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ABSTRACT  

Wearable electronics are finding emerging applications in mobile health, rehabilitation, prosthetics/exoskeletons, athletic 
training, human-machine interaction, etc. However, our skin is soft, curvilinear and dynamic whereas wafer-based 
electronics are hard, planar, and rigid. As a result, state-of-the-art wearables can only be strapped or clipped on human 
body. The development of flexible and stretchable electronics offers a remedy for such challenge. E-tattoos represent a 
class of stretchable circuits, sensors, and actuators that are ultrathin, ultrasoft, skin-conformable and deformable just like 
a temporary tattoo. We introduce a low-cost, dry and freeform “cut-and-paste” and “cut-solder-paste” method invented 
by my lab to fabricate e-tattoos. This method has been proved to work for thin film metals, polymers, ceramics, as well 
as 2D materials. Using these method, we created the first truly imperceptible e-tattoos based on graphene, and modular 
and reconfigurable Bluetooth and NFC enabled wireless e-tattoos. 

Keywords: epidermal electronics, stretchable electronics, wearables, electronic tattoos, biometric sensors, wireless, 
digital manufacture 
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1. INTRODUCTION  
Wearable electronics capable of long-term, ambulatory physiological monitoring could find many exciting applications 
in telemedicine, mobile health, prosthetics, athletic training, human-machine interface (HMI) and so on. However, the 
mechanical mismatch between wafer-based rigid electronics and the soft and curvilinear human body greatly hinders the 
wearability and functionality of state-of-the-art wearables. From “skin-like” electronics (e-skins) [1, 2] to “epidermal 
electronics” (e-tattoos) [3, 4], it is expected that the emerging technology of flexible/stretchable electronics will 
transform the wearable industry. For example, pressure-sensitive e-skins have been applied to measure pulse waves from 
the human wrist [5] and ultrathin photonic e-skins can be used as flexible oximeters when placed on the human fingertip 
[6]. Compared with e-skins which mostly refer to flexible electronics that can mimic human or animal skin 
functionalities, e-tattoos are ultrasoft, skin-conformable multifunctional membranes that can monitor a variety of 
biometrics including electrophysiological [7], thermal [8] and mechano-acoustic [9] signals, skin hydration [10], and 
even biomarkers in sweat [11]. However, after many years of research and development, it is still difficult to find soft 
wearable devices that are wireless, unobstructive, multimodal, yet affordable on the market. Among many remaining 
challenges, power supply and wireless data transmission are two outstanding ones. Near field communication (NFC) 
technology is known to be able to wirelessly transmit both power and data within centimeter range [12]. Recent 
publications demonstrated that it is possible to implement NFC into e-tattoos to make them go battery-free [13, 14]. 
NFC-enabled e-tattoos have found photometry [15-17] and radiometry [15, 18] applications. So far, however, NFC-
enabled e-tattoos are not yet able to carry out electrophysiological (EP) or electrodermal activity (EDA) measurements. 
Moreover, although NFC circuits can be costly, they have to be disposed with the one-time use e-tattoo. 

NFC enabled e-tattoos are currently fabricated by photolithography and transfer printing process [15, 16, 19], which can 
be expensive and time consuming. In 2015, our group invented a dry and desktop “cut-and-paste” process for the rapid 
prototyping of passive e-tattoos [20]. In this process, a mechanical cutter plotter can digitally carve out pre-designed 
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patterns on metal foils [20, 21], electrically conductive polymer sheets [20], or even 2D materials such as graphene [4, 
22] within minutes. A slightly modified cut-and-paste method can even be used to pattern brittle ceramics such as 
indium tin oxide (ITO) into soft and stretchable ribbons [23]. After removing excessive regions, the leftover pattern can 
be transferred onto a target substrate such as a flexible medical tape or even human skin. The whole process takes only 
minutes and no cleanroom facilities or chemicals are required. Serpentine-shaped gold nanomembranes were patterned 
to be stretchable electrodes, resistance temperature detector (RTD), and hydration sensors. A double-stranded serpentine 
coil design was used to pattern aluminum micromembranes into a stretchable planar antenna [20]. The only limitation 
for the cut-and-paste process was the limited patterning resolution. We found that the ribbon width cannot go smaller 
than 200 μm [20].  

To enable the integration of active electronic components on such e-tattoos, we here report a “cut-solder-paste” process. 
Within the context of the cutting method, the relatively low patterning resolution of the mechanical cutter plotter 
represents a major obstacle for building multifunctional wireless e-tattoos with reasonable footprint. To overcome such 
limitations, we herein propose a modular concept in which the NFC module, the functional circuitry, and the electrodes 
are first fabricated as separate layers and then stacked up as needed with vias aligned. The NFC and functional layers are 
reusable and can be disassembled and reassembled with other layers. Only the electrode layer needs to be disposed after 
each use. Such modular design allows for versatile combination of different layers to form wireless, battery-free e-
tattoos capable of sensing a variety of biometrics including ECG & heart rate (HR), skin hydration, skin temperature, as 
well as pulse oximetry (SpO2). The total size of the assembled e-tattoo is 7.4 cm x 5 cm, less than 190 µm thick 
(excluding chips), lighter than 1.3 grams, stretchable more than 30%, and has an effective modulus of 9.3 MPa. After 20 
times disassembly and reassembly, the NFC and circuit layers remained fully functional. As a result, the modular NFC e-
tattoo is a wear-and-forget wireless sensor system that is stretchable, unobstructive, and low cost. When scanned by an 
NFC-enabled smart-phone, the e-tattoo will harvest energy from the smart-phone, chips and LEDs on the e-tattoo will be 
powered by the harvested energy, and real-time data acquired by the e-tattoo will show up on a mobile app. 

