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Abstract 

 

Analysis of Piezoelectric Thin Film Energy Harvester  

for Biomedical Application 

 

Taewoo Ha, M.S.E. 

The University of Texas at Austin, 2014 

 

Supervisors:  John X.J. Zhang, Nanshu Lu 

 

The effect of the thickness ratio variation of a unimorph piezoelectric energy 

harvester to the electric output under bending condition is studied. The harvester forms a 

blanket with PVDF-TrFE as an energy harvesting layer and Kapton film used as a 

substrate. The thickness of Kapton is fixed as 25um while the thickness of PVDF-TrFE is 

varied from 0.5 um to 20um. The voltage, charge and energy output are estimated by 

numerical and theoretical method under three different bending conditions with fair 

biomedical model. For all conditions, the Young’s modulus ratio changes the optimal 

point of all outputs. 

The effect of surface patterning is studied with regard to the rib-base thickness 

ratio and the rib-spacing ratio. The voltage and electric energy output falls with the 

decrease of the base-rib thickness ratio. The charge output rises with the decrease of the 

base-rib thickness ratio. However, the charge increasing rate is smaller than the voltage 

decreasing rate. Hence, the electric energy decreasing rate is mostly affected by the 
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voltage decreasing rate. By changing rib-spacing ratio, the electric energy output of the 

grated structure can be enhanced. If the piezo-substrate thickness ratio is larger than a 

specific value, the grated structure is more efficient than the planar structure. A recent 

study from Ran Liu group asserts that the piezoelectric effect becomes electrostatically 

stronger at the singularity point of the nano imprinted structure where the bending 

induced stress is also concentrated. Thereby, the grated structure would enhance the 

electric energy output of the energy harvester.  

Overall, this research will contribute to design optimal thin film energy harvester 

for biomedical application. 
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Chapter 1 : Introduction 

In recent decades, the energy efficiency of electronic devices is significantly 

improved and biomedical electronic devices such as pacemakers and defibrillators as well. 

Still, these devices require external batteries to be activated. However, the external 

batteries have comparably large volume than devices and regular exchange is required 

due to lifetime issue. Furthermore, some batteries may have a safety issue in certain 

circumstances.  

Biomechanical energy harvesters create electric energy from activities of daily 

living [1]. The Sources of energy is the vibration of organs such as muscle, lung, and 

heart. The amount of generated energy from the biomechanical energy harvesting device 

is about mW, which is very small but can alternate conventional batteries for any 

biomedical and biomechanical devices.  

 Briefly there are two categories in biomechanical energy harvesting device. One 

is extracorporeal energy harvesting from muscular movement and the other is 

intracorporeal energy harvesting from organ motion. Examples of extracorporeal energy 

harvesting devices are described in the Figure 1.1. The Figure 1.1 a) shows an energy 

harvesting design with shoes. Placing an electromechanical transducer at the bottom of 

shoes, the mechanical potential energy of human feet is converted to usable electric 

energy[2]. The second example described in the Figure 1.1 b) is a device collecting 

energy from the angular displacement of an ankle[3]. The converted electric energy can 

be used to activate any wearable electronic devices. Not only from feet and ankles, any 
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movement or displacement of human body can be a source of the energy with the energy 

harvesting device.  

 

Figure 1.1: Extracorporeal energy harvesting devices. a) Energy harvesting device is 

placed under a shoe and collect energy from walking. b) Energy harvesting 

from angular displacement of the human ankle [2, 3].  

 

 Unlike extracorporeal devices, intracorporeal devices can be applied to limited 

situations. There are few moving organs which can be an energy source such as lung and 

heart, excluding intramuscular implementation. Also the material used in the device 

should be non-toxic. The stiffness of the device is also critical since most organs are very 

soft. If a stiff device is attached to the organs, it may inhibit the movement of the organs. 

The size of device could be an issue since space between organs is restricted.  

The Figure 1.2 introduces two intracorporeal devices. The diagram in the Figure 

1.2 a) depicts that the energy harvesting implementation can substitute the external 

battery for pacemakers [4]. The picture in the Figure 1.2 b) shows real implementation of 
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the energy harvesting device including micro battery [5]. The collected energy is stored 

into the micro battery so that the energy can be used in specific situations. 

 

 

Figure 1.2: Intracorporeal energy harvesting devices. a) The pacemaker battery is no 

longer required. The collected and stored energy from the cardiac vibration 

will activate the pacemaker. b) Practical energy harvesting device attached 

on the epicardiac surface [4, 5].  

 

A key of the electromechanical energy transduce is the material property called 

piezoelectricity. Some materials have unique crystal structure and dipoles are 

spontaneously created in the materials due to stress-induced crystal deformation. These 

materials are called piezoelectric materials. The principles of the piezoelectricity and the 

kinds of piezoelectric material will be introduced in the chapter 2.  

For the biomechanical energy harvesting especially for the intracorporeal devices, 

the mechanical movement is mostly bending because of the shape of organs and its 

stiffness. Therefore, the mechanical analysis of the film energy harvesting device under 

bending condition is important to find the optimal device structure, which is discussed in 
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the chapter 3. Theoretical and numerical approach proves that there is an optimal 

thickness ratio between the piezoelectric material and the substrate material under 

bending condition when two materials form a blanket structure.  

 The following chapter will introduce additional structure variation to control the 

electric output of the device. The grated structure is applied to the top surface of the 

piezoelectric material and the output is numerically analyzed. The analysis asserts that 

the grated structure geometry variation affects the electric output and it is better than the 

planar structure in some cases.  
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Chapter 2 : Piezoelectric Energy Harvesting 

In this chapter, general concepts of the piezoelectricity and the working 

mechanism of the piezoelectric energy harvester are covered. First the piezoelectric effect 

is described and the piezoelectric coupling coefficients are introduced in Section 2.1. 

Section 2.1 summarizes different types of piezoelectric materials and their different 

applications. Section 2.3 focuses on energy harvesters based on piezoelectric materials.  

2.1 PIEZOELECTRIC EFFECT 

 

Figure 2.1: A part of Heckmann’s diagram for piezoelectric properties. 

 

The origin of the word “piezo” is the Greek, which means “to press.” This 

phenomenon was discovered by Curie [6]. The piezoelectricity can be defined as a direct 
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conversion between the electric energy and mechanical energy, as described in the Figure 

2.1 [7]. Since then, many piezoelectric materials are discovered and used in various 

applications such as sensors, actuators, sonar, microphones and most famously, lighters. 

The piezoelectricity in polymers discovered by Kawai broadens the application area 

where the mechanical flexibility is required [8]. In recent decades, the polymer-based 

flexible piezoelectric energy harvesting devices are developed in many companies and 

laboratories. One example is the energy harvesting from organs, as depicted in the 

introduction chapter; the device attached to organs requires high flexibility.  

 

 

Figure 2.2: a) The direct piezoelectric effect and b) the inverse piezoelectric effect. 
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The piezoelectric effect is bidirectional, as depicted in the Figure 2.2. The 

diagram a) in the Figure 2.2 is the direct piezoelectric effect. As can be seen, the 

polarization is induced by the external tension; hence, the voltage or charge is generated 

through electrodes. The direct piezoelectric effect can be written as 

 
TP dT  (2.1)  

Where 
TP  is the piezoelectric polarization induced by the stress T  and d is the 

piezoelectric coupling coefficient. This direct effect can be used as a sensor or an energy 

generator [9].  

The diagram below is the inverse piezoelectric effect. The interaction between 

internal polarization tendency and the external electric field from the voltage source 

deforms the shape of the piezoelectric material. Similarly above, the strain forced by the 

electric field can be formulated as 

 t

E inS d E  (2.2)  

where 
ES  is the strain induced by the electric field observed in the piezoelectric material

inE  and td  is the inverse piezoelectric coupling coefficient. This inverse piezoelectric 

effect can be applied to any actuator application. The inverse piezoelectric effect is highly 

frequency-dependent; electrically activated sonar or sound devices are using this effect 

[10].  

The assumption behind Equation (2.1) is there is no external electric field. To 

generalize the problem, we should define the general electric displacement field for 
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piezoelectric materials. The electrostatic definition of the electric displacement field 

induced by the external electric field is given as 

 
0 0 0ex r in in ED E E E P        (2.3)  

where D is the electric displacement field, 
exE  is the external electric field, 

inE  is the 

electric field observed in the dielectric material, 
EP  is the polarization induced by the 

external electric field,
r  is the relative permittivity of the piezoelectric material and

0 is 

the free space permittivity of which the value is 128.854 10 (F / m) [11]. In general 

electrostatics, the Equation (2.3) denotes the dielectric effect to the electric field. If the 

external electric field is applied to the dielectric material, the magnitude of electric field 

decreases because some of the electric field forms polarization.  

