 

 

 

) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

p  

c

−  

a  

e

U  

B  

t  

a⎧⎪⎪⎨
⎪⎪⎩  

w  

w  

l  

fi  

a

3

t

 

p  

e  

f  

f  

p  

e  

w  

t

u  

w  

t

u  

A  

t

 

i  

a

[

 

a

u  
u 1 (s ) = 

∫ s 

0 

κ0 u 2 (t ) dt , ϕ = u 3 = 0 . (59)

and the associated critical free energy is given by 

F [ u , ϕ; c 0 ] = U e [ u , ϕ; c 0 ] 

= 

∫ L 

0 

E I 3 
2 

(u 

′′ 
2 + κ2 

0 u 2 ) 
2 = 

1 

π
E I 3 κ0 (δκ0 ) 

2 . 

3. Cantilever. If (35) is enforced with p = p 0 ̃  e 2 = −p 0 ̃  e x (see

Fig. 3 (c)), by (39) we have the following boundary conditions: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

u 1 (0) = u 2 (0) u 

′ 
2 (0) = u 

′ 
3 (0) = 0 , κ0 ϕ(0) + u 

′′ 
3 (0) = 0 , 

= u 3 (0) = 0 , 

˜ ϕ 

′ = ˜ ϕ 

′′ = ˜ ϕ 

′′′ ˜ κ = u 

′′ 
2 + κ2 

0 u 2 = 0 , ˜ κ ′ + 

p 0 
E I 3 

= 0 

+ κ2 
0 ˜ ϕ 

′ = 0 , at s = L. 

(60

It is not hard to verify that the boundary value problem

formed by (54) and (58) uniquely admits the following planar

solution: 

u 2 (s ) = − p 0 

2 E I 3 κ2 
0 

(s cos κ0 s − 1 

κ0 

sin κ0 s ) , 

u 1 (s ) = 

∫ s 

0 

κ0 u 2 (t ) dt , ϕ = u 3 = 0 . (61)

and the associated critical free energy is given by 

F [ u , ϕ; c 0 ] = U e [ u , ϕ; c 0 ] − p 0 u 2 (L ) = − π p 2 0 

4 E I 3 κ3 
0 

. 

3. Instabilities of curved beams 

3.1. Nonlinear asymptotic theories 

A fully linearized boundary value problems for planar curved

beam admits a unique planar solution. This can be seen from the

linearized strain energy functional (51) where the out-of-plane dis-

placement and twist is not coupled with in-plane displacement

and always cost positive energy. This is however inconsistent with

experimental observations: thin curved beams in fact twist and

bend out-of-plane even if all loadings are in-plane as shown in

Fig. 1 . Moreover, upon releasing external loadings, the beam re-

covers the original undeformed geometry, which implies that the

strain (12) in the beam remains to be small so that the linear

stress-strain relation (13) is applicable. 

To capture the possible out-of-plane displacement and twist of

a planar beam, we shall come back to our original nonlinear strain

energy functional (16) . Simplified theories can be obtained for two

cases that will be discussed separately as follows. 

3.1.1. Ribbon-like beams 

If the beam is very thin, from (53) we see that I 3 / I 2 = (w/h ) 2 =
1 / ̂ r � 1 and hence the beam would prefer out-of-plane bending

than in-plane bending. In regard of the nonlinear strain energy

functional (16) , in the limit of ˆ r → 0 for fixed EI , the energies of
2 
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ending about e 3 -axis and twisting around e 1 -axis being finite im-

lies that the curve c and relative twist angle ϕ shall satisfy the

onstraints: 

κ cos ϕ + κ0 = 0 , ϕ 

′ + τ − τ0 = 0 on (0 , L ) , (62)

nd minimize the ( �-limit) free energy functional with strain en-

rgy given by 

 

∞ 

e [ c , ϕ; c 0 ] = 

∫ L 

0 

EI 2 
2 

(κ sin ϕ) 2 ds. (63)

y the method of Lagrange’s multipliers and at the absence of ex-

ernal loading (i.e., q = 0 ), the Euler–Lagrange’s equations associ-

ted with (63), (62) and (22) are given by (cf., (29) ) 
 

 

 

 

 

 

 

[(κ sin 

2 ϕ − �1 cos ϕ) e 2 ] 
′′ − [�2 (κe 3 + τe 1 ) + λe 1 ] 

′ 

−
[ 

�′ 
2 

κ e 3 

] ′′ 
= 0 , 

−�′ 
2 + �1 κ sin ϕ + κ2 sin ϕ cos ϕ = 0 , 

(64)

here, EI 2 �1 and EI 2 �2 are the Lagrange’s multipliers associated

ith the two equations in (62) , respectively. The above asymptotic

imit of (sequence of) solutions at ˆ r → 0 may be rigorously justi-

ed by the �-convergence method ( Maso, 1993 ) which will not be

ddressed here. 

