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Nanoblisters such as nanobubbles and nanotents formed by two-dimensional (2D) materials have been
extensively exploited for strain engineering purposes as they can produce self-sustained, nonuniform in-
plane strains through out-of-plane deformation. However, deterministic measure and control of strain fields
in these systems are challenging because of the atomic thinness and unconventional interface behaviors of
2D materials. Here, we experimentally characterize a simple and unified power law for the profiles of a
variety of nanobubbles and nanotents formed by 2D materials such as graphene and MoS, layers. Using
membrane theory, we analytically unveil what sets the in-plane strains of these blisters regarding their
shape and interface characteristics. Our analytical solutions are validated by Raman spectroscopy measured
strain distributions in bulged graphene bubbles supported by strong and weak shear interfaces. We advocate
that both the strain magnitudes and distributions can be tuned by 2D material-substrate interface adhesion

and friction properties.

DOI: 10.1103/PhysRevLett.121.266101

Two-dimensional (2D) materials are atomically thin crys-
tals with unique properties that lend well to next-generation
ultrathin electronic and optoelectronic devices [1-4]. It has
been well established that mechanical strain can strongly
perturb the band structure of these materials, giving rise to the
possibility of using mechanical deformation to tune their
electronic and photonic performance dramatically [5-9]. In
fact, this principle, termed strain engineering, iS now rou-
tinely used in manufacturing traditional semiconductor
devices [10]. The strain engineering of 2D materials is
particularly exciting because an individual atomic sheet is
intrinsically capable of sustaining much larger mechanical
strain compared to either their bulk counterparts or conven-
tional electronic materials [11,12]. Also, the atomic thickness
of 2D materials allows them to be easily poked or pressurized
from the third dimension (i.e., perpendicular to their plane of
atoms) [13—-17]. The resulting configurations including
nanoscale bubbles and tents can be called by a unified name,
2D material blisters [13-20]. Recently, the considerable
strain associated with these nanoblisters has created oppor-
tunities for the study of new fundamental physics and
applications such as enormous pseudomagnetic fields,
large-scale quantum emitters, and so on [21-23].

A major challenge in these systems is to find out or even
control the strain in the blisters deterministically, calling for
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understanding and validating how the blister geometry
intertwines with mechanics in these atomic sheets [24,25].
So far, self-similar profiles of the 2D material bubbles
have been widely discovered in experiments [15,17,26,27].
However, it remains challenging to analytically relate the
bubble and tent shape characteristics to the full-field strain
distributions and experimentally prove the relation. Con-
sequently, accurate strain tuning through blister shape
adjustments is still elusive [21,22,24]. One difficulty comes
from the intrinsically nonlinear coupling between in-plane
strain and out-of-plane deformations predicted by the mem-
brane theory [28]. More fundamental concern arises from the
subtle nature of 2D materials, where the material thickness
approaches the atomic scale and the surface is atomically
smooth [29]. These features even challenge the applicability
of continuum theories from a perspective of deformation
physics [30-34]. As a result, the prevailing analysis of the
strain distribution and strain-coupled physics and chemistry
in 2D material blisters relies heavily on numerical tech-
niques, such as case-by-case molecular dynamics (MD)
simulations [22,24,35-37]. To deal with these concerns, a
combination of continuum theories with microscale experi-
ments is highly needed and yet to emerge so far.

Herein, we experimentally explore the strain field in
nanoblisters formed by 2D materials accounting for
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different natures of 2D materials interfaces. Using tapping
mode atomic force microscopy (AFM), we experimentally
characterized a variety of bubbles and tents formed by
graphene and MoS, layers. Their shapes were empirically
found to follow a simple power law, enabling closed-form
analytical solutions to the Foppl-von Karman equations at
the membrane limit. Our results show that the strain
distribution in the 2D material can be estimated by simply
measuring the height and radius of the bubbles and tents,
and that the strain highly depends on the interfacial
interaction between the 2D material and the underlying
substrate. To validate our analytical solutions, we exper-
imentally carried out Raman mapping on pressurized
graphene nanobubbles with strong (graphene-SiO,) and
weak (graphene-graphene) shear interfaces. The measured
and analytically predicted Raman shifts have found good
matches for both types of interfaces.

We first investigate the shape characteristics of both
nanobubbles and nanotents of 2D materials, which can form
spontaneously or be created in a controllable manner. For the
spontaneous case, nanometer-scale bubbles and tents form
when monolayer or few-layer 2D materials are exfoliated or
transferred on a target substrate. The formation mechanism is
typically attributed to the inevitably trapped water, hydro-
carbon, and/or nanoparticles at the 2D material-substrate
interface during sample preparation [15,17]. The sponta-
neously formed nanobubbles and nanotents analyzed in this
study were made by mechanically exfoliating few- and
monolayer graphene and MoS, from their bulk crystals on
silicon substrate, or transferring CVD-grown MoS, on a gold
or Al,O5 substrate [38]. Details on the transfer process for
different types of samples are provided in the methods
section of the Supplemental Material [39]. Figure I1(a)
displays typical examples of nanobubbles formed by mono-
layer graphene on SiO,. When nanoparticles were trapped,
2D materials can drape around the nanoparticle, forming
micro- or nanotents as shown in Figs. 1(b) and 1(c). To form
controllable bubbles, we transferred monolayer graphene
and a 4-layer MoS, to cover prepatterned microcavities in
Si0, to form suspended drumheads and then followed a well-
established gas diffusion procedure to bulge the drumheads
[16]. In this case, the bubbles can be pressurized controllably
[Fig. 1(d) [39]].

