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Beam theories have been extensively studied for applications in structural engineering. Space curved
beams with large displacements, however, have been explored to a much less extent, not to mention
explicit solutions concerning instabilities and critical loadings. In this paper, by carefully accounting for
geometric nonlinearity and different scalings of kinematic variables, we present a variational framework
for large-displacement space curved beams. We show that the variational formulation is consistent with
the classic field equations, derive the appropriate boundary value problems for a variety of loading con-
ditions and kinematic constraints, and generalize the Kirchhoff's helical solutions. Explicit planar solu-
tions for semi-circular arches are obtained upon linearization. Further, two nonlinear asymptotic theories
are proposed to address ribbon-like and moderately deformed curved beams, respectively. Based on the
method of trial solutions, we obtain explicit approximate solutions to critical loadings for semi-circular
arches losing stabilities due to twisting and out-of-plane displacement. The variational framework, non-
linear asymptotic theories, stability analysis and explicit solutions are anticipated to have novel applica-
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tions in stretchable electronics and biological macromolecules.
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1. Introduction

Upon making suitable kinematic hypotheses, there are two
approaches to formulating an effective theory for lower dimen-
sional elastic bodies. In the field-equation approach, the concept
of forces/moments is primitive, the balance laws relating inter-
nal forces/moments and external forces/moments are derived by
free-body-diagram analysis, and finally, constitutive laws relating
internal forces/moments and kinematic variables are postulated
to close the system. In the variational approach, the concept of
free/strain energy is primitive, and upon postulating the functional
dependence of strain energy on kinematic variables, the field equa-
tions follow as the Euler-Lagrange equations of the variational
principles, e.g., the Hamilton’s principle or the principle of mini-
mum free energy. The two approaches shall always yield equiva-
lent, though sometimes not obvious, boundary value problems for
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self-consistency if the kinematic and constitutive hypotheses are
the same in these two approaches.

In this paper we formulate nonlinear variational theories for
curved beams, which are motivated by novel applications in
stretchable electronics and biological macromolecules. To achieve
high electrical performance and mechanical reliability, stretchable
electronics have to leverage intrinsically stiff but well established
inorganic materials like metal and silicon. A reliable way to build
continuous, stretchable structure out of stiff materials is the ser-
pentine design, i.e.,, meandering ribbons or wires (Fig. 1). When
stretched end-to-end, serpentine ribbons or wires can rotate in
plane as well as buckle out of plane to accommodate the applied
displacement, resulting in greatly reduced local elastic strains and
much lower effective stiffness (Li et al., 2005; Su et al., 2012; Wid-
lund et al., 2014; Zhang et al., 2014). These features enable applica-
tions ranging from tissue-like bio-integrated electrodes (Kim et al.,
2011; Yeo et al., 2013), micro-heaters (Yu et al., 2013), deformable
solar cells (Tang et al., 2014), transparent stretchable conductors
(Yang et al., 2015), soft nanogenerators (Ma et al., 2013) to de-
ployable sensor networks (Lanzara et al., 2010) and coronary stents
(Mani et al., 2007). However, in spite of recent efforts in plane
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Fig. 1. A serpentine ribbon buckles out of plane when stretched end-to-end: (a) experimental observation of a paper ribbon with 30% end-to-end elongation, and (b) finite
element model (FEM) results showing the maximum principle strain in the corresponding ribbon.

strain modeling of freestanding serpentines (Widlund et al., 2014),
buckling analysis of thin freestanding serpentine ribbons (Zhang
et al., 2013), and analytical and numerical modeling of self-similar
serpentines (Su et al., 2015; Zhang et al., 2014), the designs of the
serpentine shape are still largely empirical, particularly for serpen-
tines of extreme cross-sectional aspect ratios and undergoing large
out-of-plane deformations. A general, preferably variational, frame-
work will be convenient for stability analysis and rational design
of high-performance serpentines for stretchable electronics. Mean-
while, it has been a standard practice to model macromolecules
such as DNA, polymers and proteins, as an elastic rod for their
mechanical behaviors, see e.g. the textbook of Doi and Edwards
(1989), review article of Manning (1985), series of works of Zhou
et al. (1999, 2000, 2002), and references therein. Though it has
been shown that the worm-like-chain (WLC) model, i.e., a uni-
form circular elastic rod under bending, predicts reasonable force-
versus-extension relation of DNA strands beyond a few kilobase-
pair range (Smith et al., 1996, 1992). At a lengthscale of tens of
base pairs, a more precise description of DNA is necessary to ac-
count for the anisotropy, twisting and kinks of DNA structures
(Hoffman, 2004; Noy and Golestanian, 2012; Wiggins et al., 2005).
Moreover, depending on the salt concentration of the ambient so-
lution, the natural (i.e., stress-free or ground) state of the DNA is
not a straight chain, but admits a variety of supercoiling config-
urations (Manning, 1985). It is of great interest to include effects
of charge screening and electrostatic interactions and to carry out
statistical mechanics analysis for DNA. These purposes demand a
variational framework, i.e.,, a Hamiltonian in terms of reasonable
set of kinematic variables.

Though many of the essential components of a general 3D
curved beam theory have been investigated more than 150 years
ago in the works of Kirchhoff (Love, 1944), our variational frame-
work accounting for the geometric nonlinearity of large displace-
ments is simple, self-contained and ready for novel applications
in stretchable electronics and biological macromolecules. We sys-
tematically derive general boundary conditions and find some in-
consistency in earlier works. The variational formulation is par-
ticularly convenient for rigorous analysis by the direct method of
calculus of variations and for investigating beams with extreme
cross-sectional aspect ratios (i.e., ribbons). However, the fully non-
linear theory is not prone to explicit solution on one hand, on the
other hand, the linearized theory cannot address instabilities due
to twisting and out-of-plane displacement. Therefore, we propose
some simplified nonlinear theories and explicitly calculate the crit-
ical loadings by the method of trial solutions. More accurate solu-
tions on the critical loadings and stabilities of equilibrium states
can be achieved by numerical methods.

For classical applications in structural engineering, there are
many works on elastic theories of rods in the literature which
are too voluminous to recount here. For historical references, the
reader may consult Love’s treatise (Love, 1944) and Antman’s sur-
vey (Antman and Truesdell, 1973). As for space curved beams,
Reissner (1973); 1981) pioneered a finite strain theory that was
later refined by subsequent works of Simo (1985), Simo and
Vu-Quoc (1986), and Iura and Atluri (1988, 1989). The numerical

aspect of space-curved beam models has been a particularly ac-
tive research area in the last thirty years with contributions from,
e.g., Petrov and Geradin (1998), Ishaquddin et al. (2012), Saje et al.
(2012) and references therein. Alternatively, the theory of an elastic
rod can be reformulated as a one-dimensional Cosserat or microp-
olar theory (Cosserat and Cosserat, 1909); kinematic relations and
balance laws can be conveniently explored using Clifford or geo-
metric algebra (McRobie and Lasenby, 1999). In this model, each
material point admits rotational degrees of freedom represented
by a triad of orthonormal vectors in additional to the usual trans-
lational degrees of freedom. Some of the fundamental questions
such as the existence, uniqueness and stability of a solution may
be more conveniently addressed in the Cosserat framework (James,
1981; Steigmann and Faulkner, 1993).