 

Figure 2.3: The relation among the electric displacement field, electric field and 

polarization. 

 

 Combining the Equation (2.1) and (2.3), the general definition of electric 

displacement for piezoelectric materials is 

 
0 0

T

in E T r inD E P P E dT        (2.4)  
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where T

r is the relative permittivity under constant stress. Note, the polarization induced 

by the external electric field
EP  and the polarization induced by the stress 

TP  are 

different [Ref]. The Equation (2.4) asserts that the electric displacement field of a 

piezoelectric material can be created by the external electric field or the external 

mechanical stimulus. If both are applied, the total polarization in the piezoelectric 

material is the sum of the 
EP  and 

TP , assuming there is no thermal loss.  

 In a similar manner, the general elastic property of the piezoelectric material can 

be also formulated. From the Hooke’s Law, the relation between the stress and the strain 

is 

 
TS sT  (2.5)  

where 
TS  is the strain derived from the stress and Es  is the compliance coefficient  

[Ref]. The total strain caused by the stress and the electric field derived from the 

Equation (2.2) and the (2.5) is 

 E t

T E inS S S s T d E     (2.6)  

where Es denotes the elastic compliance coefficient under constant electric field. The 

Equation (2.6) describes the strain of a piezoelectric material can be caused by the 

external mechanical stimulus or the external electric field. For the notation unification, 

the electric field term in the Equation (2.4) and (2.6) is specified with the notation
inE , 

which is the electric field observed in the piezoelectric material. The relation between the 

external electric field and the internal electric field is
ex r inE E . The electric field 

notation will be unified as E meaning the internal electric field from now on. 
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The pole direction of the polarization depends on the force direction since the 

piezoelectric materials are basically anisotropic [7]. This directional nature of 

piezoelectric materials can be controlled mostly through the pretreatment process called 

poling process [8]. To describe the anisotropic property analytically, the Equation (2.4) 

and (2.6) are usually described as tensor.  

 

Figure 2.4: Tensor directions in 1-6 numbering system[12].  

 

For convenience, redefinition of the coordinate expression is required; x-x: 11, y-

y: 22, z-z: 33, x-y: 12, x-z: 13, y-z: 23. Usually, the numberings are further simplified as 

described in the Figure 2.4; 11→1, 22→2, 33→3, 23→4, 13→5, 12→6 [12]. This 

numbering system will be used for the simplicity and the unification from now on. 

Following the direction numbering notation above, the Equation (2.4) and (2.6) become  
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2.2 PIEZOELECTRIC MATERIALS 

There are many kinds of piezoelectric materials and those materials have different 

piezoelectric properties. Since applications are under various conditions, required 

parameters in each application are also different. For example, high dielectric constant 

and mechanical strength are essential to speakers. For biomedical applications, high 
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flexibility is one of the most important properties. Table 2.1 shows the piezoelectric 

properties of classified materials in terms of the molecular structure.  

 

Molecular 

Structures 

Materials 33 31( )d d

[pC/N] 

33g

[
310 /Vm N

] 

Elastic 

Stiffness 

[GPa] 

Relative 

Dielectric 

Constant 

Single Crystal 

Quartz  

ZnO  

CdS  

3LiTiO  

5-12 

(2-7) 

57.8 120-200 ~10 

Polycrystalline 

PZTs  

3BaTiO  

Perovskites  

60~120 

(-40~110) 

12.6-42 63 800-1200 

Polymer 

PVDF  

P(VDF-TrFE)  

TGS  

-30~-35 

(10~25) 

380 3 8-12 

Table 2.1: Piezoelectric material properties in terms of molecular structure [7, 13-15]. 

 

Most single crystal materials such as Quartz, Rochelle salt and tourmaline are 

naturally created piezoelectric materials. Quartz(
2SiO ) structure is in periodic tetrahedron 

shape, oxygen atoms around a silicon atom [16]. Molecular dipoles caused by electrically 

dissimilar atoms are balanced due to the symmetric structure. However, the deformation 
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of the structure caused by external mechanical stimuli breaks the balance; hence 

spontaneous polarizations are generated inside material, which is direct piezoelectric 

effect, and vice versa. Zinc Oxide (ZnO) is one of the commonly used synthetic ceramic 

single crystal materials. ZnO is optically transparent and has wurtzite crystal structure as 

described in the Figure 2.5 a). The origin of the piezoelectricity of ZnO despite the low 

dielectric property is its non-centrosymmetric structure, as depicted in the Figure 2.5 b). 

The piezoelectric performance principle is similar to Quartz, as shown in the Figure 2.5 

c). The deposition of ZnO is well defined using physical vapor deposition and chemical 

vapor deposition. Usually single crystal piezoelectric materials have low piezoelectric 

coupling property and their elastic stiffness is relatively large. Therefore, single crystal 

piezoelectric materials are limited in terms of usable power [15].  
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Figure 2.5: Schematics of the piezoelectricity of Zinc Oxide. a) Crystal structure of ZnO 

(wurtzite ZnO unit cell). b) Hexagonal structure (O-terminated wurtzite ZnO 

surface) c) Direct piezoelectric principle of ZnO [17].  

 

Polycrystalline piezoelectric materials are commonly used materials in many 

piezoelectric applications. It has fairly high piezoelectric coefficient and dielectric 

constant. The elastic stiffness is also usually smaller than single crystal materials unless 

the structure is very thin. Because of its comparable advantage, polycrystalline 
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piezoelectric materials such as PZTs, 
3CaTiO  and 

3BaTiO  are widely used for 

actuator applications. 

The Figure 2.6 shows traditional perovskite crystal structure. Most polycrystalline 

piezoelectric materials have perovskite structure. The diagram in the Figure 2.6 a) shows 

the symmetric cube state of the peroveskite piezoelectric material structure. As the 

temperature below the Curie point, the lattice becomes asymmetric like the diagram in 

the Figure 2.6 b). The dipole moment caused by this asymmetry is the origin of the 

piezoelectricity of the perovskite structure.  

 

Figure 2.6: Crystal structure of a piezoelectric ceramic. a) Above a Curie point 

temperature. b) Below the Curie point. [15]. 

 

The direction of dipoles in a polycrystalline material is random.  Thus, dipoles 

mostly canceled out in the material. By applying high voltage across the material, those 

dipoles are aligned and the elongated polarization tendency remains permanently, as 

described in the Figure 2.7.  
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Figure 2.7: Polarizing of a piezoelectric ceramic. a) Randomly oriented dipoles. b) 

Aligned dipoles under strong electric field. c) Permanently elongated 

polarization tendency [15]. 

 

Although polycrystalline piezoelectric materials are comparably flexible with 

respect to single crystal piezoelectric materials, those materials are hardly applicable to 

biomedical applications since organs are much softer. Even if the low stiffness is able to 

be achieved by thin film structure, the lead components in most polycrystalline 

piezoelectric materials are toxic. Piezoelectric polymer materials such as polyvinylidene 

fluoride (PVDF) are adequate substitute materials. Although piezoelectric polymers 

usually have piezoelectric coefficient, those materials are used in many biomedical 

applications because of the call for the flexibility and biomedical stability. Furthermore, 

the voltage capability is much higher than other materials, which can be used as sensor 

switch applications where the current is less important [18]. The piezoelectricity of 

PVDF is dissimilar with respect to the chain phase. The α-phase has no dipole moment 

since dipoles are locally compensated. On the contrary, the β-phase which hydrogen 

atoms and fluorine atoms are parallel in longitudinal direction has significant dipole 

moment. The β-phase PVDF can be artificially formed through thermal and electrical 
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poling process. Polymer blends such as polyvinylidene fluoride-trifluoroethylene (PVDF-

TrFE) or polyvinylidene fluoride-chlolofluoroethylene (PVDF-CFE) increase ratio of the 

β-phase among chains [19]. 

 

 

Figure 2.8: PVDF polymer chain phase.  a) α-phase with no dipole and b) β-phase with 

dipole moment [20]. 

 

2.3 PIEZOELECTRIC ENERGY HARVESTING CIRCUIT 

As the electric power output of piezoelectric energy harvesters is low and instant, 

the storage circuit is desired. The generated output by the energy harvester is basically 

AC output. To conserve the energy, the output should be DC; therefore, the full bridge 

rectifier is required to unify the sign of the AC output. Then, the rectified output is stored 

into the capacitor; the energy stored in the capacitor can be used as a DC source later. 