The out-of-plane profiles of all the different types of
bubbles and tents prepared by us and collected from the
literature are summarized in Fig. 2. Although the radii of
the 2D material blisters range from tens to thousands of
nanometers, we realized that the height profiles of bubbles
and tents collapse onto two master curves if we normalize
the out-of-plane deflection (w) of each blister by its central
height (%), and the radial positions () by its radius (a). We
discovered that the collapsed height profiles can be
described by a unified power form,
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FIG. 1. From top to bottom: Atomic force microscopy (AFM)
phase and heightimages of spontaneously formed graphene bubbles
on SiO, (a), a multilayer graphene tent on SiO, (b), and a CVD-
MoS, tent on gold film (c). (d) From left to right: optical image of
graphene flakes exfoliated on prepatterned SiO, with microcavities,
AFM height images of a monolayer graphene bubble, and a four-
layer MoS, bubble. Note that (S) represents bubbles or tents formed
spontaneously while (P) represents those formed by controllable air
pressurization.

where a is 2 for bubbles or 2/3 for tents. Note that Fig. 2
summarizes graphene and MoS, bubbles and tents with
aspect ratios ranging from 0.05 to 0.20. Remarkably,
regardless of the aspect ratios, the types of 2D material,
the supporting substrates (silicon, alumina, or atomically
flat 2D material flakes), the content in the bubble (liquid or
gas), or the fabrication methods, all bubble profiles can
collapse to Eq. (1) with @ = 2 [Fig. 2(a)]. We also found
that for profiles of graphene and MoS, tents, data obtained
from MD simulations or coarse-grained (CG) modeling
[22,24,36] can also collapse to Eq. (1) with a =2/3
[Fig. 2(b)]. In fact, the empirical conclusion of a =2 is
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FIG. 2. Universal shape characteristics of 2D material bubbles
and tents. (a) Normalized bubble profiles measured by our
experiments and collected from literature. Note that samples
from Ref. [17] feature atomically smooth interfaces, are labeled
by *. (b) Normalized tent profiles measured by our experiments
and simulation results in the literature. The simulation data about
graphene and MoS, is from Refs. [36,24], respectively.
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a widely adopted simple membrane solution for blisters
[48,49] and a = 2/3 is well matched with the analytical
solution to an indented blister in the literature [28,50]. We
thus conclude that this simple power form can be a good
approximation for describing the profiles of 2D material
bubbles and tents.

Now that the out-of-plane displacement of 2D material
blisters is readily available as given in Eq. (1), we can try to
solve the in-plane displacement and then calculate strains
out of displacements. Attributing to the atomic thinness of
2D materials, it is sufficient to simply use the membrane
limit of the Foppl-von Karman equations [28,48]. The in-
plane equilibrium equation in terms of displacements is
therefore

dw d?w

aa av 2 TTo ey _dvae 2
drr  rdr 1 2r \dr dr dr*’ (2)

du ldu u 1—y<dw>2
where u is the in-plane displacement of the 2D material and
v is the Poisson’s ratio. Plugging Eq. (1) into this equation
and solving the 2nd order ODE using the finite condition
when r — 0 can yield an analytical solution to the in-plane
displacement:

=) F - (5)2“] +uyt (3)

a |a a

where ((v) = {[a(2a—1—v)]/[8(a—1)]} and u, is a
constant related to the slippage at the edge of the blister
(r = a). This explicit displacement field allows for the
direct solutions for both the radial and circumferential
strain fields:
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Clearly, the sliding of the 2D material-substrate interface
(uy # 0) can induce nonzero strain in the supported zone
(r > a), which is important for strain engineering appli-
cations of 2D materials [35]. Typically, the edge of the 2D
material blister is assumed to be fully clamped due to
adhesion and strong shear interactions with the supporting
substrate outside of boundary [11,22.16]. However, the
atomically smooth surfaces of 2D materials make inter-
facial sliding particularly easy. Recent experiments on gas-
pressurized graphene bubbles revealed that the shear
interactions between graphene and its substrate can be
fairly weak, leading to nonlinear, deflection-dependent
interface sliding displacements [14,51]. It has also been

discovered that well-established theories assuming clamped
conditions offer good approximations only when the deflec-
tion is small (2/a < 0.1), while experimental measurements
deviated from theories with clamped boundaries in samples
with large deflection [14]. Recent studies on 2D material
interface further highlighted the so-called superlubrication
(near-zero friction) when a 2D material sits on atomically
smooth substrates, including itself, which is very common in
2D materials devices [52].

Considering that the graphene and MoS, blisters in
Fig. 2 encompass either relatively strong interfaces with
small deflections or atomically lubricated interfaces, our
prime interest of this study is in two limits: strong-shear
limit (clamped, fully bonded interface) and weak-shear
limit (sliding, frictionless interface). For the former, we can
apply clamped boundary at the edge of the blister. For the
latter, the stress and displacement in the outer supported
region can be obtained as the classical Lamé problem in
linear elasticity [53]. The stress and displacement continu-
ity then leads to [39]

0, strong-shear limit
us = a(l+v) p2 Lo 5)
- weak-shear limit

8 a’

Now Egs. (4) and (5) combined offer the complete
analytical solutions to the strain field in 2D materials
forming blisters, with either strong or weak interaction
with their substrates. After appropriately choosing the a
and u, according to the specific blister shape and 2D
material-substrate interface, one can easily compute the
strain distribution inside and outside of a 2D blister by
simply measuring its height and radius. We note that a
generalized analysis may be performed by accounting for
the detailed frictional resistance (e.g., the stick-slip behav-
ior) at the 2D material-substrate interface [54].