The paper is organized as follows. We begin with the kine-
matic hypotheses and calculate the strain energy in Section 2.1.
We formulate the variational principle and derive the associated
Euler-Lagrange equations and boundary conditions in Section 2.2,
and find that Kirchhoff's helical solutions can be applied to more
general boundary conditions in Section 2.3. In Section 2.4 and
2.5, the geometrically nonlinear theory is linearized and solved
for semi-circular arches with clamped supports, simple supports
and cantilever. We propose two simplified nonlinear theories in
Section 3.1, and obtain explicit solutions to critical loadings in
Section 3.2. We conclude and summarize in Section 4. In the Ap-
pendix, we show our variational formulation is consistent with the
existing field-equation approach.

Notation. We employ direct notation for brevity if possible.
Vectors are denoted by bold symbols such as e, u, etc. When
index notations are in use, the convention of summation over
repeated index is followed. The inner (or dot) product of two vec-
tors a,b € R3 is defined as a - b := (a);(b);, and the cross product
(@ x b); 1= &;jk(a)j(b)y, where & is the Levi-Civita symbol.

2. A variational formulation for space curved beams
2.1. Kinematics and strain energy

Consider a curved beam in space as illustrated in Fig. 2. In the
reference configuration (Fig. 2(a)), the centroid line of the beam is
a space curve with arc-length parameterization given by {cy(£1) :
0<&'<l}c R3. For simplicity, we assume the centroid curve re-
mains to be of C3-class (continuously differentiable up to the third
order) with nonzero curvature in Sections 2-3 and postpone our
discussion about less regular curves to Section 4. Let

x o 5 ()
& (E) =co/(gh). ez(fl)—m’
&(ENH =& (") x&@Eh

be the local orthogonal Frenet frame (' = d/d&1), and
Ko(§') =&(E") - & (')  (resp.to(£') =&, -&(&"))

be the curvature (resp. torsion) of the space curve. Denote by
Ao (E1) the cross-sectional area normal to & (') and By the refer-
ence, stress-free and undeformed elastic body of the beam. In the
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Fig. 2. Frenet frames associated with the reference and deformed centroid lines: The top insets show the cross-sectional areas of (a) undeformed | reference beam, (b)

deformed beam and relative twist angle.

local curvilinear frame {&;, &,, 3}, we represent a material point
X € By by its local coordinates (€1, £2, £3) such that
x=co(§") +£%; + £%8;.
By the Frenet equations:
éll = Ko€,, élz = —Ko€1 + Tp€3, éé = —Tp€y, (1)
we have

ax ox . ox
R — =€), —
&1 &2 d&3
Therefore, the distance between two material points (1, £2, £3)
and (£1,62,83) +d(E1,£2,£3) in the reference configuration is
given by

= (1 — ko§?)& — E3708; + 10§ %83, = €s.

ds§ = g;d&'d&, (2)
where the metric tensor
- 0x 0x
89" 98
1—ko&?* + 18270 +1&87w0)* —&%10  T0§?
= —53'[0 1 0 (3)
To&? 0 1

We now consider deformations of the beam (Fig. 2(b)). Let
{c(€1): 0 < &' < L} be the parametrization of the centroid line of
the deformed beam. Similarly, we can establish the local orthogo-
nal Frenet frame associated with the deformed centroid line:

L C€ED o eED
@@ =jeEn )= e
es(§) =e (&) xey(EN).

Let

1

&
s:y@U=A €/ (0)]de

be the arc-length parameter of the deformed centroid line,
1 1
K(E" = 762(&‘) €} (Eh) ( resp. T(§') = 76’2 -%(5‘))

be the curvature (resp. torsion) of the deformed centroid curve,
and denote by A(£') the cross-section area normal to e;(£') and
B the deformed elastic body of the beam. The Frenet equations for
the deformed curve read

de de de
difll =y'key, T; =y'(—ke| +Te3), T&j =-y'te;.  (4)

To establish the one-to-one correspondence of material points
between the reference stress-free configuration and the current

deformed configuration, we postulate the following kinematic
hypotheses:

(H1) The point cy(é1) on the centroid line in the reference con-
figuration moves to the point ¢(§') in the deformed config-
uration. That is, the mapping y: [0, L] — [0, [] characterizes
the stretching of the centroid line (! is the length of the de-
formed centroid curve).

(H2) As for the conventional theories of straight beams or
curved planar beams, we assume that each reference ma-
terial cross-sectional area Ag(£') together with the normal
€;(&1), aside from the lateral deformation due to the Pois-
son’s effect, moves as a ‘rigid body’ and becomes A(£1) with
the normal e;(&1). This is referred to as the Bernoulli-Euler
hypothesis.!

(H3) The lateral normal Cauchy stress is negligible in the beam,
ie., 0y ~ 033 ~0 in B.

Subsequently, we refer to the above kinematic hypotheses as
the Bernoulli-Euler kinematics. The hypothesis (H2) implies that
upon deformation, the material frame {&;,&,,&;} is transformed
into a new orthogonal frame

f=Q& (i=1,23)
for some rigid rotation Q € R3*3 satisfying
fi=Qé =e;, Q'=Q, detQ=1. (5)

Therefore, a material point X = ¢co(£1) + £2&, + £3&3 on Ag(€1) in
the reference configuration moves to the point 2

y=c(E") + Q&% +£%8;) e A(E). (6)

Moreover, since {Q&,, Qés} and {e,, e3} are two orthogonal bases
for the plane normal to e, we can define the relative twist angle
@ such that (see Fig. 2 (b))

f, = Qé, = cos pe; + sin pes, 7)
f; = Qé; = —sinpe, + cos pes.

We remark that the relative twist angle ¢ = ¢ (&) is different from
the elastic twist angle if the deformed curve is a space curve with
nonzero torsion.

Inserting (7) into (6) we write the deformation y: By — B in
terms of curvilinear coordinates (&1, £2, £3) as

V(E'.§2.8%) = c(§") + &% (cosp(E)er(§1) +sinp(E)es (1)
+ & (—sinp(ENex(§1) +cosp(EN)es(£1)). (8)

T This kinematic hypothesis neglects the shearing of cross-sections, see (Simo,
1985).
2 The lateral normal strains will be accounted for later by (H3).
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By the chain rule and Frenet Eq. (4) we find that

0
Bigl = {1€1 + ey + (3es,

oy .

8752 = (cos ge; + singes), where
ay .

73 = (—singe;, + cos pes),

L=y (1-E%cosg + &3k sing),
$ = (@' +Ty")(-§2sing — &3 cos @),
= (¢ +1y’)(E?cosp — E3sing).

Therefore, for two material points with coordinates (¢!, £2, £3) and
(E1,E2 E3) +-d(E1,£2,€3), the distance between them in the de-
formed configuration is given by

ds? = g;d§'d&/, (9)

where the metric tensor is given by

dy dy
[gijlzl:asl-'aéj}
|: P+ +¢2 £rCo8@ + L3sing —§zsin<p+§3cos<p:|

{2 COSQ + {3sing@ 1 0
—&sing + {308 @ 0 1

(10)

We now proceed to calculate the linearized elastic strain, stress
and energy. For simplicity, we restrict ourselves to small elastic
strains in the sense that |ds — dsg| <« dso, i.e.,

YVEHN-1~n«l, Ex~Ex~E1~Er~n«l
By (2)-(3) and (9)-(10), to the leading order O(n) we find that

ds—dsy _ ds*—dsj 1( . ~“)d7§i§i
dso 2]dso? 2 & &) g5 ds,
dét dgi
=¢;j(€', 8283 Ti}%’ (11)
where
€n E(ro—¢' —1y)/2 £ (@' +1Y' - 0)/2
ein | E2(0—¢ —TY)/2 0 0
V8 Ty —10)/2 0 0 :
€n=y —1+E*(—ky'cosg +io) + &3y’ sing.
(12)

We identify the above tensor €;; as the usual linearized strain ten-
. det g JON .

sor since the tensor (d—i%) =(&j) 1= 3ij +0(m). (8 is the Kro-

necker delta) For isotropic materials with Young’s modulus E and

Poisson’s ration v (shear modulus G = ﬁ), it is clear that the
stress

Ev 5
T AT —2n)

violates the hypothesis (H3); we shall correct the above linearized
strain tensor by setting the lateral normal strains €, = €33 =
—veq; according to the familiar Poisson’s effects.’