The Figure 2.9 and the Figure 2.10 describe a simple design of the piezoelectric energy 

harvesting circuit and its output signal, respectively[21]. 
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Figure 2.9. A design of the piezoelectric energy harvesting circuit. 

 

Figure 2.10. The electric output signal of the piezoelectric energy harvesting circuit. 
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Chapter 3 : Thickness Optimization of Flexible PVDF-TrFE Unimorph 

for Biomedical Energy Harvesting 

A blanket structure is the lamination of a blanket piezoelectric layer on a blanket 

flexible polymer substrate; for example PVDF-TrFE on Kapton. When the unimorph 

bends, the piezoelectric PVDF layer deforms and generates electrical power. The voltage 

and power output depends on the thickness of the PVDF but the relation might not be 

monotonic. Therefore the goal of this chapter is to establish a deterministic 

electromechanical model for the PVDF unimorph where the relation between. First the 

mechanical analysis of the structure is covered, focusing on the stress derivation in the 

pure bending condition. Then the polarization induced from the stress derived from the 

previous section is analyzed, which eventually forms the charge. Using general 

electrostatic theory, the voltage, charge and electric energy are derived. Next two sections 

cover the thickness optimization under the moment controlled condition and curvature 

controlled condition. Both sections are under the pure bending condition. Fifth section 

shows the feasibility of the pure bending condition by comparing it to the practical load 

condition. The cantilever bending is a very practical and common bending condition with 

the real load. In this case, uniform loading on the top surface is given. Last section 

depicts the effect of the Young’s modulus ratio on the thickness optimization.  

 

3.1 MECHANICAL ANALYSIS 

 Piezoelectric polarization is derived from stress distribution in a piezoelectric 

material. The stress analysis in a structure, therefore, is essential to estimate final electric 
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output. Since our device will be attached to the epicardiac surface, which is relatively soft 

compared to the structure, the situation can be simplified to the classical beam bending 

theory. The classical beam bending theory, also known as the Euler-Bernoulli beam 

theory, describes a relationship between the deflection of a beam and the applied load to 

the beam[22]. 

 2 2 q
w

Y I
  


 (3.1)  

The Equation (3.1) is called Euler-Bernoulli Equation, where w is the neutral 

surface deflection vector of the structure in z direction, q is the load applied and Y I  is 

the flexural rigidity of the structure. From this equation, we can find the curvature of the 

beam bending and then find the longitudinal strain distribution in the structure. Once the 

longitudinal strain distribution is defined, the longitudinal stress distribution also can be 

described easily. Since pure bending condition postulates no load is applied to the 

structure, the load term q becomes zero. Then assuming the solution of the Equation (3.1) 

is polynomial, the deflection vetor w becomes 

 2 3

1 2 3 4w A A x A x A x     (3.2)  

where iA  is the coefficient of each term. The variable x is the longitudinal direction of 

the beam structure. Now we have to define each coefficient with boundary condition. The 

moment is defined as  

 2

2

w
M YI

x

 
   

 
 (3.3)  
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If we consider the moment is uniform in longitudinal direction over the structure, 

we can apply the following boundary condition 

 
0,

2

L
x M M    (3.4)  

where L is the length of the structure and M is the moment, so that 4A  becomes zero. 

We also assume that there is no displacement in transverse direction (z-direction) at the 

middle of the structure 

 
0, 0

w
x w

x


  


 (3.5)  

so that 1A  and 2A  becomes zero. Thus, the deflection vector w becomes 
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2

M
w x

YI
   (3.6)  

The negative sign means the bending is downward. Now the curvature of the beam can be 

calculated considering the slope of a beam in x-axis direction, which can be described as 

 
( )

dw
x

dx
   (3.7)  

where  is the bending angle of the neutral surface. Since the length of infinitesimal x 

component is the product of radius and the angle, the curvature, which is the reciprocal of 

the radius, can be written as  

 2

2

1

x

d d w

r dx dx


     (3.8)  

where  represents the curvature and xr  is the radius of the bending. From the 

Equation (3.6) and (3.8) the curvature can be rewritten as 



 22 

 
0M

YI
   (3.9)  

 

Figure 3.1: Simple bending schematics. a) Simple beam structure schematic before 

bending. b) Moment applied simple beam structure bending. 

 

The simple bending is described in Figure 3.1 above. For the derivation of the 

strain, let us consider a segment at a distance   from the bottom of the beam structure. 

For convenience sake,   is defined as a new z-directional coordinate, assuming the x 

axis exists at the bottom surface of the structure. As depicted, the length before bending 

is AB  while the length after bending is ' 'A B . Assuming the angle between ' and 'A B  

is infinitesimal; we can express the length AB  and ' 'A B  as xAB r d  and

' ' ( ( ))xA B r h d     , where h  is the z-direction distance between the neutral 

surface and the bottom surface of the beam when x-axis lies on the bottom surface of the 

beam. The neutral surface, or the neutral axis, is the longitudinal cross section of a beam 

where longitudinal strain or stress becomes zero. The neutral axis lies on the geometric 
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centroid if the structure is ideally symmetric and isotropic [23]. The longitudinal strain

1S , which is defined as the ratio of deformation, thereby, can be expressed as 

 
1 1

' '
( )

x

A B AB h
S h

rAB


 

 
     (3.10)  

The Equations from (3.1) to (3.10) are for a beam composed of a single material. 

In our application, however, is a blanket structure as can be seen in Figure 3.2 below. For 

the detailed analysis, a longitudinal section of the structure will be used, as described in 

the Figure 3.3. 

 

Figure 3.2: Blanket structure schematics. 
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Figure 3.3: A longitudinal section of the blanket structure. 

 

To analyze the blanket structure in terms of the classical beam theory, first we 

have to calculate the z-direction position of the neutral axis of the structure. As 

mentioned above, the neutral axis lies on the geometric centroid if the structure is 

geometrically and materially symmetric and isotropic. In the blanket structure, on the 

other hand, the position of the neutral axis depends on the ratio of the thickness and 

Young’s modulus between two materials.  

Assuming the two layers share the same value of Poisson’s ratio , the neutral axis 

of the bilayer laminate is given by  

 2

1

1 2
,

2 (1 )
h Neural Axis

 

 

  
   


 (3.11)  

where 
1 2/h h   is the thickness ratio, 1 2/Y Y   is the modulus ratio, and 

2(1 ), 1,2n nY Y n    [24] is the plane strain modulus.Y is derived from the plane 

stress condition where   is the Poisson’s ratio and Y is the material's Young's modulus. 

In our case, we can use the plane stress condition since z-direction stress in the thin film 

structure is ignorable, which postulation is called Kirchhoff’s hypothesis [25]. Also, for 
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2D analysis on xz plane, we can assume y-direction strain 2S is negligible, which is the 

plane strain condition[26]. Therefore, the postulated conditions to this blanket structure 

are the plane stress condition in z direction and the plane strain condition in y direction. 

Originally, the stress-strain compliance matrix and stiffness matrix for an isotropic 

material are given by 
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(3.13)  

where / (1 )(1 2 )Y Y     , T is the stress and S is the strain. In our case, as mentioned 

above, xz plane is the only plane we are interested, thereby, 2S is considered to be 

negligible, including y-direction related shear strains 4 6S and S . Consequently, the 

stress components y-direction included can be also negligible. Then the simplified 2D 

stiffness matrix and the compliance matrix become 
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(3.15)  

where / 2(1 )G Y    [26]. Herein, z direction stress is zero with the thin film 

postulation given above. In addition, for pure bending case, the shear strain 5S and the 

shear stress 5T  is negligible [25]. Furthermore, these shear strain and stress are 

dimensionally irrelevant to the piezoelectric coupling coefficient in this case [27]. 

Therefore, the remained longitudinal x-direction stress 1T can be expressed with two strain 

terms, 1S  and 3S , and vice versa.  

 
1 1 3(1 )T YS YS     (3.16)  

 2

1 1

(1 )
S T

Y


  (3.17)  

 
3 1

(1 )
S T

Y

 
   (3.18)  

Arranging Equations (3.16) to (3.18) in terms of 1S and substituting (3.10) to 1S , 

the longitudinal stress 1T  can be expressed in  , 
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1 1( ) , 1,2nnT h Y n     (3.19)  

where n represents the materials; 1 is PVDF-TrFE and 2 is Kapton substrate. If the range 

of   is 
2 1 2h h h   , then n is intuitively 1. The Equation (3.19) shows that the stress 

above the neutral axis is positive while the stress below the neutral axis is negative. In 

mechanics, the positive stress means tension whereas the negative stress means 

compression [22]. Furthermore, the magnitude of the stress varies with respect to the 

transverse distance between an arbitrary point and the neutral axis. The further the 

arbitrary point locates from the neutral axis, the larger the magnitude of the stress 

becomes. The Figure 3.4 below depicts the Equation (3.19).  