.1.2. Beams with moderately small out-of-plane displacement and 

wist 

It is not hard to see that the planar solutions for an originally

lanar beam, e.g., (56) , is the global minimizer of the fully lin-

arized free energy (i.e., the strain energy is given by (48) ). There-

ore, the out-of-plane and twist solutions, if exist, must scale dif-

erently from (42) and (43) . Also, in applications it is desirable to

recisely relate the critical loading with the geometry of the beam,

.g., the ratio ˆ r . In this regard the asymptotic theory (62) and (63)

ill not be useful. Nevertheless, for planar beams and keeping only

he leading order we can rewrite (62) as 

 

′′ 
2 + (κ0 u 1 ) 

′ − 1 

2 

κ0 ϕ 

2 ≈ 0 , ϕ 

′ + κ0 u 

′ 
3 + 

(
u 

′′ 
3 

κ0 

)′ 
≈ 0 , (65)

hich hints the following scaling relations for small strain and

wist: 

 

′ 
1 ∼ u 

′ 
2 ∼ ε 	 1 , ϕ(s ) ∼ u 

′ 
3 ∼ η ∼ ε 1 / 2 . (66)

gain we emphasize that the above scaling relation shall be a pos-

eriori verified upon solutions to the simplified problem. 

We now compute the strain energy to the leading order accord-

ng to the scaling relation (66) . First of all, to keep s �→ c 0 (s ) + u (s )

s an arc-length parametrization, we shall require 

 c 0 (s ) + u (s )] ′ · [ c 0 (s ) + u (s )] ′ 

= 1 + [2(u 

′ 
1 − κ0 u 2 ) + (u 

′ 
3 ) 

2 ] + o(ε) = 1 , (67)

nd hence 

 

′ 
1 − κ0 u 2 + 

1 

(u 

′ 
3 ) 

2 = 0 . (68)

2 
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4 
Mathematica Notebooks for subsequent calculations are available at the au- 

thor’s (L.L.) homepage http://math.rutgers.edu/ll502/Curvedbeams/ . 
epeating calculations as for (44) , by (66) we find that (recall that

 = u 1 ̃  e 1 + u 2 ̃  e 2 + u 3 ̃  e 3 ) 

e 1 = 

˜ e 1 − 1 

2 

(u 

′ 
3 ) 

2 ˜ e 1 + (u 

′ 
2 + κ0 u 1 ) ̃ e 2 + u 

′ 
3 ̃  e 3 + o(ε) , 

u 

′ = −1 

2 

(u 

′ 
3 ) 

2 ˜ e 1 + (u 

′ 
2 + κ0 u 1 ) ̃ e 2 + u 

′ 
3 ̃  e 3 + o(ε) , 

 

′′ = [ −κ0 (u 

′ 
2 + κ0 u 1 ) − u 

′ 
3 u 

′′ 
3 ] ̃ e 1 

+ [ u 

′′ 
2 + (κ0 u 1 ) 

′ − 1 

2 

κ0 (u 

′ 
3 ) 

2 ] ̃ e 2 + u 

′′ 
3 ̃  e 3 + o(ε) , 

e 2 = 

κ0 ̃  e 2 + u 

′′ 
| κ0 ̃  e 2 + u 

′′ | = 

˜ e 2 + 

1 

κ0 

[ u 

′′ − ( ̃ e 2 · u 

′′ ) ̃ e 2 ] + o(ε) , 

e 3 = 

˜ e 3 + 

{ 

1 

κ0 

˜ e 1 × [ u 

′′ − ( ̃ e 2 · u 

′′ ) ̃ e 2 ] + u 

′ × ˜ e 2 

} 

+ o(ε) , 

κ = | κ0 ̃  e 2 + u 

′′ | = κ0 + [ u 

′′ 
2 + (κ0 u 1 ) 

′ − 1 

2 

κ0 (u 

′ 
3 ) 

2 ] + o(ε) , 

τ = κ0 u 

′ 
3 + 

(
u 

′′ 
3 

κ0 

)′ 
+ o(ε) . (69) 

herefore, up to the order of O ( ε 2 ) the strain energy (16) is given

y 

 e [ u , ϕ; c 0 ] = 

∫ L 

0 

{ 

E I 3 
2 

˜ κ2 + 

E I 2 
2 

(κ0 ϕ) 2 + 

GJ 

2 

( ̃  ϕ 

′ ) 2 
} 

, 

˜ = u 

′′ 
2 + (κ0 u 1 ) 

′ − 1 

2 

κ0 (u 

′ 
3 ) 

2 − 1 

2 

κ0 ϕ 

2 , ˜ ϕ = ϕ + κ0 u 3 + 

u 

′′ 
3 

κ0 

. 