From the above discussion, we can now write the strain energy
in terms of the deformed centroid line parametrization ¢ : (0,L) —

€ij (13)

J"j:l—f—v

3 With this ‘correction’, the linearized strain tensor will generally violate the
compatibility condition, i.e., it cannot be written as %(Vu+ (Vu)T) for a (contin-
uous) vector field u: By — R3. This inconsistency exists even in the classic theory
for straight beams.

R3 and the relative twist angle ¢ : (0,L) — R as

1
Uelc, ¢; €o] =/ 5 €1
By

L 1
[ [ 5tElen? g +16°P)
0 JAo(EY)
x (1o —¢' — Ty)?1}dE>dE>dE!
L
%/ {EA(V’—1)2+GJ(<p’+rV’—ro)2
0
—Kky'cos@ + ko —Kky'cos@ + ko
+ Ky’sing -E1 Ky’sing }dé“,

(14)

where A =A(E') is the area of cross-section Ay(£!) and the mo-
ment of inertia tensor I (resp. polar moment of inertia J) is defined

as
2|2 3£2
= [ |5 e cespy= . a3
Ly 8757 187
We remark that the approximations “~” in (11) follow from our
assumption of small elastic strain (i.e., |ds — dsg| < dsg) instead of
small displacements. The strain energy functional (14) does apply
to space curved beams with large displacements and is suitable for
post-buckling analysis (Su et al., 2012).

2.2. Variational principles and boundary value problems

For simplicity, from now on we assume inextensible line of cen-
troid, i.e., Y/(€1) =1 (s = &), and I = diag[l3, L,]. By (14) we write
the strain energy functional as

L EI EI .
Ue[c,go;co]:/O {73(—/ccosgo-i—/co)z-i—72(/<sm<p)2

+ %(W—l—r_ro)z}dél- (16)

The free energy of the system depends on the external loadings
and boundary conditions. For the moment, we consider only dis-
tributed “dead” force q: (0,L) — R3 acting on the centroid line
that is independent of deformation of the beam with clamped
boundary conditions:

(i) €(0) =¢o(0) +ug, c(L) =co(L) +uy,
(ii) (c—¢cy) =0 ats=08&IL, (17)
(iii) sing =€, - es,

where constant vectors ug, u; € R3 can be interpreted as the dis-
placements of the ends of the beam. Also, being clamped the
rigid rotation defined by (5) and (7) shall be such that the de-
formed material frame {Q&;, Qé,, Qé3} coincides with the unde-
formed frame {&;, &, &3}, meaning that & = ey,

{62=C05(pez+SiH(P93 at s=0&1L

€3 = —singe; + cos pes

and hence part (ii) & (iii). Other boundary conditions, e.g., applied
point forces, simple supports and a free end will be discussed later.

In account of the external distributed load q: (0,L) — R3, the
total free energy of the system is given by

L
Flc, ; co] = Ue[c, ¢; co]—/0 q - cds. (18)

By the principle of minimum free energy, the equilibrium configu-
ration is determined by the minimization problem

min{F[c, ¢; ¢o] : ¢, ¢ satisfy boundary conditions in (17)}, (19)
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and a minimizing pair (c, ¢) necessarily satisfy that (Je|] « 1)
dF[c+ ev, ¢ + €¢q; ¢

de e=0

for any admissible variations v and ¢;. (20)

=0

We now derive the Euler-Lagrange equations for the centroid line
parametrization ¢ = ¢(s) and relative twist angle ¢ = ¢(s) by cal-
culus of variations. Consider a variation of the centroid line of the
deformed beam: c(s) — ¢(s) + €v(s). Then the Frenet frame of the
varied centroid line is given by

B ) B  + eV’ B -
€ =€ +&eVv, €= | €3 = €1 X €. (21)

To ensure the parameter s to be the ‘arc-length’, we shall require
el =1+¢ev.-e;+0(e)=1 ie, V.e =0. (22)
By tedious but direct calculations we find that

V// _ (ez 'v//)ez

€y =€ +¢ |c//| +0(8)7
v/ —(e;-v')e; 7
e, = —kej| +Te; +8[$] +o(e),
1 /! /! /
e, =e3+¢ Ee1 x [V/ — (e -v')ey] +V x eyt +o(e). (23)

Therefore, the curvature and torsion of the varied centroid line are
given by

Ke =@ €, =Kk +ce-V' +0(g),

’
es; v/
Te =€), - €3 =r+8:(Ke3+re1)-V’+ (3/<) }+o(s),

(24)

and henceforth the first variation of the strain energy with respect

to the centroid line parametrization is given by

dF[c+ ev, @; ¢
de

e=0

L
= / {[(EI3 cos? ¢ + EL sin” @)k — Elzkq cos gle, - v
0

+GJ(¢p' + T — to)|:(/<e3 +71e) -V + (e;l-(v”) ] _q.v}ds

L 1/ / e3-VH '
:f Me, - V' +T| (ke3 +tey) -V + e —q-vds,
0
(25)

where, for brevity, we have introduced quantities

M = (EL; cos? ¢ + EL sin? @)k —Elkgcosp, T =GJ (¢’ + T — Tp).
(26)
The physical meanings of scalar functions M, T will be explored

later (cf., (38)). By (20), we conclude that a minimizing pair (c, ¢)
of (19) necessarily satisfy that

/ 1
[Mey]” — [T(kes +1e;) + Ae] — |:£e3i| —q=0 on (0,L),

(27)

where A : (0,L) — R is the Lagrangian multiplier associated with
the constraint (22). Moreover, consider variations of relative twist
angle: ¢ — ¢ +€¢y. It is straightforward to find the associated
first variation of the free energy:

dF[c, ¢ +e¢q; o]
de

=0
L
= / {[ELs (—k cos @ + ko)k sin g + ELic? sin ¢ cos ¢
0
+ (@' + 1 — To)¢} }ds. (28)

Together with (27), by (20) we conclude that the Euler-Lagrange
equations associated with the variational principle (19) is given
by

T/ "
Me,|” — [T el —| — —-q=0
[Me,]” — [T(kes + Teq) + Aeq] [Ke3i| q=0, (29)

—T' 4+ Elz(—K cos ¢ + ko) k sing + ElLk? sing cos ¢ = 0,

which shall be satisfied by an equilibrium state (¢, ¢) on (0, L).
Supplemented with the boundary conditions (17) we can solve the
above differential equations for the unknown centroid line ¢ and
relative twist angle ¢. It is worthwhile to notice that the kine-
matic boundary conditions (17) for clamped supports are exactly
such that there is no boundary contribution for all admissible vari-
ations v and ¢4 in (20) when (25) and (28) are integrated by parts
for deriving the Euler-Lagrange Eq. (29).
Further, denote by

&t -
Q(sl)=/0 qs)ds. Q=Q.-e. G=Q & (i=123).
(30)

With respect to the frame {e;, e,, e3}, by (4) we can rewrite
Eq. (29) as

Mk +Tt+Q +A+V; =0,
!
M/+TK—T—02—V2=O,

Y Vse (0,L), 31
Mr—T;c—(Z) —Q;-V3=0, €(0.L) (31)

—T' + Els(—k cOS @ + ko)k Sing
+ ELk?singcosg =0

where V; =V -¢; and V € R? is a constant vector arising from in-
tegration. Note that V; generally depends on position since e; (i =
1,2, 3) vary along the space curve. In the Appendix, we compare
the above equilibrium equations with earlier works of Reissner
(1973), Simo (1985), and Simo and Vu-Quoc (1986), and conclude
that they are consistent.