In Fig. 3, we plot the strain distributions of the 2D
material blister as solid curves using our equations. The
strain is normalized by h?/a? such that the distribution will
only depend on the interface conditions and material
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FIG. 3. Normalized strain distribution curves predicted by our
analytical solution (solid lines) and solved by numerical analysis
(markers) in bubbles (a) and tents (b), subjected to both clamped
(strong interface) and frictionless (sliding interfaces) boundary
conditions. The strain is normalized by h?>/a? giving rise to
deflection-independent curves. The numerical results are solved
for a monolayer graphene with aspect ratios ranging from
0.02 < h/a <0.2.
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properties, i.e., the Poisson’s ratio. Comparing Fig. 3(a) for
bubbles and Fig. 3(b) for tents, it is clear that the strain
gradients are much larger in tents, with strain divergence
towards the center of the tents due to the assumed point
load. Note that under the same aspect ratio, interface sliding
can considerably reduce the strain level in 2D material
blisters in comparison with blisters with strong-shear
interfaces. This highlights the importance of accounting
for the ultralubricated interface in the case that the 2D
material is supported by an atomically smooth substrate.

Next, we try to verify our analytical solutions numeri-
cally. We solved the nonlinear Foppl-von Kédrman equa-
tions with clamped and slipping boundaries, where the
bending behavior is also considered for generality [39]. The
numerical solutions are plotted as markers in Fig. 3 for
monolayer graphene with aspect ratios ranging from 0.05 to
0.20, to directly compare with the analytical solutions
(solid curves). Since analytically solved strains are strictly
proportional to 42 /a?, after normalization, the solid curves
are no longer dependent on the aspect ratio. However, the
numerically solved strains show more complicated depend-
ence on the aspect ratio, because the markers for different
aspect ratios do not fully collapse. Despite this small
discrepancy, the overall good agreement between the two
solutions indicates that for our experimentally observed
blisters with aspect ratios ranging from 0.05 to 0.20, bending
effects are negligible. Thus, the numerical results have
verified that our analytical solution given by Eq. (4) is a
reasonable estimation for strains in both bubbles and tents
under both clamped and slipping boundary conditions.

Our analytical solution, though verified numerically, is
still challenged by a widespread concern on the breakdown
of classical membrane theories at the atomic limit [30-34].
To examine the applicability of our analytical solutions, we
performed graphene bulging experiments with intentionally
designed strong- and weak-shear interfaces. Monolayer
graphene sealed microcavities were fabricated by micro-
mechanical cleavage of graphene over SiO, substrate with
prepatterned 2.5-micron-radius holes [Fig. 4(a)]. Following
a well-developed gas diffusion method [16], we can create a
pressure difference across the monolayer and bulge it in a
controlled manner.

The strong-shear-interface graphene bubble was gener-
ated by pressurizing a graphene monolayer on SiO, with
the maximum deflection less than 150 nm. Under this
condition, the interface sliding was found to be minimal;
thus it is compatible with the clamped interface assumption
[14]. To experimentally study the weak-shear case, we
assembled a graphene-SiO, supporting substrate for the
graphene bubble [Fig. 4(b)]. First, few-layer graphene was
transferred over a SiO, microhole. The suspended portion
of the multilayer graphene was then etched to open up the
microhole. After creating an atomically flat region around
the microhole, a monolayer graphene was precisely trans-
ferred to cover this microhole, resulting in a graphene
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FIG. 4. Schematics of the graphene drumheads formed on a
SiO, substrate (a) and on a graphene-covered SiO, substrate (b).
(c) Raman shifts of the G band at the center of graphene bubbles
predicted by our analytical solution (solid curves) and measured
by our experiments (markers). (d) Normalized Raman shifts of
the G band (Awga®/wyh?) as functions of the normalized radial
position (r/a) for monolayer graphene bubbles.

drumhead supported by few-layer graphene [39]. Applying
a differential pressure across the suspended graphene
membrane, this graphene bubble was expected to bulge
under weak-shear interface as the graphene-graphene inter-
face can be considered as superlubricated.

We performed multiple AFM and Raman characteri-
zations on the graphene bubbles with well-controlled
interfaces [39]. For an axisymmetric graphene bubble,
the G band shifts in the Raman spectrum are related to
the strain components through the following equation [55]:

ACOG

2 e re) a6
where ¢, and ¢, are analytically expressed in Eq. (4), y is
the Griineisen parameter, and f is the shear deformation
potential that details the amount of splitting in the G bands,
which were experimentally calibrated for monolayer gra-
phene (y = 1.99 and B = 0.99) [56]. Therefore, analytical
prediction for strain fields can be readily converted to
analytical prediction for the G band shifts using Eq. (6).
Particularly, at the center of the bubble where ¢, = ¢4, the G
band shifts are predicted by Eqgs. (4) and (6) to take a very
simple form:
h2
Awg = —07600; (7)
where the constant c is [(3 — v)/2] for bubbles supported
by strong shear interfaces and is (1 —v) by weak shear
interfaces.
Because of space limitations, we present the details of
the experimental Raman characterizations in the Supple-
mental Material, Note 2 [39]. Here, we first show the
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Raman G band shifts at the center of graphene bubbles as a
function of h?/a” in Fig. 4(c), which is predicted to be
linear by our analytical solution in Eq. (8). The markers
represent experimental data for both SiO,- (brown) and
graphene-supported (green) graphene bubbles and the solid
curves correspond to predicted G band shifts for strong-
(green) and weak-shear-interfaced (brown) 2D material
bubbles. By setting the Poisson’s ratio of graphene to be
0.165 in Eq. (7), we find good agreement between our
theoretical predictions and experimental measurements.
This may confirm the applicability of our simplified
membrane theory in relating the out-of-plane deformations
to in-plane strains for 2D material blisters.