(70) 

aking into account of the constraint (68) by a Lagrangian mul-

iplier, we can find the Euler–Lagrange equations associated with

he principle of minimum free energy as well as the Neumann-

ype boundary conditions at the ends. 

In particular, for the semi-circle planar beam discussed in

ection 2.5 with κ0 being constant, by (68) we have 

˜ = u 

′′ 
2 + (κ0 u 1 ) 

′ − 1 

2 

κ0 (u 

′ 
3 ) 

2 − 1 

2 

κ0 ϕ 

2 

= u 

′′ 
2 + κ2 

0 u 2 − κ0 (u 

′ 
3 ) 

2 − 1 

2 

κ0 ϕ 

2 , (71) 

nd the Euler–Lagrange equations are given by 
 

 

 

 

 

 

 

E I 3 ̃  κ
′′ + E I 3 κ

2 
0 ̃  κ − κ0 λ = 0 , 

−GJ ̃  ϕ 

′′ + E I 2 κ
2 
0 ϕ − E I 3 ̃  κκ0 ϕ = 0 , ˜ ϕ = ϕ + κ0 u 3 + 

u 

′′ 
3 

κ0 

, 

GJ ̃  ϕ 

′′′′ + κ2 
0 GJ ̃  ϕ 

′′ − κ2 
0 [2 E I 3 ̃  κu 

′ 
3 ] 

′ + κ0 (λu 

′ 
3 ) 

′ = 0 , 

(72) 

here λ is the Lagrangian multiplier associated with the constraint

68) ; the first variation with respect to u 1 implies that λ′ = 0 , i.e.,

is a constant. 

The nonlinear differential system (72) characterizes the asymp-

otic behaviors of the curved beam in the scaling regime (66) .

pon specifying the boundary conditions, we can in principle solve

72) and determine the critical loadings when the system bifur-

ates between two or more equilibria. The precise procedure is,

owever, not so easy to explicitly carry out because of the non-

inearity. Below we present approximate solutions and associated

riteria for instabilities based on some simple trial solutions. 

.2. Trial solutions and critical loadings 

Since explicit solutions to the nonlinear differential system (72)

re generally impossible, we employ the method of trial solutions

o obtain insights on the behaviors of the system, particularly,

he critical loadings such that the planar solutions presented in

ection 2.5 are no longer globally stable. 

The method of trial solutions is in the same vein as the Saint-

enant’s semi-inverse method ( Love, 1944 ). Instead of directly
Please cite this article as: L. Liu, N. Lu, Variational formulations, instab
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olving the nonlinear differential system (72) , we conjecture trial

olutions, typically a special ansatz on the kinematic variables, and

hen insert this ansatz into the free energy functional. Upon eval-

ating the free energy functional (or integral) we obtain the free

nergy in algebraic terms of adjustable coefficients of the ansatz.

e finally minimize this algebraic form of free energy with respect

o these adjustable coefficients and obtain the “optimal” solutions

o our problem within the functional form as prescribed by the

nsatz. In this method, it is clear that the quality of the final solu-

ion is dictated by the quality of trial solutions, i.e., the ansatz. The

est trial solution is clearly the actual solution to the original non-

inear system, e.g., (72) . Predictions based on this method could be

rivial or even erroneous if the quality of the trial solutions dete-

iorates on one hand, and on the other hand explicit predictions

ight be impossible if the ansatz is too general to have a simple

nd explicit parametrization. Therefore, the implementation of this

pproach for a particular problem can be delicate. 