 

Figure 3.4: The stress distribution of the blanket structure. 

 

The term nY explains that the stress distribution may be changed within different 

materials, while the strain is continuous regardless of the material [22]. In our case, for 

example, the increment of the stress in PVDF-TrFE will be larger than that of the stress 

in Kapton. In COMSOL simulation, the stress gap at the boundary of two materials and 

the slope difference in two different material regions reflect the relation between the 

Young’s modulus and the stress, as seen in the Figure 3.5 below.  
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Figure 3.5: Longitudinal stress distribution and the neutral axis location within the 

blanket structure. (PVDF-TrFE thickness = 10um) 

 

The Figure 3.6 shows the simulation result of the longitudinal and transverse 

stress. The stress tensor in transverse direction is relatively negligible compared to the 

stress tensor in longitudinal direction, which is obvious that the simulation follows the 

thin film postulation. The magnitude of the tensional maximum stress at PVDF-TrFE is 

slightly larger than that of the compressional maximum stress at Kapton, as expected.  



 29 

 

Figure 3.6: COMSOL simulation stress distribution a) stress tensor x-x direction (
1T ) and 

b) stress tensor z-z direction (
3T ). (PVDF-TrFE thickness=10um) 

 

The ratio between 1S and 3S  can be derived by substituting the Equation (3.19) 

into (3.17) and (3.18). 

 
3 1

(1 )
S S




 


 (3.20)  

This relation can be observed in the simulation result, as described in the Figure 3.7 

below. Assuming the Poisson’s ratio of both materials is equal to 0.34[28, 29], the 

theoretical ratio between the stress tensors is 0.515 . In the simulation results, the ratio of 

the maximum tension or compression strain between two different tensors is also almost
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0.515 , which shows that the simulation result is well matched to the theoretical 

computation.  

 

Figure 3.7: Simulation strain distribution a) strain tensor x-x direction (
1S ) and b) strain 

tensor z-z direction (
3S ). (PVDF-TrFE thickness=10um) 

 

The curvature term  in the Equation (3.19) denotes that the stress is 

manipulated by the curvature. In usual situation, it is true that the variation of the 

curvature could induce the longitudinal stress in bending. For instance, the output of an 

energy harvesting device attached to a wrist may depend on the degree of the curvature, 

regardless of the device structure parameter. In other words, wrist can generate any 

dependent force or moment to achieve the desired curvature, if the material stiffness of 
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the device is reasonable. This statement can be clearly explained with the Equation (3.9). 

When the curvature term   at the left is fixed, the moment term M at the right will be 

changed with different structures since the structure property term, flexural rigidity YI, 

varies. In our application, however, the curvature – moment relation should be 

reconsidered. Unlike the wrist, the human heart or lung is not controlled by the curvature 

but the moment since the mechanical energy generated by those organs are usually 

limited. In this reason, it is reasonable to assume that the moment is constant regardless 

of the device structure parameter. In this case, the curvature term in the Equation (3.9) 

changes with different structures while the moment term is constant. Then the Equation 

(3.19) becomes  

 
0

1 1

2

( ) , 1,2
n

n

MY
T h n

IY
    (3.21)  

The Y in the Equation (3.9) becomes 2Y  with the plane stress assumption that transverse 

stress is negligible. For convenience, the Young’s modulus of the substrate is set as a 

standard for the flexural rigidity and the second moment of inertia, as described in the 

Figure 3.8. 
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Figure 3.8: The postulation behind the second moment of inertia calculation of the 

blanket structure. 

 

To calculate the second moment of inertia, the equivalent area method is applied 

[30]. The equivalent area method enables the analysis of a composite beam of which the 

cross section is rectangular as a single material beam of which the cross section is T-

shaped. 

Using this method, the second moment of inertia I of the blanket structure for the cross-

section on y-z plane, is given as 

 3 3
2 21 1 2 2

1 2 1 2 1( ) ( )
12 2 12 2

h h h h
I W h h h h h

 
         

 
 (3.22)  

where W is the width of the structure[30].  

Now we have to establish an arbitrary constant moment generated by a human 

heart. Considering the human heart as a sphere, the average radius of the human heart is 
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approximately 5cm [31]. The radius changes with respect to the cardiac cycle. The 

cardiac cycle has two periods; the period refilling blood is called systole whereas the 

period relaxing and preparing next systole is called diastole [32]. Intuitively, the radius is 

maximum during the diastole and minimum during the systole. Based on a study which 

has the data of epicardiac transverse strain, the average maximum and minimum strain is 

approximately 5%, as described in Figure 3.9 a) [33]. Using this information with our 

structure parameters, the angular displacement and eventually, the moment can be 

calculated.   

 

Figure 3.9: a) Simple geometric epicardiac model. 5.25cm for the maximum radius at 

diastole and 4.75cm for the minimum radius at systole. b) Transverse 

section analysis of the epicardiac strain.  

 

From the Figure 3.2, the structure length L is given as 30mm. The angular 

difference 1 2/ R /L L R    in the Figure 3.11 b) is about 0.0602 [rad]. Then the 

calculated curvature of the bending is
11/ / 2xr L m    . However, the curvature will 
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be changed when the thickness of the film varies, since the second moment of inertia will 

be also changed. Therefore, establishing an arbitrary standard thickness is required, 

which is 10um PVDF-TrFE and 25um Kapton in this case. With given parameters and 

the Equation (3.22), the second moment of inertia is 171.1656 10 4m . The consequent 

moment from the Equation (3.9) is 
8

0  6.5895 10M N m   . This moment value will be 

used as a constant moment for all structures from now on. 

 

3.2 PIEZO-ELECTROSTATIC ANALYSIS 

First let us consider the basic piezoelectric Equation (2.4) from chapter 2. Since 

there is no external electric field, the electric displacement field generated by the stress 

can be written as 

 
3 31 1 3D d T P   (3.23)  

where 
2 1 2h h h    [34]. The polarization term 

3P  is stress-induced spontaneous 

polarization and the subscript 3 indicates the film thickness direction. As can be seen, the 

piezoelectric coefficient now represents the specific mode in terms of the stress-electric 

displacement field interaction direction. As mentioned, there is no internal electric field 

but the stress-induced polarization at the quasi-static moment; 3 3 31 10,E P d T  . Thus, 

the Equation (3.23) is acceptable expression. To emphasize the stress-induced 

polarization, 3P  will be used as the notation instead of 3D . By substituting (3.21) to 

(3.23), the Equation (3.23) can be rewritten as 
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0

3 31 1( )
M

P d h
I

    (3.24)  

where 
2 1 2h h h   . The Equation (3.24) indicates that the stress-induced polarization 

varies in terms of the transverse location, which is reasonable regarding the stress 

distribution under the pure bending condition. The polarization distribution is depicted in 

the Figure 3.10 a). Here we assume that the film was poling-processed by the bottom-up 

electric field. The polarization vector direction, which is from a negative charge to a 

positive charge as shown in the Figure 3.10 b), depends on the sign of stress and the 

coupling coefficient, which is positive in PVDF-TrFE case. Therefore, the polarization is 

upward in the tension region, while it is downward in compression region.  

 

 

Figure 3.10: a) The polarization distribution of a piezoelectric generator under the pure 

bending condition and b) polarization direction. 

 

The polarization direction is crucial to piezoelectric applications under bending 

condition. If electrodes are connected to the top and bottom of the structure in the Figure 
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3.10 a), no voltage will be generated since their electric potential is equivalent. There are 

two methods to solve this problem; 1) using a substrate material for the compressional or 

tensional region and 2) manipulating polarization direction by separate poling process or 

insertion of an electrode at the centroid surface [35]. Former method consequently will be 

a unimorph structure, while the latter method will be a bimorph structure, which is 

relatively efficient. For our application, however, a relevant insulator substrate is required 

since attaching an electrode material to the epicardiac surface directly is not feasible.  

 

Figure 3.11: a) The polarization distribution and the electric output of a bending 

unimorph piezoelectric generator. b) The polarization distribution with 

respect to the thickness variation. 
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Under the unimorph bending condition shown in the Figure 3.11 a), geometric 

parameters such as the top surface area and the thickness ratio of the piezoelectric 

material and the substrate material apparently affect the electric output. In our 

application, the area applied to the epicardiac surface will be limited while the film 

thickness ratio is able to be controlled comparably. Assuming the thickness of the 

substrate remained as the same, varying the thickness of the piezoelectric material will 

change the electric output, as described in the Figure 3.11 b). This is evident with the 

Equation (3.24). The polarization is affected by the second moment of inertia term which 

contains the material thickness and the width information.  