The above variational framework can be applied to general
boundary conditions. A key advantage of the variational framework
lies in that it facilitates a systematic method of deriving consistent
boundary conditions which have inspired many discussions in the
literature. Besides the clamped boundary conditions, we consider
another two types of boundary conditions frequently encountered
in engineering applications.

Simple supports. By a curved beam with two ends simply sup-
ported, we mean the following kinematic boundary conditions (cf.,
(i) in (17)):

(i) €0) —co(0) =ug, ¢(L)—co(l) =uy.

(32)

The free energy of the system remains the same as in (18). To
conform with (32), we have v=0 at s =0 & L. Then the first vari-
ation of the free energy with respect to change of centroid line
¢ — ¢+ ¢ev and relative twist ¢ — ¢ + ¢y gives rise to (recall (25),
(26) and (28))
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dF[c+ev, @ + &¢q; o)

de £=0
:/L.v+~g01ds
0
E3~V” L

; (33)

T/
+[T +Me2-v’—?e3-v’+T<p1]
0

where and stand for the first and second equation on
the left hand side of (29), respectively. Since the values of ¢, V/
and v’ at the boundary s =0 &L can be independently assigned,
by (20) and (33) we conclude the following Neumann-type bound-
ary conditions (x is nonzero and finite at the two ends):

T=T'=0, M=0 at s=0&L. (34)

Replacing (ii) and (iii) of (17), the above boundary conditions con-
form with the notion of “simple supports”, i.e., they cannot provide
bending moment or twisting torque to the beam.

Cantilever. For a curved “cantilever”, we can apply a point force
at the free end:

(i) c—cp=c —cH=sinp—&,-e3=0 at s=0,
(i) A point “dead” force p acting on the free end s=L.  (35)

The free energy of the system shall include the potential energy
associated with the point force and is given by

L
Flc, ¢; col =Ue[c,<p;cO]—/O q-cds—p-c(l). (36)

By the principle of minimum free energy, the equilibrium state of
the beam shall be determined by minimizing the total free energy
subject to the kinematic constraints in (35)(i). By (25), (26) and
(28), we integrate by parts and obtain

dF[c+ev, ¢ + e@q; ¢
de =0

- [ [m1]) v+ [B12] guas

e . v/ T/
+ |:T3T + Me, V- ;93 ~V/+T(p1:|

s=L

(37)

T/ /
+ {[—e3 - Mez] +T(kes+71€1) — p] -V
K s=L
Therefore, we identify that (A again arises from the constraint (22)
as a Lagrange multiplier)
’

T
M := Me, — ?e3 +Teq,

TIT T/ /
P:=(A+Tt)e; — (M’ + P )ez + [(;) + Tk — M'L':Ie:), (38)
as the internal moment and force, respectively. Moreover, at the
absence of applied boundary moment and dead force p we shall
have M=0and P=p ats=1L, ie,

AN

>e3—p:0, (39)

which shall be supplemented to the kinematic boundary condi-
tions (35); at s = 0 for solving the Euler-Lagrange Eq. (31).

In summary, the boundary conditions for clamped support, sim-
ple support and free end are given by (17), (32) & (34), and (39),
respectively. Other types of boundary conditions may be similarly
discussed in our variational framework.

T:T/:O, M=0, )\.el—M/ez-f—(;

2.3. Kirchhoff’s helical solutions

The full geometrically nonlinear system (29) for curved beams
are not amenable to explicit solutions. Exceptions include the case

that the beam is initially straight, symmetric with equal bend-
ing stiffness in the two lateral directions and at the absence of
distributed load q. In this case, kg =19 =0, =1, =1, M = El«k,
T =GJ(¢’ + 1), and by (31) we obtain

Elk> +GJ(¢' + T)T+ A +V; =0,
(Elx) + %G]((p’ +1)T -V, =0,

’ 40
GJ«H)] o “o

EIKT—G]((p’—i—t)K—[ -

G +71)=T,

where V e R3 and Ty are integration constants. For a trial solution
of helix with constant «, constant torsion 7, and parametrization
as

c(¢') = (acosaé’, asinat’, bg"),

2, o2 K _75)
a=((K"+T ,a=—,b=—),
CRIGERS b=

the Frenet frame is given by

e; = (—aasinaé!, aa cosaél, b),
e, = (—cosaé' —sina&'.0), e;=e; xe,.

Therefore, if V= (0,0, V;) is a constant vector along z-axis, then

TV, KV,
Vi = V== Vo = V=0 Vo = V= 2=
1=€ o 2=6 ) 3 =83 o

happen to be constant as well. By inspection, we see that (40) are
satisfied if

—(EIk?> +Tyt) =Vi + A,  Elkt — Tok = Va. (41)

For given V, and Ty, we can solve the above equations for « and t;
the loading conditions at the ends and Lagrangian multiplier A can
then be determined by (39). We remark that the helical solution
(41) is slightly more general than the classic Kirchhoff’s solution
(Love, 1944, pg. 414) since it allows a twisting torque Ty at the
ends.

2.4. Linearized theory

The nonlinear boundary value problem formed by the differen-
tial system (29) and one of the boundary conditions: (i) clamped
supports (17), (ii) simple supports (32) and (34), or (iii) cantilever
(35); and (39), for the centroid line ¢ and relative twist angle
¢, though can be used to determine the large-deformation, large-
twist and small strain equilibria, are not amenable to theoretical
analysis. For many applications of practical importance, it may suf-
fice to consider small strain and small relative angle of twist in the
sense that

)| ~e <1, |eG)|~n«l, (42)

where u(s) = c¢(s) — cg(s) is the displacement. Moreover, we may
assume the scaling relationship

g=n. (43)

We remark that the scaling assumptions (42) and (43) are not the
only possible asymptotic behavior of the minimizer (or minimizing
sequence); the validity of these assumptions shall be a posteriori
checked for self-consistency. In Section 3.1 we will present theories
of different asymptotic behaviors than (42) and (43).

By (42), (43) and direct calculation we find that (cf. (24))

K =kKo+ Ak +0(g), T=719+AT+0(¢),

& “”)/. (44)

Ak =8 -u”, AT := (ko€3 + T7081) - U + ( p
0

Please cite this article as: L. Liu, N. Lu, Variational formulations, instabilities and critical loadings of space curved beams, International
Journal of Solids and Structures (2016), http://dx.doi.org/10.1016/j.ijsolstr.2016.02.032



http://dx.doi.org/10.1016/j.ijsolstr.2016.02.032

JID: SAS

[m5G;March 22, 2016;12:31]

L. Liu, N. Lu/International Journal of Solids and Structures 000 (2016) 1-13 7

Let u = u;&; + uy&, + u3é3. By the Frenet Eq. (1) we have
= (U} — Kkouz)@ + (U + KolUy — Tous)€; + (Uj + U Tp) &3,
" = [—ko (U + Koty — Tou3) &

+ [uy + (kou1 — Tou3)" — To(u3 + Uz 7o) €,

+ [u5 + (u2m0)" + o (U + Kolt1 — Toui3) €3, (45)
where we have noticed that
u} — kot =0 whence [co(s) +u(s)] -[co(s) +u(s)] =1.