Based on the numerical results and experimental observations,

e will consider the following simple trial solutions such that 

(s ) = A 0 + A 1 sin κ0 s + A 2 cos κ0 s, 

˜  (s ) = 

u 

′′ 
3 

κ0 

+ κ0 u 3 + ϕ = B 1 sin κ0 s, 

˜ κ(s ) = u 

′′ 
2 + κ2 

0 u 2 − κ0 (u 

′ 
3 ) 

2 − 1 

2 

κ0 ϕ 

2 

= κ0 [ C 0 + C 1 sin κ0 s + C 2 cos κ0 s ] , (73) 

here A i , B i , C i (i = 0 , 1 , 2) are adjustable dimensionless parame-

ers. Inserting (73) into (70) , we obtain the strain energy in terms

f these adjustable parameters as ( ̂ r := I 3 /I 2 and ˜ r := GJ/EI 2 ) 

 e (A i , B i , C i ) = 

EI 2 κ0 

2 

[ 
ˆ r 

(
πC 2 0 + 4 C 0 C 1 + 

π

2 

C 2 1 + 

π

2 

C 2 2 

)
+ πA 

2 
0 + 4 A 0 A 1 + 

π

2 

A 

2 
1 + 

π

2 

A 

2 
2 + ̃

 r 
π

2 

B 

2 
1 

] 
. (74) 

n addition, to be qualified as trial solutions, ( u , ϕ) satisfying (73)

hall further conform with the boundary conditions which place a

umber of restrictions on the adjustable parameters A i , B i , C i (i =
 , 1 , 2) . Finally, we minimize the free energy against A i , B i , C i (i =
 , 1 , 2) and within these restrictions. If the obtained minimum free

nergy is lower than that of the planar solution, we conclude that

he trial out-of-plane and twist solutions are more favorable; the

lanar solutions are unstable or metastable. 

We now present the instability criteria for the semi-circular

rches in Fig. 2 (a) based on the trial solution satisfying (73) . Again,

e have three separate cases. 4 

1. Clamped supports. If boundary conditions (17) is enforced with

u 0 = δ ˜ e 2 / 2 = −δ ˜ e x / 2 , u L = δ ˜ e 2 / 2 = δ ˜ e x / 2 and at the absence of

distributed force q = 0 , the variational principle for an equilib-

rium can be written as 

min { F [ u , ϕ; c 0 ] = U e = (70) : u , ϕ satisfies (55) and (68) } . 
(75) 

First, by (71) we notice that for circular arc with constant κ0 

the energy functional (70) does not explicitly depend on u 1 .

Therefore, we can solve (68) for u 1 and the boundary condi-

tions u 1 (0) = u 1 (L ) = 0 is equivalent to ∫ L 

0 

[2 κ0 u 2 − (u 

′ 
3 ) 

2 ] ds = 0 . (76) 

Solving (73) 2 for u 3 and applying the boundary conditions

u 3 (0) = u 3 (L ) = u ′ 
3 
(0) = u ′ 

3 
(L ) = 0 , we find that 

A 1 − B 1 = −4 A 0 

π
, A 2 = 0 , (77) 
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and 

u 3 (s ) = 

A 0 

κ0 π
[ −π + (π − 2 κ0 s ) cos κ0 s + 2 sin κ0 s ] . (78)

Solving (73) 3 for u 2 and applying the constraint (76) , the

boundary conditions u 2 (0) = u 2 (L ) = 

δ
2 and u ′ 

2 
(0) = u ′ 

2 
(L ) = 0 ,

we solve for C 0 , C 1 , C 2 in terms of A 0 , B 1 . Functions u and ϕ
obtained in this way clearly satisfy all of the boundary condi-

tions (55) and constraint (68) , and are henceforth qualified as

trial solutions. 

To proceed, by (74) we evaluate the free energy of this trial so-

lution in terms of adjustable parameters A 0 , B 1 and obtain 

F [ u , ϕ; c 0 ] = U e [ u , ϕ; c 0 ] = 

EI 2 
2 

∫ L 

0 

[ ̂ r ̃  κ2 + (κ0 ϕ) 2 + ̃

 r ( ̃  ϕ 

′ ) 2 ] 

= 

π

π2 − 8 

E I 3 κ0 (δκ0 ) 
2 + Q 2 (A 0 , B 1 ) + Q 4 (A 0 , B 1 ) , 

(79)

where Q 4 is a quartic monomial, 

Q 2 = EI 2 κ0 [(a 11 A 

2 
0 + a 12 A 0 B 1 + a 22 B 

2 
1 ) ̂ r (κ0 δ) 

+ b 11 A 

2 
0 + b 22 (1 + ̃

 r ) B 

2 
1 ] , 

a 11 ≈ 0 . 14 , a 12 ≈ 0 . 43 , a 22 ≈ −0 . 56 , b 11 ≈ 0 . 30 , 

b 22 ≈ 0 . 79 . (80)