Although the polarization occurs in all volume of the piezoelectric material, the 

charge is only collectable over the surface. The overall volume polarization charge 

density is zero because polarization charges generated in the body cancel each other out 

[11]. The surface polarization charge density is the inner product of the polarization and 

the surface normal vector. 

 
ps na P  (3.25)  

The surface normal vector of the top surface is upward (positive) whereas that of 

the bottom surface is downward (negative). Assuming the stress-induced polarization 

direction is upward by the poling process, the polarization charge density on the top and 

bottom surface are  

 
1 2_ 3ps top h hP      (3.26)  
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2_ 3ps bottom hP     (3.27)  

The sign of the charge induced to the top and bottom surface electrode is the opposite of 

the sign of the polarization charge density on each surface. Integrating each polarization 

surface charge density with the opposite sign gives the charge on each surface electrode, 

 

 
1 2_ 3top ps top h h

S

Q ds L W P          (3.28)  

 
2_ 3bottom ps bottom h

S

Q ds L W P        (3.29)  

where L is the length of the longitudinal section of the structure described in the Figure 

3.3, W is the width of the structure. Substituting the Equation (3.24),  
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M
Q L W d h h h

I
        (3.30)  

 
0

31 2 1( )bottom

M
Q L W d h h

I
      (3.31)  

The Equation (3.30) and (3.31) show the amount of the charge on each surface is 

different. For convenience, the equivalent charge method is applied. The method 

postulates that each surface electrode has the charge of which the amount is equivalent 

but the pole is opposite, while the total amount of the generated charge remains equal. 

Using this method enables the model to be regarded as a parallel plate capacitor, 

assuming no electric flux loss through side surfaces. 

 
0

31 1 2 1( 2 2 )generated top bottom

M
Q Q Q LW d h h h

I
         (3.32)  
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The capacitance depends on the structure and the permittivity. In our case, the 

structure is equivalent to the parallel plate capacitor of which the capacitance is

1/pC LW h . Using the relation between the voltage, capacitance and charge, often 

denoted as Q=CV, the voltage is achievable.  

 
31 01 2 1

1

( 2 2 )

2
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p

Q d Mh h h
V h

C I

  
    (3.34)  

However, the real electric field cannot be obtained with the equivalent charge 

method. To derive the electric field, another derivation approach is required. From the 

Equation (3.23), the polarization can be regarded as an external electric field [34]. 

Especially in our case, there is no electric field but the polarization at the quasi-static 

moment. Assuming imaginary charges outside which has the equivalent electric energy to 

the generated polarization, the equivalent external electric field generated by the 

imaginary charges in the piezoelectric material is 

 
3 31 0

3 1( )
p p

P d M
E h

I


 
     (3.35)  

where
2 1 2h h h   . The electric field vector direction is equivalent to the polarization, 

which is bottom-up. Since the relation between the electric field and electric potential is 

V E , the voltage derived from the Equation (3.35) is  
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     γE γ  (3.36)  
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which is equivalent to the Equation (3.34). Therefore, the equivalent charge method is 

reasonable. For the dimensionless notation, the Equation (3.33) and (3.34) can be 

rewritten as 

 
0
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M
Q LWh d

I




 
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 (3.37)  
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 (3.38)  

where 31 31 / pg d  . As described in the Equation (3.38), the voltage output is not 

affected by the surface area, except the width term in the second moment of inertia. 

Beware that charge expression in (3.37) is not the real value; the real charge value in each 

electrode is in (3.30) and (3.31). 

 

3.3 THICKNESS OPTIMIZATION UNDER CONSTANT MOMENT 

As mentioned a couple of times, the only feasibly controllable parameter is the 

thickness of the piezoelectric material and the substrate. The length and width of the 

device is hard to be manipulated because of the dimensional limitation of the organs [31]. 

Other material parameters, such as the Young’s modulus ratio or the piezoelectric 

coefficient are decided when choosing materials and only few options are available [19]. 

Furthermore, the thickness of the substrate is usually fixed since the commercial product 

film is often used as a substrate. The thickness of the piezoelectric material, however, at 

least in our case, can be manipulated by the spin coating process. The piezoelectric 
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polymer such as PVDF-TrFE is soluble into certain solutions and can be spin-coated over 

the substrate [36]. By controlling the solution amount, the ratio of the materials, the speed 

of the rotation and the exposure time, the desired thickness is able to be acquired. 

Therefore, investigating the effect of the piezoelectric material thickness variation before 

the real experiment is meaningful work to our application. Thickness optimization 

simulation using COMSOL was done by M. Guizzetti [37]. However, the theoretical 

approach and the effect of the Young’s modulus were not depicted well. Also, the load 

and boundary condition is not applicable to our situation. Thereby, new simulation work 

is required.  

The geometric parameters described in the Figure 3-3 are used in the COMSOL 

simulation. The required elastic properties for Kapton and PVDF-TrFE are the density, 

the Young’s modulus and Poisson’s ratio, which are 1300
3/kg m , 2.5 GPa and 0.34 for 

Kapton and 1879
3/kg m , 3GPa and 0.34 for PVDF-TrFE, respectively [28, 29, 38]. 

These values are provided assuming the material is isotropic. For the piezoelectric 

analysis, the compliance tensor matrix, relative permittivity matrix and coupling tensor 

matrix are required [12]. 

-Elastic Compliance Tensor 
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 (3.39)  

-Relative Permittivity Matrix 
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 (3.40)  

-Piezoelectric Coupling Tensor 
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0 0 0 0 36.3 0

0 0 0 40.6 0 0 10

10.7 10.1 33.5 0 0 0

d C N 

 
 

   
 
  

 (3.41)  

The compliance tensor matrix directly derived from the matrix (3.12). The 

piezoelectric coupling matrix, however, cannot be directly applied to the simulation. 

Unlike the compliance matrix, the coupling matrix is asymmetric and sensitive to the 

dimension. Our simulation work is in 2D; COMSOL recognize 2D as x-y plane of the 

3D. Although COMSOL has a function to use customized coordinates, there is a simple 

way to solve this problem; swapping y and z coordinates of the coupling matrix. In 

addition, d32 coefficient and the shear stress coupling coefficient are negligible because 

of the plane strain assumption. As a result, the coupling matrix input in the simulation is 
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0 0 0 0 0 0

10.7 33.5 0 0 0 0 10

0 0 0 0 0 0
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 
 
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 (3.42)  

For the boundary conditions, the piezoelectric model is assigned to PVDF-TrFE 

whereas the linear elastic model is assigned to Kapton substrate. Since pure bending 

moment or angular displacement loading option is not applicable in COMSOL, the 

prescribed displacement is used as a quasi-moment boundary condition. This is a 

reasonable boundary condition because the displacement by pure bending is already 

defined in the Equation (3.6). The prescribed displacement in z direction – y direction in 

the simulation – is applied from the Equation (3.6) over the bottom boundary. For the 

precise result, the symmetry boundary condition is applied to each side of the structure. 

As some side effects are expected from the boundary condition because of the edge of the 

structure, buffer structures with the same material condition are put on each side. Of 

course, the symmetry boundary condition is applied to the boundary of the left end and 

right end of the whole structure while whole bottom boundary is influenced by the 

prescribed displacement boundary condition. For the electrostatic boundary condition, the 

top boundary is set as the ground. The boundary not mentioned is automatically set as the 

free boundary condition or the zero charge condition. The mapped mesh is selected for 

meshing with the maximum element size 0.5 um and the minimum element size 0.01 um. 

To investigate the effect of the thickness variation, parametric sweep condition is added 

to the study step, varying the thickness of PVDF-TrFE from 0.5um to 20um with 0.5um 
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for each step. The Figure 3-5, 3-6 and 3-7 used the same condition at 10um PVDF-TrFE 

thickness.  

 

Figure 3.12: PVDF-TrFE/Kapton thickness ratio ( 1 2/h h ) vs voltage (V) and charge (C) 

under the moment controlled pure bending condition. 

