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Throughout the past decade, the use of mobile sensors to monitor
human physiology has emerged as a promising strategy for en-
couraging healthy behaviors, assisting self-management of
chronic disease, reducing health problems, decreasing the num-
ber of healthcare visits and facilitating beneficial interventions to
improve well-being.! Devices which facilitate periodic and/or
continuous monitoring of key physiological parameters such as
heart rate, blood pressure and glucose levels have been growing
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in popularity, and extensive efforts have been dedicated to the
development of bioinformatic approaches for their automated
analysis and interpretation.”

Older adults constitute a particularly suitable target
population for mobile monitoring due to their greater sus-
ceptibility to disease, higher risk for complications fol-
lowing clinical interventions, reduced mobility, and nu-
merous other reasons.” For example, individuals over the
age of 65 are considerably more susceptible to traumatic
brain injury (TBI) than their younger counterparts partly
because senior citizens have more limited motor ability
and poorer physical balance. Similarly, many older adults
live unassisted and are frequently unable to seek immedi-
ate medical care for their acute clinical needs following a
TBI, leading to higher risks for sequelae. These factors
increase the risk for the accelerated degradation of neuro-
logical function and for lasting vulnerability to co-mor-
bidities.* Even in relatively mild cases, the diminished
ability of the aging brain to repair itself is paralleled by
inadequate neuroimmune responses to injury, by greater
susceptibility to adverse neurovascular events and by a
higher risk for post-traumatic epileptogenesis.” As a re-
sult, up to two thirds of ambulatory mTBI patients devel-
op lasting neural and cognitive deficits whose onset might

2 Zheng, Y. L., Ding, X. R., Poon, C. C., Lo, B. P., Zhang, H., Zhou, X. L.,
etal. (2014). Unobtrusive sensing and wearable devices for health informatics.
IEEE Transactions on Biomedical Engineering, 61(5), 1538—1554.

3Ni Scanaill, C., Carew, S., Barralon, P., Noury, N., D, L., & GM, L. (2006). A
review of approaches to mobility telemonitoring of the elderly in their living
environment. Annals of Biomedical Engineering, 34(4), 547-563.

4 Harvey, L. A., & Close, J. C. (2012). Traumatic brain injury in older adults:
characteristics, causes and consequences. Injury, 43(11), 1821-1826.

5 Stocchetti, N., Paterno, R., Citerio, G., Beretta, L., & Colombo, A. (2012).
Traumatic brain injury in an aging population. Journal of Neurotrauma, 29(6),
1119-1125.

@ Springer


http://orcid.org/0000-0002-9254-9388
mailto:irimia@usc.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-017-9335-z&domain=pdf

228

Neuroinform (2017) 15:227-230

be delayed or prevented if the risk for sequelae could be
assessed on a patient-tailored basis early after injury.®

Two important goals of mTBI care involve understanding
(1) how brain activity patterns change after trauma and (2)
how such changes may reflect true injury severity and clinical
outcome. Though significant, such goals remain elusive partly
due to the difficulty, cost and logistic challenges of monitoring
brain activity over extended periods of time. The overwhelm-
ing majority of mTBI patients are released from hospital on
the day of injury, and the feasibility of comprehensive, in-
depth clinical follow-ups in the subacute stage of injury re-
mains very limited. Because rigorous characterization of what
happens to the concussed brain in the days and weeks after
injury is often lacking, unraveling the effects of mTBI upon
neurological health and upon the subsequent recovery or deg-
radation of brain function remains problematic. Compounding
these challenges are the high attrition rates of studies involv-
ing older victims of TBL.’

Though accelerometers have been used to detect falls in
older adults,® mobile solutions for brain wave monitoring
and for their automatic analysis in ambulatory mTBI patients
are currently lacking, as is the neuroinformatic infrastructure
required to accommodate such solutions. Nevertheless, ad-
vances such as these could (1) improve TBI morbidity rates,
(2) decrease health care costs, (3) guide clinical decisions on
treatment type and aggressiveness,”'° (4) facilitate the analy-
sis and interpretation of neurophysiological signals acquired
using mobile devices and (5) assist the process of obtaining
novel insights into post-traumatic pathophysiology. Cloud
computing, because of its ability to enable ubiquitous, on-
demand, scalable processing of large datasets, is ideally posi-
tioned to assist mobile monitoring technologies, to streamline
their analysis and to facilitate their interpretation.