We remark that the above constants a ij , b ij , independent of

cross-sectional properties of the beam, admit closed-form ex-

pressions which are too long to be presented here. From the

above expression of free energy, we see that if ⎧ ⎪ ⎨ 

⎪ ⎩ 

κ0 δ > 

0 . 44 ̃

 r − 0 . 23 

ˆ r 
+ (1 . 94 + 1 . 69 ̃

 r + 0 . 20 ̃

 r 2 ) 1 / 2 or 

κ0 δ < 

0 . 44 ̃

 r − 0 . 23 

ˆ r 
− (1 . 94 + 1 . 69 ̃

 r + 0 . 20 ̃

 r 2 ) 1 / 2 , 

(81)

then Q 2 + Q 4 < 0 for some infinitesimal A 0 , B 1 . Therefore, the

free energy (79) is less than (57) of the planar solution, mean-

ing that the planar solution (56) is no longer the global mini-

mizer (or loses its global stability) if the applied displacement

exceeds the critical displacements defined by (81) . 

2. Simple supports . If the boundary conditions (32) is enforced

with u 0 = δ ˜ e 2 / 2 = δ ˜ e x / 2 , u L = δ ˜ e 2 / 2 = −δ ˜ e x / 2 , and at the ab-

sence of distributed force q = 0 , the variational principle for the

equilibrium state can be written as 

min { F [ u , ϕ; c 0 ] = U e = (70) : u , ϕ satisfies (55) and (68) } . 
(82)

For simplicity, we further restrict ourselves to trial solutions

(73) with A 2 = B 1 = 0 , A 1 = −4 A 0 /π, i.e., u 3 is given by (78) . It

is clear that the trial functions (73) satisfy u 3 (0) = u 3 (L ) = 0 .

Moreover, solving (73) 3 for u 2 and applying the boundary con-

ditions u 2 (0) = u 2 (L ) = 

δ
2 and constraint (76) yield 

C 0 = C 2 = 0 , C 1 = 

(64 − 18 π2 ) A 

2 
0 

27 π
+ 

2 κ0 δ

π
, 

and henceforth, the free energy of this trial solution is given

by 

F [ u , ϕ; c 0 ] = U e [ u , ϕ; c 0 ] = 

∫ L 

0 

[ 
E I 3 
2 

˜ κ2 + 

E I 2 
2 

(κ0 ϕ) 2 
] 

= 

1 

π
E I 3 κ0 (δκ0 ) 

2 + [ −βE I 3 κ0 (κ0 δ) + 

π2 − 8 

2 π
E I 2 κ0 ] A 

2 
0 

+ αE I 3 κ0 A 

4 
0 . (83)
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where α ≈ 0.014 and β ≈ 0.136. From the above equation

we see that if 

−βE I 3 κ0 (κ0 δ) + 

π2 − 8 

2 π
E I 2 κ0 < 0 , i.e. , κ0 δ > 

(π2 − 8) I 2 
2 βπ I 3 

, 

(84)

the planar solution is no longer the global minimizer of the free

energy. Moreover, the constant A 0 can be determined by miniz-

ing the right hand side of (79) with respect to A 0 and we ob-

tain 

(A 0 ) min = 

[ 
1 

2 αI 3 
[ βκ0 δ − (π2 − 8) I 2 

2 π I 3 

] 1 / 2 
. 

3. Cantilever. If (35) is enforced with p = p 0 ̃  e 2 = p 0 ̃  e x at x = L and

zero distributed force q = 0 , by (36) and (70) we write the free

energy functional as 

F [ c , ϕ; c 0 ] 

= 

∫ L 

0 

{ 

E I 3 
2 

[ u 

′′ 
2 + κ2 

0 u 2 − κ0 (u 

′ 
3 ) 

2 − 1 

2 

κ0 ϕ 

2 ] 2 + 

E I 2 
2 

(κ0 ϕ) 2 

+ 

GJ 

2 

(ϕ 

′ + κ0 u 

′ 
3 + 

u 

′′′ 
3 

κ0 

) 2 
} 

ds − p 0 u 2 (L ) . (85)

and the variational principle for an equilibrium can be written

as 

min { F [ u , ϕ; c 0 ] : u , ϕ satisfies (60) 1 } . (86)

For simplicity, we again restrict ourselves to trial solutions (73)

with A 2 = B 1 = 0 . We first solve (73) 2 for u 3 , i.e., {
u 

′′ 
3 + κ2 

0 u 3 = −κ0 ϕ(s ) on (0 , L ) , 
u 3 (0) = u 

′ 
3 (0) = 0 , 

(87)

and then solve (73) 3 for u 2 . In account of the boundary con-

dition u 2 (0) = u ′ 
2 
(0) = 0 , ˜ κ ′ (L ) = − p 0 

E I 3 
and constraint (76) , we

find that 

C 0 = C 2 = 0 , C 1 = 

p 0 

E I 3 κ2 
0 

. 