In Fig. 4(d), we further normalize both the measured and
predicted G band shifts by 4?/a? and plot them as functions
of the normalized radial position r/a. Our weak-shear and
strong-shear model can partially capture the full-field strain
distribution in graphene-on-graphene and graphene-on-
SiO, bubbles, respectively. However, deviation between
predicted and measured G band shifts occurs and enlarges
towards the edge of the bubble, especially for SiO,-
supported graphene bubbles. We attribute such edge
deviation in Fig. 4(d) to the limited spatial resolution of
Raman spectroscopy (~1 ym) and the possible doping
effect by the substrate [57,58], which are further elucidated
in Figs. S9 and S10 [39]. As for 2D material tents, a recent
study reported the Raman 2D band shifts for a SiN/Si-
supported graphene drumhead subjected to nanoindenta-
tion [59]. The experimental results can be well captured by
our analytical solution to a 2D material tent with strong-
shear interface (Fig. S11 [39]). We thus claim that our
analytical solutions in Eq. (5), enabled by the shape
characteristics in Fig. 2, can offer valid estimation for
the in-plane strain in 2D material bubbles and tents simply
by knowing their height and radius. It is especially true at
the center of bubbles by Eq. (7), which may, in turn, be used
to measure the Griineisen parameter for the broadly
extended 2D material family.

The 2D material bubble and tent structures have been
exploited in many recent studies [17-22,27,60-64] where
people typically use prepatterned micropillars or interface-
confined contents to produce a single or an array of 2D
material blisters. Our findings show that the strain in
blisters highly hinges on their aspect ratio (h/a). We note
that a balance between adhesion (which favors large areas
of contact) and stretching energy (which diminishes in
blisters of large radius) dictates a constant aspect ratio:

hja = (pAy/Exp)'/*. (8)

where Ay is energy change per unit area, E,p, is the in-plane
stiffness of the 2D material, and ¢ is a constant prefactor.
Equation (8) implies that the aspect ratio or ultimately the
strain of a 2D material bubble or tent is dominated by the
ratio of the 2D material-substrate adhesion to the in-plane

TABLE I. The prefactor ¢ that determines the aspect ratio by
Ay/E,p in Eq. (8).

Shape Weak shear

Bubble /f. {241 =v)|/5(7—v)]} (6/5)
Tent i/. {[72(1 = v)]/[5 — 31|} 18

stiffness of the 2D material. In fact, this interface- and
stiffness-dependent out-of-plane deformation characteristic
has been observed at a variety of length scales—from
graphene to polymer films with thicknesses ranging from
I nm to 1 mm [50]. Here, we determine ¢ for 2D material
bubbles and tents of both strong- and weak-shear interfaces
in Table I [39]. Notably, recent experimental discovery of
the constant aspect ratio of 2D material bubbles for a given
2D material-substrate system provided a good validation
[17], and there is no available experimental data for 2D
material tents so far.

Strong shear
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The purpose of this supplementary material is to provide detailed experimental data, derivations
of the equations discussed in the manuscript, and the numerical method used for solving the
Foppl-von Karméan equations. In Note 1, we present detailed experimental data for the
fabrication and characterization of graphene bubble and MoS, bubble. In Note 2, we present the
strain-related Raman analysis of our graphene bubbles. In Note 3, we present how the sliding
displacement at the edge of the blister relates to the out-of-plane deformation inside the blister,
i.e. Eq. (5) from the main text. In Note 4, we numerically solve the governing equations for a
pressurized membrane (bubble) and a point-loaded membrane (tent) with clamped and sliding
boundary conditions. In Note 5, we derive the relation between the work of adhesion and the

aspect ratio of the nanoblister.



Supplementary Material Note 1

Fabrication of spontaneously formed graphene and MoS; blisters. The same exfoliation procedure is
used for both HOPG and MoS, crystals. Blue polyethylene cleanroom tape (CRT) was used to peel large
and thick flake off the bulk crystal. The exfoliated flakes were then brought into contact with another
piece of the CRT and exfoliated three more times. The flakes were then stored for a minimum of 3 hours
in ambient conditions to allow ambient moisture and other contents to adsorb on the surface of the
exposed flakes. The 300 nm SiO,/Si substrate wafer was first prepared by cutting a 1 cm % 1 cm chip
from the wafer. To maximize the area of monolayer regions that were transferred to SiO,, the SiO, chip
was exposed to O, plasma to remove any organic residue. Immediately after O, plasma exposure, the
exfoliated HOPG flakes on CRT were placed onto the surface of the SiO, chip. Then the SiO, chip was
placed on a hot plate and was heated at 100°C for two minutes. The sample was removed from the hot
plate and cooled to room temperature, after which the CRT was removed. The MoS, on Al,O; sample in
this work is a different location on the same sample as used in a previous work, where the fabrication and
characterization details can be found[1].