Many electrophysiological monitoring methods target
heart function because cardiac electrical activity and its path-
ophysiology are relatively well understood; for example, the
electrocardiogram (ECQG) is relatively easy to record and in-
terpret in a clinical setting. By contrast, effective and afford-
able systems for monitoring brain activity are considerably
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more challenging to design, implement, validate or commer-
cialize. Electroencephalography (EEG) is by far the most
common method for measuring brain activity non-invasively.
This technique measures subtle voltage fluctuations (10—
100 nV in amplitude) which occur across the scalp and are
primarily due to the flow of ionic currents across the mem-
branes of pyramidal neurons in the neocortex.!’ Unlike elec-
trocorticography (ECoG, which requires electrodes to be
placed directly on the surface of the brain), EEG is widely
regarded as a low-cost, portable, and non-invasive means to
record brain activity and to monitor pathophysiology. Because
the electroencephalogram (EEG) can be far more difficult to
interpret, there has been far less progress toward the imple-
mentation of adequate informatic approaches for the manage-
ment, analysis, curation and publication of data acquired using
EEG systems. Nevertheless, mobile monitoring of brain func-
tion and the development of suitable strategies for on-demand
analysis of brain signals using ubiquitous resources such as
cloud computing should be prioritized particularly in the el-
derly, whose brains are at higher risk for neurological distur-
bances compared to other age groups.

Conventional EEG recordings are obtained by affixing indi-
vidual, rigid electrodes onto the scalp using conductive gel after
skin abrasion to reduce electrode-skin contact impedance. For
decades, scalp EEG has suffered from limitations such as low
spatial resolution, poor SNR, time-consuming and obstructive
electrode connections, and short measurement times due to gel
drying out. Additional disadvantages of conventional EEG in-
volve the incompatibility between human skin—which is soft,
curvilinear, and deformable—and the hard, planar, and rigid elec-
trodes and electronics. The electrode cables of conventional EEG
systems encumber patients and their movement produces motion
artefacts which degrade signal quality and which render long-
term data acquisition both challenging and impractical. For rea-
sons such as these, future sensor arrays and bioinformatics solu-
tions for EEG should incorporate state-of-the-art advances in
electrode design and wireless technology. One solution to this
could involve the integration of EEG with an epidermal electrode
system (EES); this increasingly-popular technology involves a
scalable array of low-cost, fully-wireless, epidermal, bipolar
EEG sensors equipped with miniaturized printed circuit boards
(PCBs) for long-term, high-fidelity data acquisition and wireless
transmission to mobile phones.'*'* Because skin sensitivity and
susceptibility to bruises increases with age, such a system could
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be more adequate for older adults because it can greatly reduce
the risk of epidermal irritation and scarring.

Though most applications of EEG involve the acquisition
and analysis of sensor-space brain wave signals, the inverse
localization of neural electrical activity can be of additional
use because it allows the electrical currents which generate the
EEG to be mapped on the cortical surface. This can provide
valuable neuroanatomic localization, with important conse-
quences for the ability to identify brain regions at risk for
concussion-related sequelae such as atrophy, loss of neuronal
connectivity and pathophysiology.'*'>!® Thus, instead of
implementing informatics solutions which limit themselves
to facilitating temporal analysis of EEG voltages, future infor-
mation processing streams should aim to accommodate spa-
tiotemporal analysis of electrical currents which are inversely
mapped over the surface of the brain.'” Such an approach is
much more powerful than simply analyzing EEG traces be-
cause it can facilitate the identification of specific gyri and
sulci where electrical activity originates. This can allow clini-
cians to determine which cortical structures are affected by
pathophysiology and then to identify specific brain functions
which are localized in these structures and which could be at
high risk for decline after mTBIL.

A key feature of acute mTBI pathophysiology is that much
of it can be transient, meaning that abnormal brain waves
which are indicative of future functional decline can occur
spontaneously and relatively infrequently.'® This implies that
EEG monitoring of mTBI patients may need to be performed
continuously over the span of several hours, days or even
weeks. As previously suggested, however, monitoring brain
activity in ambulatory patients over extended periods of time
is associated with substantial challenges related to the record-
ing, wireless transmission, storage, archiving, consolidation,
classification, analysis and interpretation of large and
information-rich spatiotemporal series. Continuous EEG
monitoring can thus easily become a prohibitively-difficult
big data problem which cloud computing is ideally positioned
to address. When confronted with temporally-long datasets,
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the clinical practice of inspecting raw EEG traces visually to
identify neuropathophysiology becomes prohibitively time-
consuming and, ultimately, unfeasible. Consequently, auto-
mated methods for identifying abnormal activity in such data
are greatly needed, as are informatics methodologies for the
archival, curation and rapid analysis of large neurophysiolog-
ical datasets acquired from ambulatory patients. Because of
the temporal length and informational complexity of EEG
time series acquired continuously using mobile devices, ad-
vanced methods for time series analysis need to be developed
and incorporated into the architecture of neuroinformatics sys-
tems to identify abnormal brain activity automatically. Such
big data science solutions should be scalable as a function of
acquisition time and cohort size, they must be computationally
efficient, cost-effective and compatible with clinicians’ needs
and expectations.