Evaluation the free energy (85) in terms of our trial solution,

we obtain 

F (A 0 , A 1 ; p 0 ) 

= − π p 2 0 

4 E I 3 κ3 
0 

+ 

p 0 (−126 A 

2 
0 − 63 πA 0 A 1 + 4 A 

2 
1 − 9 π2 A 

2 
1 ) 

54 κ0 

+ 

E I 2 κ0 

4 

(2 πA 

2 
0 + 8 A 0 A 1 + πA 

2 
1 ) . 

Therefore, if 

p 0 > min 

{
E I 2 54 κ2 

0 (2 πA 

2 
0 + 8 A 0 A 1 + πA 

2 
1 ) 

4(126 A 

2 
0 

+ 63 πA 0 A 1 − 4 A 

2 
1 

+ 9 π2 A 

2 
1 
) 

: A 0 , A 1 ∈ R 

}
= 0 . 479 E I 2 κ

2 
0 

× ( the minimum is achieved if A 1 ≈ −3 . 71 A 0 � = 0) , (88)

the planar solution is no longer the global minimizer of the free

energy; any perturbation of form (87) with A 1 ≈ −3 . 71 A 0 � = 0

has lower free energy. 

We remark that the criteria for instability obtained by consid-

ring trial solutions (cf., (73) ) shall be regarded as “upper bounds”

f what would be obtained if (72) is exactly solved. Moreover, re-

tricting to trial solutions (73) may miss many modes of instability

nd even give spurious predictions. For example, for simple sup-

orts, the selected trial solutions cannot capture the instability that

ccurs under tension. A full understanding of instability of curved

eams inevitably requires exact solutions to the nonlinear system

72) with suitable boundary conditions. 
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. Conclusion and discussion 

We present a variational framework for curved beams subjected

o a variety of boundary conditions. We show that the variational

ormulation is consistent with the classic field equations which, to

ome extent, is not obvious at all. Mathematical boundary condi-

ions are systematically derived for clamped supports, simple sup-

orts and free ends. Further, explicit solutions for linearized theory

nd explicit solutions to instabilities and critical loadings are ob-

ained for semi-circular arches. We anticipate that the variational

heories, stability analysis and explicit solutions will give us im-

ortant insight on designing stretchable electronic structures and

redictive modeling of biological macromolecules. 

A final remark is in order here regarding the application of the

resent formulation to curved beams of less regularity. First of

ll, if the centroid curve c 0 = c 0 (s ) is continuously differentiable

nd piecewisely of C 3 -class with finitely many singular points, the

uler–Lagrange Eq. (29) (or (31) ) shall hold on each C 3 (open) in-

erval. Meanwhile, the displacement and rigid rotation defined by

5) and (7) shall remain continuous at each singular point, i.e.,

[ c ]] = 0 and [[ Q ]] = 0 , where [[( ·)]] denotes the jump of ( ·). By (5) –

7) and in terms of kinematic variables ( c , ϕ; c 0 ), we have the fol-

owing interfacial conditions at each singular point: 

[ c ]] = 0 , [[ ̃ e i · f j ]] = 0 (i, j = 1 , 2 , 3) . 

n addition, by similar calculations as in (37) we have ( (38) ) 

[ P ]] = 0 , [[ M ]] = 0 , 

hich may be interpreted as the force and moment balance of

n infinitesimal segment containing the singular point. For curved

eams that are not continuously differentiable with cusp singular-

ties, extension at the singularities would be important and shall

e addressed using the strain energy (14) . 
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ppendix. Field-equation approach to a geometrically 

onlinear beam theory. 