(46)

Then by (44) the change of curvature and torsion are given by
Ak = Ul + (koly — Touz)' — To(Uh + Uz Tp),

/
AT = K()(U3+U2T0)+{f[u +(U2'L'0) +t0(u2+1c0u1 — 'L'()Ug)]}

(47)

Inserting (44) into (16), (29) and keeping only the leading-order
terms, we rewrite the strain energy (16) as:

El El

Uele, ¢; €] = fo { > (8K + = (ko) + —](w +AT)? }

+ o(g?). (48)
As in (26) and with an abuse of notation, we denote the bending
moment and torque by
M =ELak, T=GJ(@ +AT). (49)
Then upon repeating the standard variational calculation for the
strain energy (48), we obtain the linearized differential equations

for the displacement u(s), twist angle ¢(s) and Lagrangian multi-
plier A(s) (cf. (7) and (31)):

MKO+TT()+Q]+)\.+‘71=O,

Tty ~
M’+K—:°—Q2—V2=O,

i

’

M‘L’o—TKo—(Z) —@,—\7320,
0

Vse(0,L), (50)

~T'+ELk3p =0

where V; =V - & and V € R3 are integration constants.

In particular, for planar curved beams with 75 =0 and at the
absence of distributed load q (i.e., §; = 0), the strain energy (48)
can be rewritten as

Ue[u,go;c()]:/ {El3lu + (kou)'1* +

G u// /2
+—J[(p +K0u3+< )] }ds (51)
Ko
and the differential system (50) can be rewritten as (recall that
M = EI; (uf) + (kouq)’) and T = GJ (¢’ + kouf + %))

2 (kog)?

Mko+ A +V; =0,
M -V, =0,

/ !
Tk — <T> =0, Vse(0.D). (52)
Ko

~T' +ELk2¢ =0

2.5. Explicit solutions for linearized circular beams

For explicit solutions, we consider a planar semi-circle beam
co(s) = Kl—o(cos Ko S,sinkg s) (0 <s <L =m/kg) of constant curva-
ture ko and uniform rectangular cross section area (see Fig. 2(a)):

Ao(E) = (%8 + %8 82 (-9 2 e (-0 1)

It is clear that

€, = (—sinkg s,coskg s,0),

&, = —(coskg s,Sinkg 5,0), & =(0,0,1),
and the moment of inertia tensor is given by
hw3 h3w
1= diagls,bL], L=—, = —. 53
iag(h, k], I P 2= (53)
Noticing that V; =V . &, = —koV-& = —koV;, we see that (52)
implies
M’ +k2M =i, M=ELU)+«2uy),
T/ 1"
— T)Y =0
<K0> + («oT) , (54)

u//

~T' +Ebi}e =0, T=G@. ¢=¢+kKous+ ;73
0

We can solve the linear differential system (54) or (52) for the un-
known displacement u and relative twist angle ¢ upon specifying
the boundary conditions. Below we separately consider three dif-

ferent boundary conditions as discussed in Section 2.2.

1. Clamped supports. If (17) is enforced with ug = §é&,/2 =
—884/2, u; = 58,/2 = 5&,/2, we have

u1(0) =ui (L) =0, u(0) =up(L) =6/2,
u3(0) =us3(L) =0

uh(0) =uj (O) = u2 (L) =uf(L) =

kop(0) +u5(0) =0, kop(L) +uj (L) =0,
We remark that the mixed boundary conditions for ¢ and u5 in
(55)3 follow from part (iii) of (17) ie, ¢ =& -e3+o(e), and
(in account of (42)) e3 =& + {;- 5 &1 x [u” — (& -u")&] +u’ x
&} +o(e):

(55)

1. . ~ -
g= & (& x[u' - (@& u)&]} = —u3/Ko.

0
It is not hard to verify that the boundary value problem
formed by (54) and (55) uniquely admits the following planar
solution:

Uy (s) = 820 + 8 280 COS KoS + 8% sin koS
_WCOSKOS’ (p:u3:0’

N
8
u1(s)=/0 Ko (O)de, (1) =0 =8 =06 (56)

The associated critical free energy is given by

Flu, ¢; ¢o]
:/()L{—(u2+lcouz)2 =2 (Ko@) + ](co +Ko u3+g)2}

= mEhKo(ﬁKO)z. (57)

2. Simple supports. If (32) is enforced with uy = 6€,/2 = —§é,/2,
u; = 58,/2 = 6&;/2 (see Fig. 3(b)), by (34) we have boundary
conditions (55)1, (55)3, and

- u// -
<p”:<<p+/<0u3+,<3> =0, R=uj+Kju, =0,
0

ats=0&L. (58)

It is not hard to verify that the boundary value problem formed
y (54) and (58) uniquely admits the following planar solu-
tion:

Uy (s) = %[(n — 2K0oS) COS koS — 2 Sin kS|,
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) [ [ ||

8/2 3/2 8/2
(a) Clamped supports

(b) Simple supports

i

6/2

(c) Cantilever

Fig. 3. Typical boundary conditions for curved space beams: (a) clamped supports with prescribed boundary displacements; (b) simple supports with prescribed boundary
displacements; (c) cantilever with a point force on the free end. Dashed line: reference undeformed curved beam; solid line: deformed beam.

u(s) = fo KoUa (£)dt, @ =u3=0. (59)

and the associated critical free energy is given by
Flu, ¢: ¢o] = Ue[u, ¢; co]

_ (‘B

=) 3

3. Cantilever. If (35) is enforced with p = py€, = —poéx (see

Fig. 3(c)), by (39) we have the following boundary conditions:
u1(0) =u(0)  u5(0) =u5(0) =0, Ko9(0) +u5(0) =0,

1
(Ll’zl + KguZ)z = EEI3K0(5K’0)2.

=u3(0) =0,
P=¢"=9¢" k=uj+Kkjuy=0, &'+ f =0
+Kk2@' =0, ats=1L.

(60)

It is not hard to verify that the boundary value problem
formed by (54) and (58) uniquely admits the following planar
solution:

Do
2EI3k2

S
uy(s) = f KoUa (£)dt, @ =u3=0.
0

1 .
Uu(s) = — (5COS KoS — P sinkyg S),

(61)

and the associated critical free energy is given by
__Th
4EI3K3'

Flu, ¢; o] = Ue[u, ¢; €] — pouz (L) =

3. Instabilities of curved beams
3.1. Nonlinear asymptotic theories

A fully linearized boundary value problems for planar curved
beam admits a unique planar solution. This can be seen from the
linearized strain energy functional (51) where the out-of-plane dis-
placement and twist is not coupled with in-plane displacement
and always cost positive energy. This is however inconsistent with
experimental observations: thin curved beams in fact twist and
bend out-of-plane even if all loadings are in-plane as shown in
Fig. 1. Moreover, upon releasing external loadings, the beam re-
covers the original undeformed geometry, which implies that the
strain (12) in the beam remains to be small so that the linear
stress-strain relation (13) is applicable.

To capture the possible out-of-plane displacement and twist of
a planar beam, we shall come back to our original nonlinear strain
energy functional (16). Simplified theories can be obtained for two
cases that will be discussed separately as follows.