 

2. LOW-COST, DRY, AND FREEFORM MANUFACTURING FOR E-TATTOOS 
The conventional cleanroom-based micro-fabrication method is not suitable for rapid prototyping or mass production of 
disposable medical patches such as epidermal electronics. We therefore invent a dry, benchtop, freeform and portable 
manufacturing method called the “cut-and-paste” and “cut-solder-paste” method to manufacture disposable epidermal 
sensor systems in a time and cost effective manner. 

 
2.1 Conventional manufacturing process 

Conventional manufacturing process of epidermal electronics relies on standard microelectronics fabrication processes. 
It involves vacuum deposition of thin films, spin coating, photolithography, wet or dry etching and transfer printing [3]. 
Although it has proven to be effective, there are several limitations associated with such processes. For example, this 
method depends on cleanroom-based facilities which are not portable, vacuum deposition and photolithography are time 
consuming, chemicals used in wet etching are hazardous to human body, wafers and masks used are expensive, and the 
rigid wafer is not compatible with roll-to-roll process. In this chapter, we report an innovative time- and cost-effective, 
benchtop, freeform, and portable fabrication method, which is applied to manufacture high-quality epidermal sensors. 
Detailed fabrication process of this new method is discussed and manufacture quality is investigated. 

 

2.2 Cost and Time Effective “Cut-and-Paste” Method 

A schematic of the “cut-and-paste” fabrication process is shown in Figure 1, snapshots of detailed experimental steps 
can be found in our paper [20]. The process starts with laminating a commercially available metal-coated PET foil 
(Goodfellow, USA) on a flexible, single-sided thermal release tape (TRT, Semiconductor Equipment Corp., USA) with 
the metal side touching the adhesive of the TRT. The other side of the TRT is then adhered to a tacky flexible cutting 
mat, as shown in Figure 1a. The cutting mat is fed into an electronic cutting machine (Silhouette Cameo, USA) with the 
PET side facing the cutting blade. By importing the AutoCAD design into the Silhouette Studio software, the cutting 
machine can automatically carve the Au-on-PET sheet with designed seams within minutes (Figure 1b). Once seams are 
formed, the TRT is gently peeled off from the cutting mat (Figure 1c). Slightly baking the TRT on a 115 °C hotplate for 
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Figure 8. Picture of the as-fabricated GET. (a) GET mounted on skin. (b) GET on skin compressed and stretched by 25%, 
respectively. (c) Magnified photographs of a GET on compressed and stretched skin, which demonstrate its full 
conformability even under skin deformation [4, 22]. 
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Figures 8b offers pictures of the GET on relaxed human skin and skin subjected to various kinds of deformations. 
Electrical resistance of the GEPS and GRTD was measured before and after arbitrary skin deformation, and no 
significant change could be identified. According to an analytical model we built previously, the GET has to be thinner 
than 510 nm to achieve full conformability with human skin. With our GET thickness being just 463 nm, optical 
micrographs of it on skin (Figures 8c) confirm the ultraintimate coupling between the GET and skin, even under severe 
skin deformation [4, 22]. 

Electrode−skin conformability directly dictates the contact impedance. Classical electrical circuit concepts suggest that 
the electrode−skin interface impedance is inversely proportional to the contact surface area. Since conformal contact 
increases the effective contact area, it is therefore expected that interface impedance decreases. We measured the 
GET−skin interface impedance and compared it with commercial Ag/AgCl gel−skin interface impedance, the latter of 
which is considered the gold standard for medical applications. The measurement was performed by laminating a GET 
on a human forearm without any skin preparation. The GSHS was connected to an LCR meter (Hioki 3532-50) using a 
customized flexible connector. A pair of Ag/AgCl gel electrodes were placed next to the GSHS with the same 
interelectrode distance, and the electrodes were connected to the LCR meter by alligator clips, as displayed in Figure 9a. 
The impedance was measured from 42 Hz to 2 kHz. The result shows that the GET−skin interface impedance is 
comparable with the gel electrode−skin impedance, although the GSHS surface area (∼0.245 cm2) is more than 10 times 
smaller than that of the gel electrode (∼2.6 cm2). Low contact impedance is essential for a high SNR in 
electrophysiological measurements.38 EEG, ECG, and EMG signals were measured using the GET (Figures 9b−f) and 
Gr/PI electrodes. The EEG signal was measured by laminating the GET on the forehead next to a commercial gel 
electrode, as shown in Figure 9b. No skin preparation was performed before mounting all the electrodes on the skin. It is 
evident in Figure 9b that the spectrograms of EEGs measured by the GET and gel electrodes are almost identical, and the 
blinks and alpha rhythms are clearly visible in both measurements. The GET can also be laminated on the human chest 
to measure an ECG. Figure 9c shows the measurement setup and the ECG signal recorded by an AvatarEEG through 
both a GEPS and commercial gel electrodes, with a 60 Hz digital notch filter applied. Characteristic ECG peaks (P, Q, R, 
S, T, and U) were clearly visible in both sets of data, but the GEPS measurement showed slightly higher signal 
magnitude. Application of a GET for EMG measurement was demonstrated by laminating a GET on the human forearm. 
The electrical activity of the forearm flexor muscle was measured using both the GEPS and commercial gel electrodes 
when the subject was squeezing a handgrip (Figure 9d). In addition to electrophysiological measurements, the GET is 
also able to measure skin temperature and hydration. Previous studies have demostrated that skin hydration level is 
monotonically correlated with skin impedance [4, 22]. 
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