In the framework of Cosserat theory, we describe the kinemat-

cs of the rod by the deformation of the centroid line c : (0 , L ) →
 

3 and the orthonormal basis vectors f i : (0 , L ) → R 

3 ( i = 1 , 2 , 3 )

ttached to a material cross section with f 1 being the unit normal.

n general, the basis vectors f i may be independent of the centroid

ine c . Let e 1 = c ′ / | c ′ | be the unit tangential vector along the cen-

roid line and define constants �ij such that 

 

′ 
i = �i j f j , i.e. , �i j = f ′ i · f j . 

ince f i · f j = δi j implies that 0 = (f i · f j ) 
′ = f ′ 

i 
· f j + f i · f ′ 

j 
=

i j + � ji , i.e., �ij is skew-symmetric, we set (ω 1 , ω 2 , ω 3 ) =
(�23 , −�13 , �12 ) , i.e., ω i = 

1 
2 E i jk f 

′ 
j 
· f k , and find that 

 

′ 
i = ω × f i (i = 1 , 2 , 3) . (89) 

he extension of the centroid line can be described by 

 = γ (ξ 1 ) = 

∫ ξ 1 

0 

| c ′ (t ) | dt . 

n a field-equation approach to an extensible elastic rod, the inter-

al Piola–Kirchhoff cross-sectional moment vector M : (0 , L ) → R 

3 
Please cite this article as: L. Liu, N. Lu, Variational formulations, instab
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nd force P : (0 , L ) → R 

3 are primitive concepts. Under the appli-

ation of an external (dead) distributed load q : (0 , L ) → R 

3 , by the

alances of linear and angular momenta we obtain ( Reissner, 1973;

u et al., 2012 ) 

 

′ + q = 0 , M 

′ + c ′ × P = 0 on (0 , L ) . (90) 

onstitutive relations between kinematic variables and internal

oment and force ( M, P ) are necessary to close the system. A com-

on choice is to postulate the strain (or internal) energy of the rod

s given by, e.g., 

 e [ c , f 1 , f 2 , f 3 ] = 

∫ L 

0 

W 

(
1 

2 

| c ′ − f 1 | 2 , ω 

)
dS, (91) 

here R × R 

3 � (a, b ) �→ W (a, b ) is the strain energy density func-

ion ( Simo, 1985 ). We remark that the general form of strain en-

rgy proposed in Simo (1985) has to be of the above form in order

o be consistent with the requirement of frame indifference, i.e., is

nvariant with respect to an overall rigid motion of the body. It has

een proposed that the constitutive relations can be given by Simo

1985) 

 = 

∂W 

∂c ′ = (c ′ − f 1 ) W a , M = 

∂W 

∂ ω 

= W b . (92) 

here W a and W b represent partial derivatives of the strain energy

ensity function W = W (a, b ) . Eqs. (90 ) and ( 92) compose the gov-

rning field equations for curved beams. 

We now show that Eqs. (90) and (92) are indeed consistent

ith our variational approach. In particular, both (90) and (92)

ollow as the Euler–Lagrange equations to the principle of min-

mum free energy if one admits that the strain energy is given

y (91) . As an example, for clamped boundary conditions at the

wo ends and under the application of the (dead) distributed load

 : (0 , L ) → R 

3 , we see the free energy of the system is given by 

 [ c , f 1 , f 2 , f 3 ] = 

∫ L 

0 

[ 
W 

(
1 

2 

| c ′ − f 1 | 2 , ω 

)
− q · c 

] 
dS. 

y the principle of minimum free energy, an equilibrium state nec-

ssarily satisfies that 

d 

dε 
F [ c + εu , f 1 + εv 1 , f 2 + εv 3 , f 3 + εv 3 ] 

∣∣∣
ε=0 

= 0 (93) 

or all smooth perturbations u , v i : (0 , L ) → R 

3 satisfying that u =
 i = u 

′ = v ′ 
i 
= u 

′′ = v ′′ 
i 

= 0 at ξ 1 = 0 & L and that 

(f i + εv i ) · (f j + εv j ) = δi j + o(ε) �⇒ 

v i = 

˜ ω × f i for some ˜ ω : (0 , L ) → R 

3 . 

y (93) , integrating by parts we find that 

 L 

0 

u · {−[(c ′ − f 1 ) W a ] 
′ − q } + 

˜ ω 

· [ −(W b ) 
′ − f 1 × (c ′ − f 1 ) W a ] dξ 1 = 0 , (94) 

here we have used the identity ( Steigmann and Faulkner, 1993 ) 

(W b ) i 
1 

2 

E i jk [( ̃  ω × f j ) 
′ · f k + f ′ j · ( ̃  ω × f k )] 

 

1 

2 

(W b ) i E i jk ( ̃  ω 

′ × f j ) · f k = 

1 

2 

(W b ) i E i jk ̃  ω 

′ · (f j × f k ) 

 

1 

2 

(W b ) i E i jk ̃  ω 

′ · (E m jk f m 

) = 

˜ ω 

′ · W b . 

ince u , ˜ ω : (0 , L ) → R 

3 are arbitrary and independent of each

ther, by (94) we obtain the following Euler–Lagrangian equations
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for an equilibrium state: 

[(c ′ − f 1 ) W a ] 
′ + q = 0 , (W b ) 

′ + f 1 × (c ′ − f 1 ) W a = 0 on (0 , L ) .