3.1.1. Ribbon-like beams

If the beam is very thin, from (53) we see that I3/I, = (w/h)% =
1/f > 1 and hence the beam would prefer out-of-plane bending
than in-plane bending. In regard of the nonlinear strain energy
functional (16), in the limit of 7 — O for fixed El,, the energies of

bending about e3-axis and twisting around eq-axis being finite im-
plies that the curve ¢ and relative twist angle ¢ shall satisfy the
constraints:

—KkcosQ+kg=0, ¢ +7—-179=0 on (0,L), (62)

and minimize the (I'-limit) free energy functional with strain en-
ergy given by

LEl .

72 (k sin@)?ds.

U, ¢ co] = /0 (63)

By the method of Lagrange’s multipliers and at the absence of ex-
ternal loading (i.e., q = 0), the Euler-Lagrange’s equations associ-
ated with (63), (62) and (22) are given by (cf., (29))

[(k sin® @ — Ajcosg)es]” —[Az(kes +Ter) + Aeq]

"
A
o] o

—AL + Ak sing + k2 sing cosg =0,

(64)

where, EIl; A1 and El, A, are the Lagrange’s multipliers associated
with the two equations in (62), respectively. The above asymptotic
limit of (sequence of) solutions at # — 0 may be rigorously justi-
fied by the I'-convergence method (Maso, 1993) which will not be
addressed here.

3.1.2. Beams with moderately small out-of-plane displacement and
twist

It is not hard to see that the planar solutions for an originally
planar beam, e.g., (56), is the global minimizer of the fully lin-
earized free energy (i.e., the strain energy is given by (48)). There-
fore, the out-of-plane and twist solutions, if exist, must scale dif-
ferently from (42) and (43). Also, in applications it is desirable to
precisely relate the critical loading with the geometry of the beam,
e.g., the ratio 7. In this regard the asymptotic theory (62) and (63)
will not be useful. Nevertheless, for planar beams and keeping only
the leading order we can rewrite (62) as

"

1 u\’
”/2/+(Kou1)/—jKo§02%0, (0/+Kou,3+(,72> ~ 0,

which hints the following scaling relations for small strain and
twist:

(65)

U ~uy~e <1, @(s)~uy~n~egl2 (66)

Again we emphasize that the above scaling relation shall be a pos-
teriori verified upon solutions to the simplified problem.

We now compute the strain energy to the leading order accord-
ing to the scaling relation (66). First of all, to keep s — ¢y (s) + u(s)
as an arc-length parametrization, we shall require

[co(s) +u(s)] - [co(s) +u(s)]

=14 [2(t) — kottz) + (uy)*] +0(e) =1, (67)
and hence
1
Uy — Kol + i(ug)2 =0. (68)
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Repeating calculations as for (44), by (66) we find that (recall that
u=u€; + Uy, + u3éy)

. 1 . - -
e =& — j(u§,)2e1 + (U + Koty )&; + U583 +0(e),

1 - - -
u = —j(u;)zel + (U + Koty )8 + us€3 + 0(¢),

=
Il

[—Ko(uh + kouy) — u5us &

1 N N
+ [u5 + (kottr)" = 5k (u5)?1&; + ujé; + o(e),

Koéz-&—u” ~ 1 ” ~ 1N =
e=—"" =@+ —[u’ - (& -u")é]+o(e),
2= T ] Ko[ (& -u")é&] +o(e)

- 1. ~ o ~
e; =&+ {K—el x [u” — (& -u")é] +u’ x ez} +o(e),

0

N 1
K = |Kko +u”| = ko + [Uj + (kour) — ilco(ué)zl +o(e),

AN

T = Kol + (%) +0(¢). (69)

Therefore, up to the order of O(¢2) the strain energy (16) is given
by
L(EL ., EI G, .
Uelu, ¢; ¢o] = / [—%2 + =2 (kop)* + —J(«)/)z},
o L2 2 2
1"

~ 3
© =@+ Kousz + 7K0-
(70)

Taking into account of the constraint (68) by a Lagrangian mul-
tiplier, we can find the Euler-Lagrange equations associated with
the principle of minimum free energy as well as the Neumann-
type boundary conditions at the ends.

In particular, for the semi-circle planar beam discussed in
Section 2.5 with k¢ being constant, by (68) we have

N 1 1
R =uj + (kou)' — EKO(ué)z - ifco(pz,

o, 1 1
g =ul + (kow)' — §Ko(u§)2 - jkowz

1
= U + kg — Ko (U5)? — SKo@”, (71)

and the Euler-Lagrange equations are given by

EI3I€” + EI3K§IZ — koA =0,
"

u
~GJ¢" +Ebkie — EBkKkop =0, @ =@+ koUs + /73 (72)
0

GI@"" + K2GI@" — kR[2ELRU,Y + ko (Mt} =0,

where A is the Lagrangian multiplier associated with the constraint
(68); the first variation with respect to u; implies that A’ =0, i.e,,
A is a constant.

The nonlinear differential system (72) characterizes the asymp-
totic behaviors of the curved beam in the scaling regime (66).
Upon specifying the boundary conditions, we can in principle solve
(72) and determine the critical loadings when the system bifur-
cates between two or more equilibria. The precise procedure is,
however, not so easy to explicitly carry out because of the non-
linearity. Below we present approximate solutions and associated
criteria for instabilities based on some simple trial solutions.

3.2. Trial solutions and critical loadings

Since explicit solutions to the nonlinear differential system (72)
are generally impossible, we employ the method of trial solutions
to obtain insights on the behaviors of the system, particularly,
the critical loadings such that the planar solutions presented in
Section 2.5 are no longer globally stable.

The method of trial solutions is in the same vein as the Saint-
Venant's semi-inverse method (Love, 1944). Instead of directly

solving the nonlinear differential system (72), we conjecture trial
solutions, typically a special ansatz on the kinematic variables, and
then insert this ansatz into the free energy functional. Upon eval-
uating the free energy functional (or integral) we obtain the free
energy in algebraic terms of adjustable coefficients of the ansatz.
We finally minimize this algebraic form of free energy with respect
to these adjustable coefficients and obtain the “optimal” solutions
to our problem within the functional form as prescribed by the
ansatz. In this method, it is clear that the quality of the final solu-
tion is dictated by the quality of trial solutions, i.e., the ansatz. The
best trial solution is clearly the actual solution to the original non-
linear system, e.g., (72). Predictions based on this method could be
trivial or even erroneous if the quality of the trial solutions dete-
riorates on one hand, and on the other hand explicit predictions
might be impossible if the ansatz is too general to have a simple
and explicit parametrization. Therefore, the implementation of this
approach for a particular problem can be delicate.