 

Figure 3.12 shows the result of the Finite Element Method (FEM) simulation and 

the theoretical derivation. The voltage is collected and averaged from the bottom 

boundary of the effective structure which does not include the buffer structure. The 

charge is also collected from the same boundary. However, there is no direct simulation 

result for the charge; the charge is calculated from the voltage result using the Equation 
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(3.34). The charge density simulation given by COMSOL is related to the consequent 

charge from the open circuit condition, not the desired quasi-static charge. With given 

parameters, the voltage output shows the optimization point around the thickness ratio 

0.46 with the value of 0.12488 V (0.1235 V theoretical) while the charge output shows 

the continuous decline. The error of the voltage output in overall step is lesser than 1.8%, 

which means the theory and the simulation result matches well. The error is mostly 

caused by two reasons; 1) the polarization generated by the coupling coefficient 33d  and 

z-direction stress 2) the prescribed displacement applied to the bottom instead of the 

neutral axis. These errors can be reasonably neglected by the thin film postulation, unless 

the thickness is comparable to other geometric parameters. To optimize the structure and 

the electric output, however, the total electric energy should be considered.  

 1

2
Energy Density QV  (3.43)  

The Figure 3.13 below shows the result of the simulation and the theoretical 

computation. The overall error was lesser than 3.3%, which is acceptable to insist the 

theoretical derivation is well matched to the simulation result. From the result, the 

optimized thickness ratio for the given structure is 0.18 with the energy value of 4353 

pJ(4424 pJ theoretical); when the thickness of the Kapton substrate is 25um, the 

optimized thickness of the PVDF-TrFE should be 4.5um.  
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Figure 3.13: a) PVDF-TrFE/Kapton thickness ratio( 1 2/h h
) vs electric energy(J) and b) 

PVDF-TrFE/Kapton thickness ratio ( 1 2/h h
) vs specific electric energy(J/g) 

under the moment controlled pure bending condition. 
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3.4 CONSTANT CURVATURE CONDITION 

 

 

Figure 3.14: A constant curvature bending schematic. 

 

For the broad application in future, the constant curvature condition from the 

Equation (3.19) is also considered. A basic curvature-controlled concept is described in 

the Figure 3-14. Under the constant curvature condition regarding (3.19), the Equation 

(3.37) and (3.38) becomes 
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Figure 3.15: PVDF-TrFE/Kapton thickness ratio ( 1 2/h h ) vs voltage (V) and charge (C) 

under the curvature controlled pure bending condition. 

 

The Figure 3.15 shows the simulation result of the electric output in terms of the 

constant curvature condition bending. The error of the voltage output in overall step is 

lesser than 1.7%. In this case, the error from the coupling coefficient and z-direction 

stress becomes significant with increasing thickness of PVDF-TrFE, compared to the 

constant moment case. Still, the result is fairly acceptable. Contrary to the constant 

moment condition, the voltage output keeps increasing while the charge output remains 

almost the same. The main difference between the constant moment condition and the 
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constant curvature condition is the moment-second moment of inertia ratio. In the 

constant moment condition, the cube of PVDF-TrFE thickness term in the second 

moment of inertia directly affects the voltage and charge output. The constant curvature 

condition, in contrary, the second moment of inertia is cancelled by the varied moment to 

maintain the curvature constant. Therefore, the PVDF-TrFE thickness term in the 

Equation (3.45) becomes dominant while the thickness ratio term η has minor effect.  

Figure 3.16 shows the electric energy generated under the constant curvature 

condition. The dominance of PVDF-TrFE thickness term in the voltage output also 

affects the electric energy output. It can be asserted that the electric energy output is 

proportional to the thickness ratio between the piezoelectric material and the substrate 

under the constant curvature condition.  
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Figure 3.16: a) PVDF-TrFE/Kapton thickness ratio ( 1 2/h h ) vs electric energy (J) and b) 

PVDF-TrFE/Kapton thickness ratio ( 1 2/h h ) vs specific electric energy (J/g) 

under the curvature controlled pure bending condition. 



 51 

 

3.5 CANTILEVER BENDING 

 

 

Figure 3.17: A cantilever bending under the uniform loading. 

 

The previous condition of bending was pure bending, which means no load is 

applied to the structure but the moment. In practical situation, however, various loading 

conditions exist and affect the structure. Hence, the load term q of the Equation (3.1) is 

not zero anymore. A generally used structure for the piezoelectric energy harvesting 

experiment is the cantilever. The boundary condition of the cantilever structure is that 

one side end is constraint whereas the other side end is free, as depicted in the Figure 

3.17. There are many forms of the load boundary condition; in this section, the uniform 
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loading on the top surface will be discussed. Therefore, the load term q in the Equation 

(3.1) can be expressed as 

 
0( )q x q   (3.46)  

The negative sign means the loading direction is top-down. The solution of the Equation 

(3.1) with the uniform loading on the top surface is 

 4
2 3 0

1 2 3 4
24

q x
w A A x A x A x

YI
      (3.47)  

Herein, the boundary condition is applied as mentioned above. For simplicity, the 

left end(x=0) is fixed and the right end(x=L) is free. The region is different from the pure 

bending condition depicted in (3.5).  
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From the boundary condition above, 1A  and 2A  are zero. The Moment M and the shear 

force R at the left end is  

 2

0
00, ,

2

q L
x M R q L     (3.50)  

for the uniform load condition [22]. In terms of the definition of the direction, the 

moment is positive (top-tension and bottom-compression) while the shear force is 

negative. Applying the boundary condition (3.50) to (3.47), the coefficient 3A  and 4A  
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are 
2

3 0 / 4A q L YI   and
4 0 / 6A q L YI  respectively. As a result, the deflection vector 

w becomes 

 2 2 2

0 (6 4 )

24

q x L Lx x
w

YI

 
   (3.51)  

Unlike the pure bending case, the moment is not uniform along x-axis over the 

structure anymore. From the Equation (3.51) and the Equation (3.3) which is basic 

moment-displacement relation, the moment becomes 

 2 2

0 ( 2 )
( )

2

q L Lx x
M x

 
  (3.52)  

The shear force R, which is defined as dM/dx, can be written as  

 
0( ) ( )R x q L x    (3.53)  

However, the shear force is not negligible in our case because of the coupling 

coefficient given in (3.41). The shear force is applied to the x-z direction of which the 

subscript numbering is 5. Our case only reckons the thickness direction polarization of 

which the subscript numbering is 3; there is no coupling coefficient 
35d .  

By substituting the cantilever moment (3.52) into the Equation (3.21) instead of 

0M , the longitudinal stress becomes  
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Consequently, the polarization in the thickness direction from Equation (3.24) is 
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where 
2 1 2h h h   . The charge is the integral of the surface polarization charge 

density with negative sign in longitudinal direction, which is x. Then the charge on the 

top and bottom surface become 
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Therefore, the equivalent charge and the voltage under the uniform load-cantilever 

condition are  
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For the simulation, the right end is fixed as a constraint boundary condition while 

the right end is free. The symmetry boundary condition and buffer structure are 

eliminated in this case. The load is applied oh the top; for the same condition to the pure 

bending condition, 
2

0 06 /q M L  is applied where
8

0 6.5895 10M N m   . For the 

mesh formation, the edge distribution method is used before mapping. With this method, 

the precise solution can be achieved in COMSOL. From right to left, the length of the 

mesh segment becomes wider. The number of elements is 20 and the element ratio is 10. 
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The other parameters such as parametric sweep condition and the mesh size are the same 

as the pure bending simulation. 

 

Figure 3.18: PVDF-TrFE/Kapton thickness ratio ( 1 2/h h ) vs voltage (V) and charge (C) 

under the uniform load cantilever bending condition. 

 

Figure 3.18 shows the results of the simulation and the theoretical derivation of 

the moment controlled, uniform load applied cantilever bending condition. Since the 

uniform loading is in z-direction, the stress in thickness direction and the coupling 

coefficient 33d  are not negligible anymore, compared to the pure bending condition. 
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D33 FEM shows the result of the cantilever bending output regarding the coupling 

coefficient 33d  and the thickness direction stress. Still the 31d  coupling coefficient and 

the longitudinal stress are dominant to the electric outputs. FEM is the result excluding 

the coupling coefficient 33d , which matches well with the theoretical derivation. 
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Figure 3.19: a) PVDF-TrFE/Kapton thickness ratio ( 1 2/h h ) vs electric energy (J) and b) 

PVDF-TrFE/Kapton thickness ratio ( 1 2/h h ) vs electric specific energy (J/g) 

under the uniform load cantilever bending condition. 
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Figure 3.19 describes the electric energy output result of the moment controlled, 

uniform load applied cantilever bending condition. The difference between the result of 

D33 FEM and FEM or theoretical derivation is almost constant over the thickness ratio 

0.2. This means that the effect of the z-direction polarization generated by the coupling 

coefficient 33d  is limited and uncorrelated to the thickness ratio over 0.2. Therefore, the 

coupling coefficient 31d  and the longitudinal stress are highly involved in the 

optimization point of the thickness ratio. 