Fabrication of air-pressurized MoS, bubbles. MoS, bubbles were prepared by micromechanical
cleavage of a 4-layer MoS, sheet on pre-patterned silicon substrates. The substrate was covered with a
300 nm thick SiO, layer. An array of round holes was fabricated by photolithography and reactive ion
etching, resulting in a depth of 300 nm and a diameter of 3 um. The lateral dimension was measured by
AFM. The samples were placed into a pressure chamber to establish a pressure difference across the
graphene membrane, and the accuracy of the gauge was 0.01 MPa. (see Supplementary Fig. S1 for more
details)

Fabrication of air-pressurized graphene bubbles. Few- and single- layer graphene were prepared by
micromechanical cleavage on the substrates where an array of 5-um-diameter holes was patterned. The
lateral dimension of the monolayer graphene sheet was measured by the optical microscopy, and its

monolayer thickness was identified by Raman spectroscopy. Monolayer graphene bubble supported by



the silicon substrate (strong-shear interface) was made by following the air-pressurizing process. For
monolayer graphene bubble supported by the few-layer graphene (weak-shear interface), a FIB system
(FEI 235 DualBeam) was also used to etch few-layer graphene without using masks, giving a resolution
of 20 nm. The suspended part of the graphene few-layer was etched to expose the SiO, micro-holes, and
then a graphene monolayer was transferred on the top of the perforated multilayer. (see Supplementary
Fig. S2 for more details). In efforts to avoid the sample variation regarding the graphene-substrate
interaction, we prepared multiple samples, especially for the SiO,-supported case. Specifically, we made
four SiO,-supported samples to provide bubbles with nine different heights. Preparation procedures are
relatively challenging and tedious for graphene-supported bubbles. We successfully made three graphene-
supported samples which provided bubbles with six different heights.

Characterization of Graphene bubbles. AFM (Dimension Icon, Veeco) in the standard tapping mode
was utilized to measure the shape of the graphene bubbles, including the maximum deflection and the
radius. We also scanned the profiles of MoS, bubbles and tents and graphene tents in the main text, where
are captured by Eq. (1). Note that for the tent case, the Eq. (1) can be used as a fitting function. High-
frequency Raman measurements were performed using an Invo-Renishaw system with an incident
wavelength of 532 nm from a diode-pumped solid-state laser. The spectral resolution was 1.0 cm " and
the spatial resolution was ~1 pum. The laser intensity was kept below 0.5 mW to avoid local heating
induced by the laser. For the Raman scanning under various heights, Raman spectra from every spot of
the sample were recorded with the step size of 100 nm. All featured bands in Raman spectra of graphene

were fitted with Lorentzian functions to obtain the peak positions.
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Figure S1 | Fabrication and characterization of an air-pressurized MoS; bubble. (a) Optical
microscopy image of MoS; flake deposited on a micro-hole with a diameter of 3 pum. (b) AFM
image of a MoS, bubble at the applied pressure of 0.5 MPa. The graphs correspond to the
topographic profiles along the red line and blue line in the AFM image showing (c) flake

thickness and (d) bubble height.
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Figure S2 | Fabrication process of a multilayer structure. A FIB system (FEI 235 DualBeam)
was also used to etch few-layer graphene without using masks, giving a resolution of 20 nm. The
suspended part of the graphene multilayer was etched to expose the SiO, mirco-holes, and then a
graphene monolayer was transferred on the top of the perforated multilayer. (see Supplementary
Information Fig. S2 for more details) The beam current was 1 pA to ensure the integrity of
graphene. Then the few-layer graphene was annealed at 200°C in both Ar and H, processes for
2h to minimize the number of defects. A thin layer (200 nm) of poly(methyl methacrylate)
(PMMA) resist was then spin-coated on to a substrate containing the desired graphene and
subsequently heated at 120 [ for 12 min to evaporate the solvent from the resist. An adhesive
tape window was placed above the PMMA layer, ensuring that the desired graphene flake was at
the center of the open area. The entire sample was then placed in 3% NaOH solution to etch
away the SiO; layer and thereby the tape window with the PMMA layer containing the graphene
flake floated on the surface of the NaOH solution due to the hydrophobic nature of PMMA,
whereas the Si substrate stays at the bottom. Subsequently, the tape window holding the
graphene-PMMA layer was rinsed with deionized water to remove any residual NaOH solution.
After 12h drying, the graphene-PMMA layer was attached to the hollow metal frame, and then
the positioning transfer stage was used to locate the monolayer graphene on the top of the
graphene substrate using the optical microscopy. Finally, the samples were heated to 150 [ for
3h, and the top PMMA layer was removed using an acetone wash[2].



Bottom graphene Transfer process Stacked graphene layers

Figure S3 | Optical images of our multilayer structure. From left to right: etched bottom few-
layer graphene on SiO,, positioning transfer of the top monolayer graphene on the bottom one,
final configuration of the multilayer structure. The diameter of large holes is 5 pm.

Figure S4 | SEM of the FIB-etched few-layer graphene. A focused ion beam (Ga" ions, FIB —
NOVA 200 Nanolab — FEI Co.) were used to fabricate the multilayer graphene substrate. To
minimize the influence of radiation, the processing parameters were set as operated at 30 kV,
1PA and an annealing treatment were also performed after FIB etching[3].
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Figure S5 | Raman characterization of the bottom and top layer graphene. The layer

numbers of graphene layers were identified by Invo-Renishaw system via the intensity ratio of

G-band and 2D -band. Here, the layer numbers of bottom graphene were determined to be three

layers.
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Figure S6 | Annealing FIB-etched graphene to reduce the defects. Compared with pristine
graphene having G-band and 2D-band, D-band and D’ -band occurred with Raman double
resonance process induced by vacancy defects (caused by the bombardment of Ga") in graphene
structure. Both the Raman D-band and D’ -band are enhanced simultaneously with increasing
irradiation time. Here, the Raman intensity ratio Ip/Ig is proportional to the defect concentration
at low defect density[4].
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Figure S7 | Representative Raman spectra obtained from the SiO;-supported graphene
(red line), graphene-supported graphene, and the suspended graphene with hA/a = 0.004
(blue line). Compared with those measured at the center of the suspended graphene with near
zero deformation, the Raman G bands measured at SiO,-supported and graphene-supported
monolayer graphene are upshifted by 2-4 cm™ and downshifted by 0-2 cm™, respectively. Such
variations in Raman modes are mainly stemmed from doping effect by SiO, substrate [5]. In the
main text, we used the center of suspended graphene with nearly zero deformation (h/a =
0.004,h?/a? = 1.6 x 107°) as the zero-strain reference since we are dealing with the
suspended part of the graphene bubble. However, the doping effect may cause errors in the strain
calculation of bubbles (especially formed by SiO,-supported graphene) that are close to the edge
(the substrate). This may explain the deviation between our theoretical predictions and
experimental measurements in Figure 4d in the main text.