Based on the numerical results and experimental observations,
we will consider the following simple trial solutions such that
©(s) = Ag +Aq sinks + A, CoS kg S,

u//
P(s) = K—Z + koli3 + ¢ = By sinkg s,

. 1
R(s) =t + kduy — o (uf)? — iKofpz

= Kko[Co + C; sinkgs 4 C; cos kgs], (73)

where A;, B;, G; (i=0,1,2) are adjustable dimensionless parame-
ters. Inserting (73) into (70), we obtain the strain energy in terms
of these adjustable parameters as (7 := I3/, and 7 := GJ/EL,)

EI R T T
210 [r(ncg +4GC+ 3G+ 563)

Ue(Ai. Bi.G) = 5

+ A] + 4AcAr + %A? + %A% + f%B%]. (74)
In addition, to be qualified as trial solutions, (u, ¢) satisfying (73)
shall further conform with the boundary conditions which place a
number of restrictions on the adjustable parameters A;, B;, C; (i =
0.1, 2). Finally, we minimize the free energy against A;, B;, G; (i =
0, 1, 2) and within these restrictions. If the obtained minimum free
energy is lower than that of the planar solution, we conclude that
the trial out-of-plane and twist solutions are more favorable; the
planar solutions are unstable or metastable.
We now present the instability criteria for the semi-circular
arches in Fig. 2(a) based on the trial solution satisfying (73). Again,
we have three separate cases.*

1. Clamped supports. If boundary conditions (17) is enforced with
Uy =08,/2 = —6€/2, u, = 6€,/2 = 5&/2 and at the absence of
distributed force q = 0, the variational principle for an equilib-
rium can be written as

min{F[u, ¢; ¢g] = U, = (70) : u, ¢ satisfies (55) and (68)}.
(75)

First, by (71) we notice that for circular arc with constant x

the energy functional (70) does not explicitly depend on uj.

Therefore, we can solve (68) for u; and the boundary condi-
tions 17 (0) = uq(L) = 0 is equivalent to

L

f [260ltz — (u})2]ds = O, (76)
0

Solving (73), for us and applying the boundary conditions

u3(0) = u3(L) = u4(0) = uj(L) = 0. we find that

0

4A
Al_Bl:_7a A2=0, (77)

4 MATHEMATICA NOTEBOOKS for subsequent calculations are available at the au-
thor’s (L.L.) homepage http://math.rutgers.edu/11502/Curvedbeams/.
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and
Ao .

us(s) = ﬁ[_” + (T — 2K S) COS KkgS + 2 sinkps]. (78)
0

Solving (73)3 for u, and applying the constraint (76), the
boundary conditions u;(0) = uy(L) = % and 1} (0) = u)(L) =0,
we solve for Cy, Cq, G, in terms of Ay, By. Functions u and ¢
obtained in this way clearly satisfy all of the boundary condi-
tions (55) and constraint (68), and are henceforth qualified as
trial solutions.

To proceed, by (74) we evaluate the free energy of this trial so-
lution in terms of adjustable parameters Ag, B; and obtain

El, [t .. 0ot
Flu g o] = Uelu. g eo] = 52 [ 172 + (kog)? + (@)

T
=2 8513K0(5K0)2 + Q2(Ao. B1) + Qu(Ag. B1),
(79)
where Q4 is a quartic monomial,
Q> = Elko[(a1A + a12A0B1 + 22B7)7 (ko)
+ bAj + by (1+7)B.
ap; ~ 0.14, a3 ~043, ay, ~-0.56, b]] ~ 0.30,

We remark that the above constants aj, by, independent of
cross-sectional properties of the beam, admit closed-form ex-
pressions which are too long to be presented here. From the
above expression of free energy, we see that if

- w +(1.94 + 1.69F + 0.2072)1/2  or

0.447 — 0.23
<—

Ko(S
(81)
Kol — (1.94 + 1.697 + 0.2072) /2,

then Q, +Q4 <0 for some infinitesimal Ag, By. Therefore, the
free energy (79) is less than (57) of the planar solution, mean-
ing that the planar solution (56) is no longer the global mini-
mizer (or loses its global stability) if the applied displacement
exceeds the critical displacements defined by (81).

. Simple supports. If the boundary conditions (32) is enforced
with Uy = 5@2/2 = (Séx/Z, u = 8@2/2 = —(Séx/z, and at the ab-
sence of distributed force q = 0, the variational principle for the
equilibrium state can be written as

min{F[u, ¢; ¢o] = U, = (70) : u, ¢ satisfies (55) and (68)}.
(82)

For simplicity, we further restrict ourselves to trial solutions
(73) with Ay =B; =0,A; = —4Ag/7, i.e. u3 is given by (78). It
is clear that the trial functions (73) satisfy u3(0) = u3(L) = 0.
Moreover, solving (73)3 for u, and applying the boundary con-
ditions u,(0) = up (L) = % and constraint (76) yield

(64187243 200

G=6=0 G= 277 P

and henceforth, the free energy of this trial solution is given
by

LrEL . EIl
Flu, ; ¢o] = Ue[u, ¢; ¢o] = /O [73/<2 + 72(160(/))2]
1 ) 2 -8 )
= —Elko(8ko)* + [-BElzko(kod) + ElykolAG
T 2
+ aELKoAd. (83)

where @ ~ 0.014 and S ~ 0.136. From the above equation
we see that if

m2-8 . (2 -8)L
El 0, L., Kgb > ~——=,
o 2Kp < 1.e., Koo > 2/371_13
(84)
the planar solution is no longer the global minimizer of the free

energy. Moreover, the constant Ay can be determined by miniz-
ing the right hand side of (79) with respect to Ay and we ob-

tain
_ 1 (2 - 8)I,11/?
(A0) min = [m[lg’fos - W] .

3. Cantilever. If (35) is enforced with p = po€, = pg€x at x =L and
zero distributed force q = 0, by (36) and (70) we write the free
energy functional as

—BELko (ko) +

Flc, ¢; co]
L EL 1 EI
= / {*3[“/2/ + KUy — ko (Uy)? — SK0P? ) + =2 (ko)?
) 2 2
G u”/
+7J((p’ + Kolly + K—Z)Z}ds — poua(L). (85)

and the variational principle for an equilibrium can be written
as

min{F[u, ¢; ¢o] : u, ¢ satisfies (60);}. (86)

For simplicity, we again restrict ourselves to trial solutions (73)
with Ay = By = 0. We first solve (73), for us, ie.,

{ug + KUz = —kop(s)  on (0.L), (87)

u3(0) = u}(0) =0,

and then solve (73); for u,. In account of the boundary con-

dition u,(0) = u5(0) =0, &'(L) = —é’T‘; and constraint (76), we

find that

Do

G=G=0, G= .
0=0 1 Elsi2
Evaluation the free energy (85) in terms of our trial solution,

we obtain

F(Ao.A1; po)
_wpt | po(—126A2 — 63mAcA; +4A2 — 9 2A2)
- 4ELk} 54k

1+ ElKo a2 | gacA, + mA?).

4
Therefore, if
EL,54k3 (27t A% + 8AoA; + TA?)
4(126A2% + 63 AgA; — 4A% + 9T 2A2)
= 0.479ELk}
x (the minimum is achieved if Ay ~ —3.7149 # 0), (88)

po>min{ A, Ay ER}

the planar solution is no longer the global minimizer of the free
energy; any perturbation of form (87) with A; ~ —-3.7145 # 0
has lower free energy.

We remark that the criteria for instability obtained by consid-
ering trial solutions (cf., (73)) shall be regarded as “upper bounds”
of what would be obtained if (72) is exactly solved. Moreover, re-
stricting to trial solutions (73) may miss many modes of instability
and even give spurious predictions. For example, for simple sup-
ports, the selected trial solutions cannot capture the instability that
occurs under tension. A full understanding of instability of curved
beams inevitably requires exact solutions to the nonlinear system
(72) with suitable boundary conditions.
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4. Conclusion and discussion

We present a variational framework for curved beams subjected
to a variety of boundary conditions. We show that the variational
formulation is consistent with the classic field equations which, to
some extent, is not obvious at all. Mathematical boundary condi-
tions are systematically derived for clamped supports, simple sup-
ports and free ends. Further, explicit solutions for linearized theory
and explicit solutions to instabilities and critical loadings are ob-
tained for semi-circular arches. We anticipate that the variational
theories, stability analysis and explicit solutions will give us im-
portant insight on designing stretchable electronic structures and
predictive modeling of biological macromolecules.

