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Nanoblisters such as nanobubbles and nanotents formed by two-dimensional (2D) materials have been
extensively exploited for strain engineering purposes as they can produce self-sustained, nonuniform in-
plane strains through out-of-plane deformation. However, deterministic measure and control of strain fields
in these systems are challenging because of the atomic thinness and unconventional interface behaviors of
2D materials. Here, we experimentally characterize a simple and unified power law for the profiles of a
variety of nanobubbles and nanotents formed by 2D materials such as graphene and MoS2 layers. Using
membrane theory, we analytically unveil what sets the in-plane strains of these blisters regarding their
shape and interface characteristics. Our analytical solutions are validated by Raman spectroscopy measured
strain distributions in bulged graphene bubbles supported by strong and weak shear interfaces. We advocate
that both the strain magnitudes and distributions can be tuned by 2D material-substrate interface adhesion
and friction properties.
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Two-dimensional (2D) materials are atomically thin crys-
tals with unique properties that lend well to next-generation
ultrathin electronic and optoelectronic devices [1–4]. It has
been well established that mechanical strain can strongly
perturb the band structure of thesematerials, giving rise to the
possibility of using mechanical deformation to tune their
electronic and photonic performance dramatically [5–9]. In
fact, this principle, termed strain engineering, is now rou-
tinely used in manufacturing traditional semiconductor
devices [10]. The strain engineering of 2D materials is
particularly exciting because an individual atomic sheet is
intrinsically capable of sustaining much larger mechanical
strain compared to either their bulk counterparts or conven-
tional electronicmaterials [11,12].Also, the atomic thickness
of 2Dmaterials allows them to be easily poked or pressurized
from the third dimension (i.e., perpendicular to their plane of
atoms) [13–17]. The resulting configurations including
nanoscale bubbles and tents can be called by a unified name,
2D material blisters [13–20]. Recently, the considerable
strain associated with these nanoblisters has created oppor-
tunities for the study of new fundamental physics and
applications such as enormous pseudomagnetic fields,
large-scale quantum emitters, and so on [21–23].
A major challenge in these systems is to find out or even

control the strain in the blisters deterministically, calling for

understanding and validating how the blister geometry
intertwines with mechanics in these atomic sheets [24,25].
So far, self-similar profiles of the 2D material bubbles
have been widely discovered in experiments [15,17,26,27].
However, it remains challenging to analytically relate the
bubble and tent shape characteristics to the full-field strain
distributions and experimentally prove the relation. Con-
sequently, accurate strain tuning through blister shape
adjustments is still elusive [21,22,24]. One difficulty comes
from the intrinsically nonlinear coupling between in-plane
strain and out-of-plane deformations predicted by the mem-
brane theory [28].More fundamental concern arises from the
subtle nature of 2D materials, where the material thickness
approaches the atomic scale and the surface is atomically
smooth [29]. These features even challenge the applicability
of continuum theories from a perspective of deformation
physics [30–34]. As a result, the prevailing analysis of the
strain distribution and strain-coupled physics and chemistry
in 2D material blisters relies heavily on numerical tech-
niques, such as case-by-case molecular dynamics (MD)
simulations [22,24,35–37]. To deal with these concerns, a
combination of continuum theories with microscale experi-
ments is highly needed and yet to emerge so far.
Herein, we experimentally explore the strain field in

nanoblisters formed by 2D materials accounting for
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different natures of 2D materials interfaces. Using tapping
mode atomic force microscopy (AFM), we experimentally
characterized a variety of bubbles and tents formed by
graphene and MoS2 layers. Their shapes were empirically
found to follow a simple power law, enabling closed-form
analytical solutions to the Föppl–von Kármán equations at
the membrane limit. Our results show that the strain
distribution in the 2D material can be estimated by simply
measuring the height and radius of the bubbles and tents,
and that the strain highly depends on the interfacial
interaction between the 2D material and the underlying
substrate. To validate our analytical solutions, we exper-
imentally carried out Raman mapping on pressurized
graphene nanobubbles with strong (graphene-SiO2) and
weak (graphene-graphene) shear interfaces. The measured
and analytically predicted Raman shifts have found good
matches for both types of interfaces.
We first investigate the shape characteristics of both