Strang shear inferface

h/a=0.004
— ha=0.06Y
— ha=0.088
— h/a=0.105

Aws=-19¢m’ ;|

Amg = -T cm h:

Intensity (arb. unit)

Ay = 38 emt

i :Aﬂ-’m
=-24 cm !

%—-—

Intensity (arb. unit)

Aw=-33emt .

1Attty

= -38 cnr'?

ya
el

' Aeryy
— - 84 ¢!

;

1200 1400 1600 2200 2400 2600 2800 3000 1200

Raman shift (em )

—_—
2200 2400 2600 2800 3000
Raman shift (em™)

Figure S8 | Representative Raman spectra measured at the center of the graphene bubble
under different levels of deformation (h/a). (a) SiO,-supported graphene bubbles. (b)
Graphene-supported graphene bubbles. We note that when subjected to equal deformation level,
Si0,-supported graphene bubbles exhibit much more significant G and 2D band shifts than
graphene-supported graphene bubbles. Specifically, when the 4/a = 0.1, the G band downshifted
by 53 and 34 cm’ for the SiO,-supported and the graphene-supported graphene bubble,
respectively. And the 2D band downshifted by 102 and 84 cm™ for the SiO,-supported and the
graphene-supported graphene bubble, respectively. This fact implies that the sliding behavior of
graphene-graphene interface at the edge can considerably reduce the strain magnitude in the

bubble.
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Figure S9 | Line mapping of Raman G band frequency. (a) SiO,-supported graphene bubbles.
(b) Graphene-supported graphene bubbles. Unsurprisingly, the Raman G band shifts increase
with the applied out-of-plane deformation. Also, the shifts decrease from the center (»/a = 0) to
the edge (7/a = 1) of the bubble, implying that the “strain” increases from the edge to the center.
When approaching the edge, the curves of Raman G band shift (as functions of the radial
position) behave differently between SiO,-supported and graphene-supported graphene bubbles.
One possible reason likely comes from the different doping levels by the substrate, which is SiO,
for (a) and few-layer graphene for (b). For instance, in Fig. S7, we found the upshifting of G
band with 2-4 cm™ by the SiO, doping while the downshifting of G band with 0-2 cm™ by the
hybrid substrate doping (few-layer graphene on SiO,).
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Figure S10 | Line mapping of the width of Raman G band. (a) For a SiO;-supported graphene
bubble at #/a= 0.074, a series of Raman spectra (G band) are stacked vertically in the direction
of the line scan. The x is defined by the distance to the center of the hole (the bubble).
Substantial variations in both the frequency and the full width at half-maximum (FWHM) can be
detected. The apparent downshift of Raman G band has been shown in Figure S9. The peak
broadening at the edge ( ) and the sharpening at the center ( ) of the hole are
highlighted. (b) We further quantitatively illustrate the FWHM as a function of the radius
location. Solid vertical lines are positioned at the edges of the bubble. We note that:

1) Raman peak width mainly relies on the lattice deformations and is regarded as a
measure of strain distribution in graphene. Typically, the full width at half-
maximum (FWHM) of graphene on a substrate is ranging from 11.5-14 cm™ [4,6].
In Figure S10, we find that the formation of the suspended graphene bubble
obviously enhance the FWHM of G band, especially near the edge of the hole (up
to 20 cm™).

1) The broadening behavior of the G band FWHM is a result of so-called
convoluting shifted peaks from the almost unstrained region (substrate-supported
graphene) and highly strained region (suspended graphene) [7]. The FWHM starts
broadening inside the hole because of the ~1 wm size of the laser spot. In other
words, when the laser is focused on the suspended graphene that is close to the
edge, signals from both suspended graphene and supported graphene may be
detected. These two signal components add up, yielding a non-Lorentzian shape
with relatively large width. Such fact may also contribute to the deviation
between predicted Raman shifts by our theory and measured by experiments,
especially near the edge of graphene bubbles.
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(from K. Elibol et al. [8]). Like that in bubbles,  is defined by the distance to the center of the
tent and « is the radius of the tent. (b) Normalized Raman shifts predicted by our analytical
solution (solid curves) and measured by experiments [8]. Following the same strategy outlined

for the bubbles, we plotted the measured and predicted 2D band shifts for strong-

graphene [9]. The shear deformation potential term in Eq. (6) was neglected since the

neisen parameter

well-characterized for multilayer graphene and it
neisen parameter term under biaxial stress state.

for the 2D band shift of the multilayer
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Supplementary Material Note 3

In main text, we have the explicit radius and circumferential strain fields with the sliding

displacement to be determined:
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To determine u; in terms of the out-of-plane deformations of the blister, we consider the weak-
shear limit, where the membrane in the annular region outside of the blister edge (r > a) slides
inward. With zero shear stress at the frictionless interface between the membrane and the
substrate, the stress and displacement in the annular region can be obtained as the classical Lamé

problem in linear elasticity [9]. The radial and circumferential components of the membrane

stress are:
G
N =24 (2a),
Ng = =2+ (2b),

where N, = o,t and Ny = gyt ; 0, and gy are, respectively, the radial and circumferential

stresses; and t is the membrane thickness. Correspondingly, the radial displacement is

u=— [—w +C,(1 — v)r] (3).