(95)

Comparing (95) with (90) , we justify the constitutive relation (92)

by noticing 

f 1 × P = f 1 × (c ′ − f 1 ) W a = f 1 × c ′ W a = c ′ × P . 

If we impose the Bernoulli–Euler kinematics, we have the con-

straint c ′ = γ ′ f 1 . Then by the method of Lagrange’s multiplier we

find the following necessary conditions for an equilibrium state: 

[ f 1 W a (γ
′ − 1) + λ] ′ + q = 0 , 

(W b ) 
′ + f 1 × [ f 1 W a (γ

′ − 1) + γ ′ λ] = 0 on (0 , L ) . 

Comparing the above equation with (90) , we justify the second of

(92) and identify P = f 1 W a (γ ′ − 1) + λ by noticing 

f 1 × [ f 1 W a (γ
′ − 1) + γ ′ λ] = γ ′ f 1 × λ = c ′ × P . 

If the rod is further assumed to be inextensible, i.e., c ′ = f 1 and

γ ′ ≡ 1, the variational principle (93) implies 

λ′ + q = 0 , (W b ) 
′ + c ′ × λ = 0 on (0 , L ) , (96)

which implies P = λ and the second of (92) . 

Applying the above framework to the scenario discussed

in Section 2 , we identify the orthonormal frame { f 1 , f 2 , f 3 } =
Q { ̃ e 1 , ̃  e 2 , ̃  e 3 } , and by (5), (7) and Frenet equation, find that { 

f ′ 1 = κ( cos ϕ f 2 − sin ϕ f 3 ) , 
f ′ 2 = −κ cos ϕ f 1 + (ϕ 

′ + τ ) f 3 , 
f ′ 3 = κ sin ϕ f 1 − (ϕ 

′ + τ ) f 2 . 
(97)

By (89) , the above equation implies the curvature vector ω :

(0 , L ) → R 

3 is given by 

ω = ω i f i , (ω 1 , ω 2 , ω 3 ) := (ϕ 

′ + τ, κ sin ϕ , κ cos ϕ ) . 

Therefore, comparing (16) and (91) we identify the strain energy

density function as 

 ( ω ) = 

GJ 

2 

(ω 1 − ω 

0 
1 ) 

2 + 

E I 2 
2 

(ω 2 − ω 

0 
2 ) 

2 + 

E I 3 
2 

(ω 3 − ω 

0 
3 ) 

2 , 

where (ω 

0 
1 
, ω 

0 
2 
, ω 

0 
3 
) = (τ0 , 0 , κ0 ) . By (92) and (96) , we can write

the equilibrium equation in terms of curvature vector ω as ⎧ ⎪ ⎨ 

⎪ ⎩ 

P 

′ + q = 0 on (0 , L ) , 
M 

′ + f 1 × P = 0 on (0 , L ) , 

M = 

∂W 

∂ ω 

= GJ(ω 1 − ω 

0 
1 ) f 1 + E I 2 (ω 2 − ω 

0 
2 ) f 2 + E I 3 (ω 3 − ω 

0 
3 ) f 3 . 

(98)

From (98) 2 , we have 

f 1 × [ M 

′ + f 1 × P ] = f 1 × M 

′ + f 1 (P · f 1 ) − P = 0 , f 1 · M 

′ = 0 . 

In account of (98) 1 , we have {
[ f 1 × M 

′ + f 1 (P · f 1 )] ′ + q = 0 on (0 , L ) , 
f 1 · M 

′ = 0 on (0 , L ) . 

Inserting the last of (98) into the above equation, upon tedious al-

gebraic calculations we can show the above differential system is

equivalent to the Euler–Lagrangian Eq. (29) . The advantage of the

variational formulation lies in the explicit parametrization of the

centroid line and relative twist and the systematic derivation of

boundary conditions. 
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