A final remark is in order here regarding the application of the
present formulation to curved beams of less regularity. First of
all, if the centroid curve ¢y = cp(s) is continuously differentiable
and piecewisely of C3-class with finitely many singular points, the
Euler-Lagrange Eq. (29) (or (31)) shall hold on each C? (open) in-
terval. Meanwhile, the displacement and rigid rotation defined by
(5) and (7) shall remain continuous at each singular point, i.e.,
[c]l = 0 and [Q]] = 0, where [[(-)]] denotes the jump of (-). By (5)-
(7) and in terms of kinematic variables (c, ¢; cg), we have the fol-
lowing interfacial conditions at each singular point:

[cf=0. [é&- -f]=0 (i,j=1,23).
In addition, by similar calculations as in (37) we have ((38))
[P]=0. [M] =0,

which may be interpreted as the force and moment balance of
an infinitesimal segment containing the singular point. For curved
beams that are not continuously differentiable with cusp singular-
ities, extension at the singularities would be important and shall
be addressed using the strain energy (14).
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Appendix. Field-equation approach to a geometrically
nonlinear beam theory.

In the framework of Cosserat theory, we describe the kinemat-
ics of the rod by the deformation of the centroid line c: (0,L) —
R3 and the orthonormal basis vectors f;: (0,L) - R3 (i=1,2,3)
attached to a material cross section with f; being the unit normal.
In general, the basis vectors f; may be independent of the centroid
line c. Let e; = ¢//|c/| be the unit tangential vector along the cen-
troid line and define constants €2;; such that

f; = Q,‘jfj, ie., Qij = f; . fj.
Since  f;-f;=4;; implies that 0= (f;-f) = f;+f.f =
Qi +Qj;, le, Qj is skew-symmetric, we set (wq,w;, ®3) =

(923, —913, le), i.e., w; = %gl]kf; 'fk' and find that

fi=wxf (i=123). (89)

The extension of the centroid line can be described by

1

s=yEH = [ el

In a field-equation approach to an extensible elastic rod, the inter-
nal Piola-Kirchhoff cross-sectional moment vector M : (0,L) — R3

and force P: (0,L) — R3 are primitive concepts. Under the appli-
cation of an external (dead) distributed load q : (0,L) — R3, by the
balances of linear and angular momenta we obtain (Reissner, 1973;
Su et al., 2012)

P+q=0 M+ xP=0 on (0L). (90)
Constitutive relations between kinematic variables and internal
moment and force (M, P) are necessary to close the system. A com-
mon choice is to postulate the strain (or internal) energy of the rod
is given by, e.g.,

L

1
Udlc, fl,fz,fg]:/ W<§|c’—f1 2,w>d5, (91)
0

where R x R3 5 (a,b) — W(a, b) is the strain energy density func-
tion (Simo, 1985). We remark that the general form of strain en-
ergy proposed in Simo (1985) has to be of the above form in order
to be consistent with the requirement of frame indifference, i.e., is
invariant with respect to an overall rigid motion of the body. It has
been proposed that the constitutive relations can be given by Simo

(1985)
aw aw
P= = —f)H)W,, M= —
ac/ ( W 0w

where W, and Wy, represent partial derivatives of the strain energy
density function W = W (a, b). Egs. (90) and (92) compose the gov-
erning field equations for curved beams.

We now show that Eqs. (90) and (92) are indeed consistent
with our variational approach. In particular, both (90) and (92)
follow as the Euler-Lagrange equations to the principle of min-
imum free energy if one admits that the strain energy is given
by (91). As an example, for clamped boundary conditions at the
two ends and under the application of the (dead) distributed load
q: (0,L) - R3, we see the free energy of the system is given by

= W (92)

L
F[c,f1,f2,f3]:/ [W(%|c’—f1|2,w>—q-c]ds.
0

By the principle of minimum free energy, an equilibrium state nec-
essarily satisfies that

d
%F[c+su, fi +evy, £ +evs, 3 + evs]

=0 (93)

e=0

for all smooth perturbations u,v; : (0,L) — R3 satisfying that u =
vi=w =v]=u"=v/=0at ' =0&L and that

(fi+evy) - (fj+evj) =d;j+0(e) =
v, =& x f; for some @ : (0,L) - R>.

By (93), integrating by parts we find that

[t - fowr —ai o

[-Wy) — 1 x (¢ — )W, ]dET =0, (94)
where we have used the identity (Steigmann and Faulkner, 1993)
(Wb)i%&‘jk[((;’ x£) £+ - (@ x fi)]
= %(Wb)igijk((b/ xf;) £, = %(Wb)igijkd’/ - (f; x £)
= S D - Enfn) = & - W,

Since u,®: (0,L) — R3 are arbitrary and independent of each
other, by (94) we obtain the following Euler-Lagrangian equations
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for an equilibrium state:

(¢ —f)Wa] +q =0, (W) +f1 x (¢ —f)Wa =0 on (0,L).

(95)

Comparing (95) with (90), we justify the constitutive relation (92)
by noticing

f1 XP=f1X(C,—fl)Wa=f1XC/Wa=C,XP.

If we impose the Bernoulli-Euler kinematics, we have the con-
straint ¢’ = y’f;. Then by the method of Lagrange’s multiplier we
find the following necessary conditions for an equilibrium state:

[fiWa(y'—=1)+A] +q=0,

Wy)" +fi x [fiWa(y' = 1) +¥'A] =0 on (0,L).

Comparing the above equation with (90), we justify the second of
(92) and identify P = f{W,(y’ — 1) + A by noticing

f] X [f]Wa()// — 1) + ]//X] = )//f1 xA=¢c xP.

If the rod is further assumed to be inextensible, i.e., ¢’ =f; and
y’ = 1, the variational principle (93) implies

V+q=0 W) +c xA=0 on (0,L), (96)
which implies P = A and the second of (92).

Applying the above framework to the scenario discussed
in Section 2, we identify the orthonormal frame ({f;,f,, f3} =

Q{é;.é,, &3}, and by (5), (7) and Frenet equation, find that

) = k (cos pf, — sin f3),
f;z = —K Cos of; + (/(p’ + 7)f3, (97)
fi =k sinpf; — (¢’ + T)f>.

By (89), the above equation implies the curvature vector w :
(0,L) — R3 is given by

w=wf;, (0, w,w3):= (@ +71,ksinQ,Kkcosy).

Therefore, comparing (16) and (91) we identify the strain energy
density function as

J El

G EI
W(@) = (@1 = 9)? + 52 (@2~ 09)? + 5 (@3 - )2,

where (0%, 09, 09) = (19.0. k). By (92) and (96), we can write
the equilibrium equation in terms of curvature vector @ as

P+q=0 on (0,L),
M +f; xP=0 on (0,L),

aw 0 0 0
M= % = GJ(wq — M1 +EL(w> —a)z)fz + Elz (w3 —61)3)f3.

(98)
From (98),, we have
fi x[M +f; xP]=f; xM +£f;(P-f;)-P=0, f-M =0.
In account of (98);, we have

{[n xM +f;(P-f) +q=0 on (0,L),

fi- M =0 on (0,L).

Inserting the last of (98) into the above equation, upon tedious al-
gebraic calculations we can show the above differential system is
equivalent to the Euler-Lagrangian Eq. (29). The advantage of the
variational formulation lies in the explicit parametrization of the
centroid line and relative twist and the systematic derivation of
boundary conditions.
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