3.6 EFFECT OF YOUNG'S MODULUS RATIO 

The Young’s modulus ratio is a parameter which affects the piezoelectric output. 

Young’s modulus of the piezoelectric material is restricted since only few piezoelectric 

materials are used. Composite piezoelectric material may be an option to manipulate the 

Young’s modulus but hard to expect any orthotropic composite structure effect [39]. 

Another way to control the Young’s modulus ratio is changing the substrate. Selecting an 

appropriate piezoelectric material, choosing a substrate is comparably easier.  

Unlike the thickness ratio, the Young’s modulus ratio affects the location of the 

neutral axis considerably since the Young’s modulus ratio can be logarithmically varied. 

For example from the Guizzetti case, the Young’s modulus of the steel substrate was 

200GPa whereas that of the piezoelectric material was 20GPa [37]. Assuming the 

polymer piezoelectric material is coated over the steel substrate, the Young’s modulus 

ratio would be even smaller. The Figure 3.20 shows the effect of the Young’s modulus 
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change with the variation if the thickness ratio. As described, the thickness ratio 

optimization point varies with the Young’s modulus ratio; if the Young’s modulus ratio 

gets larger, the optimization point shifts to the right. Considering the reason of the 

unimorph/bimorph structure, this becomes obvious [35]. The efficiency of the 

piezoelectric material will decrease if the neutral axis locates in the piezoelectric material 

region; the polarization generated by the compression under the neutral axis will cancel 

out the polarization generated by the tension over the neutral axis. The larger the Young’s 

modulus ratio becomes, the higher the neutral axis locates. Thereby, the unimorph 

structure that has larger Young’s modulus ratio has smaller thickness ratio optimization 

point. If the circumstance is thickness-limited, the unimorph structure that has higher 

Young’s modulus should be applied and vice versa. Note, the charge also has the 

thickness ratio optimization point, although it is not significant compared to the voltage.  
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Figure 3.20: PVDF-TrFE/Kapton Thickness Ratio( 1 2/h h ) vs a) Voltage(V) b) Charge(C) 

c) Electric Energy(J) under Moment Controlled Pure Bending Condition 

with Varying the Young’s Modulus Ratio 
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Chapter 4 : Numerical Analysis of a Grated Unimorph Piezoelectric 

Energy HarvesterUnder Pure Bending Condition 

 In this chapter the structure parameter effect of grated structures are 

numerically investigated. Herein, the grated structure is defined as periodically spaced 

stripe-rib structure and only applied to the top surface of the piezoelectric material layer. 

Firstly, the motivation if the grated structure is asserted, followed by the mechanical 

analysis. As the real stress distribution is now significantly different from the linear 

theoretical approach due to the traction free surface and the singularity point. In the third 

section, the voltage, charge and electric energy output are derived numerically similar to 

the previous chapter. The base-rib thickness ratio and the rib-spacing ratio affects 

differently to the electric outputs. Mostly the highest efficiency is achieved by planar 

structure. As the piezoelectric and the substrate thickness ratio increases, however, the 

grated structure can be more efficient than the planar structure. Last section covers the 

structural effect to the piezoelectric coefficient, which suggests the future work of this 

thesis. 

4.1 MOTIVATION 

 In the last section of the previous chapter, the effect of varying the 

thickness ratio and the Young’s modulus ratio are discussed. Eventually, the purpose of 

changing the thickness ratio and the Young’s modulus is to control the flexural rigidity as 

well as to control the electric output. The flexural rigidity, especially, is important to 

biomedical applications since organs are usually very soft and a stiff device attached to 
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the organs maybe a burden. Therefore, the optimal design with respect to the stiffness and 

the electric output is a key to build an efficient device. 

One way to solve this problem is the porous structure. Many papers suggests that 

the porous piezoelectric film shows improved result compared to the dense film [40]. The 

porous processed piezoelectric film such as polypropylene shows the dramatically high 

coupling coefficient in some cases [41]. However, the increase of the coupling coefficient 

is related to the chemical spacing during the poling process, not to the mechanical 

deflection. In addition, the mechanical effect of the porous structure is usually measured 

as the Young’s modulus [41]. Hence, it is hard to say the relation between the stress 

distribution and the coupling coefficient.  

To precise the mechanical effect of the surface porous structure, a 2D porous 

structure can be estimated with a regularly spaced structure such as the grating structure. 

The high coupling coefficient created from the grated PVDF-TrFE is already reported 

[42]. However, the electric output efficiency under a certain mechanical deformation 

maybe different. For instance, the stress is not applied to the high coupling coefficient 

region under the certain mechanical deformation, the grated structure is meaningless. On 

the other hand, if the concentrated stress and the high coupling coefficient region is well 

matched, higher output efficiency will be expected.  

4.2 PREPARATION 
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Figure 4.1: A longitudinal section of a grated blanket structure 

 

The grated blanket structure is described in the Figure 4-1. For convenience, the 

protruding part is called a rib and the rest of the structure is called a base. The base 

thickness, thereby, is 
bt  whereas the thickness of the rib is 

rt . The length of the rib is b 

and the spacing between ribs is a. For the mechanical analysis, the location of the neutral 

axis is essential. In the grated structure, however, the location of the neutral axis is not 

flat anymore; it varies with the rib structure as depicted in the Figure 4.2. Also, the 

location of the neutral axis at a vertical boundary between the rib and the base is not 

clarified. For simplicity, it is postulated that the neutral axis is discontinuous at the 

vertical boundary but flat at each region. Therefore, two different neutral axes should be 

calculated. As described in the Figure 4.2, the neutral axis location of the rib area is rt  

whereas that of the base area is
bt . For the neutral axis location of the base, 

 21 2
,

2 (1 )
bt Neural Axis for bases

 

 

  
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
 (4.1)  
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where 
2/bt h  . For the neutral axis location of the rib, 

 2

1 2
,

2 (1 )
rt Neural Axis for ribs

 

 

  
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
 (4.2)  

where 
2/rt h  . In the previous chapter, the Young’s modulus ratio is given as

1 2/Y Y   where
2/ (1 )Y Y   . Although two different neutral axes are postulated, the 

connection between two axes lines around the rib and base boundary is not clarified. 

 

Figure 4.2: A postulation of two different neutral axis locations 

 

The second moment of inertia of each section is also different.  
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For the COMSOL simulation, however, the constant moment is postulated. 

Therefore, the equivalent second moment of inertia should be applied [43].  
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Substituting the Equation (4.4) into the Equation (3.6), the new deflection vector w’ for 

the grated structure becomes  

 20'
2 eq

M
w x

YI
   (4.6)  

where 8

0 6.5895 10M N m   , as used in the previous chapter. Since the stress and 

strain distribution is not linear anymore because of the grated structure, the piezoelectric 

output solution is estimated with the finite element method.  

 

4.3 NUMERICAL ANALYSIS 

For the COMSOL simulation, the same material parameters and boundary 

conditions are used which are mentioned in the Section 3.3 except the two neutral axes, 

equivalent second moment of inertia and the deflection vector w’. The mapped mesh is 

applied separately in terms of the part; protruding rib parts are meshed with the maximum 

element size 0.25um and the minimum element size 0.01um while other parts are meshed 
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with the maximum element size 0.5um and the minimum element size 0.01um. The 

parametric sweep is used to investigate the effect of grated structure under thickness 

variation. The thickness of the rib d is changed from 2.5 um to 15um with 0.5um for each 

step, maintaining the ratio of the base-rib thickness 
bt /

rt .  

There are two parameters that affect the electric outputs; one is the base-rib 

thickness ratio and the other is rib-spacing length ratio. To estimate the effect of these 

parameters, different geometry samples are prepared. The samples used in the simulation 

are suggested in the Table 4.1. 

 

 b:a=10:40 [um] b:a =20:40 [um] b:a =30:40 [um] 

bt /
rt =0.9 G941 G942 G943 

bt /
rt =0.7 G741 G742 G743 

bt /
rt =0.5 G541 G542 G543 

Table 4.1: Samples for Numerical Analysis 

 

4.3.1 BASE-RIB THICKNESS RATIO EFFECT 

Figure 4.3 shows the result of base-rib thickness ratio variation when the rib-

spacing ratio is 20:40 [um]. As can be seen, when the base-rib thickness ratio 
bt /

rt  

decreases, the voltage drops whereas the charge output increases slightly. Compared to 

the planar structure, the voltage output is reduced while the charge output is improved. 
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However, the decreasing rate of the voltage output is much larger than the increasing rate 

of the charge.  