E2D T

For an infinitely large membrane, both the stress and the displacement approach zero as r — oo,

which requires C, = 0. At the edge of the blister (r = a), the radial stress and displacement are
continuous. By letting Eq. (3) be u; at r = a, we obtain C; = — %. For the radial stress, we

have by Hooke’s law

N, = 222 (g, + vep) (4),

1-v2
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where the strain components on the right-hand side are given by Supplementary Egs. (1a) and
(1b) at r = a, and the radial stress on the left-hand side is given by Supplementary Eq. (2a) at

r = a. The stress continuity then leads to

a(1+v) h?
8 a

(5).

Us =

Supplementary Material Note 4

In this section, we numerically solve the Foppl-von Karman (FvK) equations for a circular
membrane under uniform pressure (bubble) and a point load (tent). Here, we briefly introduce
our modifications to a previously established finite difference method to solve for the sliding
boundary case for bubbles and tents [11]. We consider the bending stiffness of the membrane

and write the FvK equations in terms of the displacement [11]:

du  1ldu u _  1-v (dw)2 dw d?w 6)
drz ' rdr 12 2r \dr dr dr? i
d3w  1d?w 1 dw E,p dw [du u 1 (dw\? 1,7
D(—+—————)——— —+v—+—(—) == r)rdr 7
dr3  rdr?2 rZdr 1-v2 dr \dr r 2 \dr r fO CI( ) ( )’

where D is the bending rigidity of the membrane, E, is the in-plane stiffness of the membrane.

The lateral loading intensity, q(r), can take two forms depending on the type of load. For a

P6(1)
2nr

bubble, q(r) is a constant; for a tent, q(r) = , Where P is the magnitude of the point load

and &(r) is the Dirac delta function. We then adopt the classical relation between the bending

stiffness and in-plane stiffness such that the thickness is described as t = \/ 12(1 —Vv?)D/E,p.
For convenience, we normalize the FvK equations using the following dimensionless quantities:
r=r/t,a=ajt, u=u/t, w=w/t, iy =us/t, q(r) =q()t3/D, and P = Pt/D. We
replace the deflection with the angle of rotation, 8 = dw/dr, such that Eq. (6) and Eq. (7)

become the following nondimensional equations:

_dfuw 1du U 1ovgy  pd6
T Tia at 0 T0E=0 ®),
d?e  1d9 @ du u, 62 17— N= 9=
f=R 42120 (S +vi+ D) — 2 [T G()FdF =0 9).
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Following the finite difference method, we discretize the equations with Ar = a/n and 1}, =

kAt for k = 0 to n. At each internal node (k = 1 ton — 1), we have
2 1) — 2 1) — 2 1) — 1-
Ik = %(1 + g) U1 — %(2 +§)uk +%(1 —i)uk—l +;;91§ +%9k(9k+1 — O-1)
(10),
2 1 2 1 2 1 6n ,_ _

fi = %(1 +§) Or+1 —%(2 +ﬁ) O +%(1 —;) Ok-1 —gn(ukﬂ —Up_1) — o Okl —
60; — =0 (11),
where (, is gka/2n for the bubble and is Pn/(2mka) for the tent. The boundary conditions are

0y =0, =0,uy =0, uy = Us. In calculations, U is a prescribed but not arbitrary quantity. For
each given i, the load P needs to be solved by matching the boundary conditions at the edge:
us; = 0 for a clamped interface; the displacement and radial stress component are continuous
across the edge for a sliding interface. The Newton-Raphson method was used to solve
Supplementary Eqgs. (10) and (11). The analytical plate solution was used to provide the initial

guess for the bubble, while Schwerin’s classic solution was used for the tent:

0 onte = (£~ 1) (12),

k  bubble ~ 16n \n2
_ 1
0) __2 ( Pn )3
ek tent 3 \4n(1-v2)ak (13),
and a}({o) = 0. We successively iterate until the convergence condition is satisfied. At each

iteration, the residuals are calculated by Supplementary Eqgs. (12) and (13) at each internal node,

and the correction vector is calculated as

-1

o o
G =—|o0 oxt (1) (14),
2 on

where A@ is a vector of n-1 components (A@,, k = 1ton — 1) and same for Au, f, and g. The
Jacobian matrix on the right-hand side of Eq. (14) consists of four square blocks, each with a
rank of n-1. This matrix can be readily constructed from Supplementary Eqs. (10) and (11). For
the convergence criterion, we require that the L2-norm of the relative correction vector is smaller
than 107%, i.e. 1% accuracy. If the convergence criterion is not satisfied, the iteration procedure
then repeats with a new approximation, 9,5”1) = B,Ei) + Af;, and ﬁ,((iﬂ) = ﬁ,(ci) + Au.