The development of next-generation EEG neuroinformatics
will likely require new ways to conceptualize big data, to ex-
tract meaningful information from it and to synthesize this in-
formation in clinically-useful ways. Recent advances in ma-
chine learning (ML) and topological data analysis (TDA) can
likely provide the much-needed ability to analyze very large
datasets of neurophysiological recordings and to identify tran-
sient pathophysiology in high-dimensional, high-velocity spa-
tiotemporal datasets of neurophysiological origin. The devel-
opment of ML and TDA approaches which are task-driven, on-
demand or on-line could address critical gaps in existing
methods for the classification of high-velocity data streams.
Particularly novel and innovative are joint learning approaches
to feature representation and classification of spatiotemporal
data series because such methods have offered higher repro-
ducibility than conventional methods in fields as varied as im-
age segmentation'® and gene expression classification.”

EEG and EEG-derived data are strongly temporal or even
spatiotemporal in the case of inversely-localized neurophysi-
ological signals. Because these properties can benefit our un-
derstanding of neurobiology and neuropathophysiology, the
structure and topology which are intrinsic to such data should
be leveraged rather than ignored. The application of ML to
EEG high-velocity data streams could lead to the development
of entirely new branches of ML, and this could have substan-
tial impact not only upon mobile health data analytics but also
upon ML in general. While such innovations could benefit the
state of the art in the informatics and analysis of neurophysi-
ological signals, there is an even broader set of applications
which could benefit from these methodologies. Specifically,
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electrophysiological data are typical of the characteristics ex-
hibited by data streams measured in a wide variety of mobile
health devices, since these data are not only (A) large from the
standpoint of their space complexity, but also (B) high in
velocity, meaning that data are collected rapidly in real time.
Thus, the development of techniques for analyzing this type of
mobile-health data is appealing not only in the context of our
own area of interest, but may also offer viable options for
realizing the true potential for on-demand analysis of large
datasets with temporally- and spatially-informative properties.
Incidentally, prior informatics efforts indicate that cloud com-
puting is well suited for the compression and subsequent anal-
ysis of large spatiotemporal datasets.”’

An acute challenge of contemporary neurophysiological
data science and bioinformatics is that the datasets involved
are often voluminous, structurally complex, high-dimensional
and noisy, both stochastically and deterministically. TDA—
whose potential and value to data scientists has started to be
appreciated only within the past several years—is ideally suit-
ed for processing such data because this family of analysis
methods can identify significant data clusters hierarchically
and can allow one to apply a divide-and-conquer approach
to big data analysis.”> TDA can identify prominent geometric
features, infer local and global properties and explore data
properties in high dimensions without the absolute need for
dimensionality reduction. Understanding data topology can
substantially assist supervised learning, particularly for time-
series anomaly detection from EEG. These advantages are
likely to be substantial when analyzing the post-traumatic
EEG of older adults due to the potential complexity of anom-
alous electrophysiological manifestations observed in this
high-risk cohort.”?

In conclusion, thanks to recent advances in mobile sensor
technology and spatiotemporal data analysis,
neuroinformaticians are now well positioned to lead the way
in formulating effective approaches to assist the task of mon-
itoring brain activity using wireless devices and cloud com-
puting. Whereas such monitoring could, in principle, be useful
to a substantial cross-section of the TBI patient population,
older victims of mTBI are particularly likely to benefit from

21 Yang, C., Zhang, X. Y., Zhong, C. M., Liu, C., Pei, J., Ramamohanarao, K.,
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this type of technology due to their greater vulnerability to
functional decline after mTBI. Future efforts should be dedi-
cated to the design and implementation of efficient
neuroinformatics approaches which can facilitate the classifi-
cation of EEG data and, by extension, that of large,
information-rich spatiotemporal series. Because current solu-
tions to this challenging problem lag very much behind our
current ability to collect high-velocity, long-duration data
streams, advances in this area of informatics would fill a crit-
ical gap in the array of methods which are necessary for con-
tinuously monitoring the brain activity of mTBI patients and
for clinical neuroelectrophysiology in general. When assisted
by cloud computing, the information technology which could
result from such efforts would offer promising new ways to
leverage the richness of biomedical big data for personalized
neurology.
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