 

Figure 4.3: Grated PVDF-TrFE/Kapton thickness ratio ( r 2t / h ) vs voltage (V) and charge 

(C) under the moment controlled pure bending condition. The rib-spacing 

ratio is fixed as 20:40 [um]. 

 

 Figure 4.4 describes the total energy result of the simulation samples maintaining 

the rib-spacing ratio b/a as 20:40 [um]. The total energy output decreases with respect to 

the base-rib thickness ratio 
bt /

rt . The main reason of the decrement is the inequivalent 
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compensation between the voltage loss and the charge gain with regard to the base-rib 

thickness variation.  

 

 

Figure 4.4: Grated PVDF-TrFE/Kapton thickness ratio ( r 2t / h ) vs electric energy (J) 

under the moment controlled pure bending condition. The rib-spacing ratio 

is fixed as 20:40 [um]. 

 

Analytically, the voltage output is affected by the thickness manipulation rather 

than the charge output since the voltage output has the piezoelectric material thickness 

term which can be observed in the Equation (3.38). Although total thickness is not 
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changed, the equivalent thickness decreases made by the rib thickness and the base 

thickness. Therefore, intuitively, the voltage decrease rate is larger than the change 

increase rate in terms of the grated thickness manipulation.  

Another reason of the electric output decrement can be described with the 

numerical simulation. Figure 4.5 shows the surface stress magnitude of the grated 

structure. The stress near the base-rib boundary is discontinuous and dramatically 

diverged. In mechanics, the boundary similar to the rib side wall is called traction-free 

surface where all stress and strain become zero whereas the peak at the base surface 

nearest to the rib side wall is called the singularity point. As described with dim color 

area, the stress loss at the rib surface is wider than the stress gain at the base surface. This 

loss and gain area expands when the base-rib thickness ratio falls. However, the loss area 

expansion rate is larger than the gain area expansion rate. Thereby, the total stress loss on 

the grated surface will increase with respect to the base-rib thickness ratio decrement; 

consequently, the electric outputs will decrease with respect to the stress-polarization 

relation in the previous chapter.  
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Figure 4.5: Nonlinear surface stress magnitude of the grated structure with respect to the 

base-rib thickness ratio. The rib-spacing ratio is fixed as 20:40 [um]. 

 

4.3.2 RIB-SPACING RATIO EFFECT 

Another geometric parameter of grated structure is the rib-spacing ratio b/a. The 

numerical result is shown in the Figure 4.6. Two regions are specified for the voltage 

output in terms of r 2t / h ; the region before 0.4 and the region after 0.4. The voltage 

output decreases in the former region and increases in the latter region when the rib-
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spacing b/a decreases. On the other hand, the charge output increases in all regions when 

the b/a ratio decreases.  

 

Figure 4.6: Grated PVDF-TrFE/Kapton thickness ratio ( r 2t / h ) vs voltage (V) and charge 

(C) under the moment controlled pure bending condition. The base-rib 

thickness ratio h/d is fixed as 0.7. 

 

 Figure 4.7 describes the total energy result of the simulation samples maintaining 

the base-rib thickness ratio 
bt /

rt  as 0.7. In the voltage dominant region, the electric 

energy output decreases when the length ratio decreases. In the charge dominant region, 

on the contrary, the electric energy output increases when the length ratio decreases. For 
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G741 sample, the electric energy is even higher than the planar structure where the 2/rt h  

thickness ratio is higher than 0.4.  

 

Figure 4.7: Grated PVDF-TrFE/Kapton thickness ratio ( 2/rt h ) vs electric energy (J) 

under the moment controlled pure bending condition. The base-rib thickness 

ratio is fixed as 0.7. 

 

The rib-spacing ratio affects the equivalent second moment of inertia and the 

equivalent total thickness. If the b/a ratio decreases, the second moment of inertia will 

decrease; hence, the voltage and the charge output will be improved, according to the 
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Equation (4.5). The equivalent total thickness can be approximated as the same manner 

of the equivalent second moment of inertia case. 

  

( )

b r
eq

r b

a t t
h

a b t b t

 


   
 (2.1)  

 Accordingly, the equivalent thickness will decrease when the rib-spacing ratio 

decreases. However, the voltage output decrement rate by b/a is not much significant 

than the voltage output decrement rate by b rt / t .  

 The Figure 4.7 proves that the grated structure is better than the planar structure 

under specific parameter condition. If the voltage output and the charge output are 

adequately compensated using the grated structure, high electric output can be achieved. 

To be specific, if the substrate film thickness is similar to the piezoelectric film thickness, 

the grated structure will generate more electric output rather than the planar structure. 

 

4.4 STRUCTURAL EFFECT ON PIEZOELECTRIC COEFFICIENT 

A recent paper asserts that the piezoelectric coupling coefficient 33d  increases 

significantly at singularity points of nanostructure array [42]. At the singularity points, 

the piezoelectric coupling coefficient 33d  was ~60 pm/V which is 3 to 20 times higher 

than the coefficient at the planar surface which is ranging from 3 to 19 pm/V. This result 

was measured by the Piezoresponse Force Microscopy (PFM). Although only  33d  is 

measured in the paper, we can expect that the molecular dipoles are accumulated at the 
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singularity point. Hence, the piezoelectric coefficient  31d  will also show similar 

improvement. 

 

Figure 4.8: a) The nanoimprinted structure suggested by Ran Liu group. The deep is 

around 350nm. b) The voltage output measured by vertical PFM. The black 

line is the voltage output from the unimprinted planar area and the red line is 

the voltage output from the structured area [42]. 

 

The results above are measured without external mechanical stimuli. Thereby, the 

correlation between the Figure 4.5 and the Figure 4.8 b) will suggest the high voltage 

gain at the singularity point under the moment controlled pure bending condition. Let us 

consider a grated structure and the diagram in the Figure 4.5; if the voltage gain at the 

singularity point compensates the voltage loss around the traction-free surface positively, 

the electric outputs of the grated structure would be better than that of the planar 

structure. Furthermore, reducing the structure scale or periodicity will enhance the output 

since the number of singularity per area will increase. Still, the base-rib thickness ratio 

and the rib-spacing ratio should be considered.  
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Chapter 5 : Conclusion 

In summary, the effect of the thickness ratio variation of a unimorph piezoelectric 

energy harvester to the electric output under bending condition is investigated. The 

harvester forms a blanket with a piezoelectric material as upper layer and a substrate 

material as lower layer. PVDF-TrFE is used as a piezoelectric material whereas Kapton 

film used as a substrate material. The thickness of Kapton is fixed as 25um while the 

thickness of PVDF-TrFE is varied from 0.5 um to 20um. The voltage, charge and energy 

output are calculated with the analytical and numerical method. For numerical 

calculation, COMSOL simulation is used.  

Three bending conditions are suggested; moment controlled condition, curvature 

controlled condition and uniform-load cantilever condition. The bending condition is 

fairly considered the practical biomedical application with the modeled moment value. 

For the moment controlled condition, the voltage and electric energy output have the 

optimal thickness ratio point while the charge output keeps decreasing. However, if the 

Young’s modulus ratio changes, the charge output also has the optimal thickness ratio 

point. In addition, the optimal point of all outputs varies with the ratio of the Young’s 

modulus. 

Under the curvature controlled condition, the voltage output and the electric 

energy output increases linearly while the charge output remains almost the same but 

slightly decreases. The output results under the uniform-load cantilever condition are 

similar to the output results under the moment controlled condition. However, the effect 
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of the coupling coefficient 33d  and the transverse stress 3T  is not negligible anymore 

compared to the moment controlled condition.  

The grated structure effect is investigated with respect to the rib-base thickness 

ratio and the rib-spacing ratio. The voltage and electric energy output significantly 

decrease when the base-rib thickness ratio decreases. The charge output increases slightly 

when the base-rib thickness ratio decreases but the increasing rate is lesser than the 

decreasing rate of the voltage and electric energy output.  

By manipulating rib-spacing ratio, the electric energy output of the grated 

structure can be improved more than that of the planar structure, if the piezo-substrate 

thickness ratio is larger than a specific value.  Furthermore, a recent research result 

shows that the piezoelectric coupling coefficient is enhanced around the singularity point 

of the grated structure where the stress is also concentrated under any bending condition. 

Therefore, the grated structure would improve the electric energy output of the blanket 

structured unimorph energy harvester.  

In conclusion, this research will support designing optimal thin film biomedical 

energy harvester.  
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