Subsequently, we calculate the deflection at each node by numerical integration:
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for

the center deflection (

to , and

(15)

. In Fig. S1, we plotted the calculated deflection normalized by

. The strain components at each node can also be calculated as

— — (16),
— (17),
for to . At the center, —. Note that at the edge, we can have
— and —, due to the continuity of radial stress and displacement across the
edge.
a 1.0 Bubblc: strong shear h 1.04 Bubble: weak shear
0.8 0.584
0.6+ 0.64
I =
= 2
0.4 0.4
Dashed lines: numerical results Dashed lincs: numerical results
_____ 11 =< h/a = ———— <. hia <
02l 0.01 <h/a < 0.20 - 0.01 < h/a < 0.20
Plate Plate
0.0- Membrane 0.0 Membrane
00 02 04 06 08 10 0.0 0.2 04 0.6 0.8 1.0
ria ra
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%
%
)
o -
0.0 e .64
= =
E S
0.4+ 0.4-
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- 0.01 < h/a=0.20 Jl 0.01 <h/a=<020
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Figure S12 | Out-of-plane deformations in 2D material blisters. Normalized deflection curves
predicted by our theoretical solution (solid lines) and solved by numerical analysis (dash lines)
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for the bubble (a, b) and tent (¢, d), subject to both clamped, strong and frictionless, sliding
interfaces. The deflection curve is normalized by the center deflection. The numerical result is
solved for a monolayer graphene with a = 200 nm and 0.01 < h/a < 0.2.

Supplementary Material Note 5

In main text, we derived a scaling law by considering the balance between adhesion and strain

energy in a bubble or a tent:

h/a = (¢Ay/Exp)*/* (18).

The prefactor, ¢, can be obtained by minimizing the total energy. The total energy of the system
Utotar consists of the following three energy terms:

Utotar = Ug + U + Up (19),
where U, is the elastic strain energy of the membrane, U; is the interface adhesion energy
between the membrane and the substrate, and U, is the potential energy associated with the
blister contents. We can now derive the elastic strain energy by Eq. (4) from the main text,
consisting of two parts, one due to stretching and the other due to bending. According to our
numerical results, the bending effects can reasonably be neglected for our experimentally

observed blisters. The elastic stretching energy per unit area of the membrane is

E
Us(r) = 2(132) (5,2 + 2ve, gg + £92) (20),

This leads to the strain energy of a blister in the present study:

Ug =2m foa Us(r) rdr + 21 faoo Us(r) rdr (21),
where the first term represents the strain energy in the laterally loaded membrane, and the second
term is a result of interface sliding (which is negligible for the strong-shear limit).

The adhesion energy required to form the blister is simply the energy change per unit area, 4y,
multiplied by the blister area,

U, = ma?4y (22),
where we assume that the change in contact area due to the deformation is negligible since it
scales as a?0(h?/a?).

The last term in the Supplementary Eq. (19) is the potential energy associated with contents,
which is to be determined according to the interface confining conditions. For a liquid-filled

bubble and a post-supported tent, Up = 0. For a bubble filled with ideal gas, Up follows the ideal
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gas law. Here, we derive ¢ for the six different scenarios with differing interfacial shear

conditions and interfacial contents.

i)

iii)

Liquid-filled bubbles with a strong-shear interface. The membrane outside the bubble
edge does not deform and confined liquid does not contribute to Updue to its
incompressibility. The total free energy for the bubble is then obtained as a function
of two kinematic parameters by explicitly rewriting Supplementary Eq. (19) as

2(7-Vv)E,pV*
3m3(1-v)all

Utotar(@) = + ma’dy (23),

where V = gazh, due to the Eq. (1) with &« = 2 from the main text, is the volume of

the interface confined liquid. Given the incompressible V, the first term on the right-
hand side of Supplementary Eq. (23) is the elastic strain energy in the membrane,
which decreases with increasing the bubble radius a. The second term stems from the
change of interface energy, which increases with increasing bubble radius. The
competition between the two terms leads to an equilibrium bubble radius that

minimizes the total free energy, namely

(@)~ @

24(1-v)
5(7-v)

which gives rise to Eq. (18) with ¢ =
Liquid-filled bubbles with a weak-shear interface. The elastic strain energy outside
the bubble has to be considered due to the interfacial sliding. Following
Supplementary Egs. (19) — (23), the total free energy is obtained as

8E,pV*
37T3a10

Utotar(@) = + ma*dy (25).

Similarly, (%)V = 0 gives rise to Eq. (18) with ¢ = g.
Gas-filled bubbles with a strong-shear interface. In this case, the isothermal
expansion of fixed number of interface confined gas molecules (N) contributes to the

potential energy:

_ V(po)
U, = fv(p)" pdV (26),
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where V(p) is the volume of an ideal gas under current pressure p and V(p,) is the
volume of an ideal gas under atmospheric pressure. The pressure and volume of the
ideal gas are assumed to follow the ideal gas law, which behaves as a constraint when
minimizing the total energy of the system:

n(7-v) E;ph*
6(1-v) a2 ’

NKT = pV =~ 7),

where k is Boltzmann constant and T is temperature, and the right-hand side relation
is readily obtained by minimizing the potential energy of the uniformly pressurized
membrane [12]. By combining Supplementary Egs. (19) — (22) with Supplementary
Eq. (27), we write the total free energy in terms of only two kinematic parameters

(N, a):

Utotar(@) = - — NT In Aa?/® + wa?dy (28),
where A is a constant related to the reference state of gas in ambient condition. The
first term on the right-hand side of Supplementary Eq. (28) is the elastic strain energy
in the membrane, which is independent of both the bubble radius and height under
constant N. The second term is the potential energy of the gas which decreases with
increasing bubble radius, a. Meanwhile, the interfacial energy term increases as part
of graphene is detached from the substrate. The competition of the last two terms
leads to an equilibrium bubble radius when the total free energy is minimized such

that
(@) —o )

Supplementary Eq. (29) thus gives rise to

__ 5NKT
" 4ma?

Ay

(30).
By plugging Supplementary Eq. (27), we derive ¢p = % for Supplementary Eq.

(17), which is also the case for liquid-filled bubbles with a strong-shear interface.
Gas-filled bubbles with a weak-shear interface. When interface sliding occurs, Eq.

(27) becomes
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