nanobubbles and nanotents of 2Dmaterials, which can form
spontaneously or be created in a controllable manner. For the
spontaneous case, nanometer-scale bubbles and tents form
when monolayer or few-layer 2D materials are exfoliated or
transferred on a target substrate. The formationmechanism is
typically attributed to the inevitably trapped water, hydro-
carbon, and/or nanoparticles at the 2D material-substrate
interface during sample preparation [15,17]. The sponta-
neously formed nanobubbles and nanotents analyzed in this
study were made by mechanically exfoliating few- and
monolayer graphene and MoS2 from their bulk crystals on
silicon substrate, or transferringCVD-grownMoS2 on a gold
or Al2O3 substrate [38]. Details on the transfer process for
different types of samples are provided in the methods
section of the Supplemental Material [39]. Figure 1(a)
displays typical examples of nanobubbles formed by mono-
layer graphene on SiO2. When nanoparticles were trapped,
2D materials can drape around the nanoparticle, forming
micro- or nanotents as shown in Figs. 1(b) and 1(c). To form
controllable bubbles, we transferred monolayer graphene
and a 4-layer MoS2 to cover prepatterned microcavities in
SiO2 to form suspendeddrumheads and then followed awell-
established gas diffusion procedure to bulge the drumheads
[16]. In this case, the bubbles can be pressurized controllably
[Fig. 1(d) [39]].
The out-of-plane profiles of all the different types of

bubbles and tents prepared by us and collected from the
literature are summarized in Fig. 2. Although the radii of
the 2D material blisters range from tens to thousands of
nanometers, we realized that the height profiles of bubbles
and tents collapse onto two master curves if we normalize
the out-of-plane deflection (w) of each blister by its central
height (h), and the radial positions (r) by its radius (a). We
discovered that the collapsed height profiles can be
described by a unified power form,

w
h
¼ 1 −

�
r
a

�
α

; ð1Þ

where α is 2 for bubbles or 2=3 for tents. Note that Fig. 2
summarizes graphene and MoS2 bubbles and tents with
aspect ratios ranging from 0.05 to 0.20. Remarkably,
regardless of the aspect ratios, the types of 2D material,
the supporting substrates (silicon, alumina, or atomically
flat 2D material flakes), the content in the bubble (liquid or
gas), or the fabrication methods, all bubble profiles can
collapse to Eq. (1) with α ¼ 2 [Fig. 2(a)]. We also found
that for profiles of graphene and MoS2 tents, data obtained
from MD simulations or coarse-grained (CG) modeling
[22,24,36] can also collapse to Eq. (1) with α ¼ 2=3
[Fig. 2(b)]. In fact, the empirical conclusion of α ¼ 2 is

FIG. 1. From top to bottom: Atomic force microscopy (AFM)
phase andheight imagesof spontaneously formedgraphenebubbles
on SiO2 (a), a multilayer graphene tent on SiO2 (b), and a CVD-
MoS2 tent on gold film (c). (d) From left to right: optical image of
graphene flakes exfoliated onprepatternedSiO2withmicrocavities,
AFM height images of a monolayer graphene bubble, and a four-
layerMoS2 bubble. Note that (S) represents bubbles or tents formed
spontaneouslywhile (P) represents those formed by controllable air
pressurization.

(a) (b)

FIG. 2. Universal shape characteristics of 2D material bubbles
and tents. (a) Normalized bubble profiles measured by our
experiments and collected from literature. Note that samples
from Ref. [17] feature atomically smooth interfaces, are labeled
by *. (b) Normalized tent profiles measured by our experiments
and simulation results in the literature. The simulation data about
graphene and MoS2 is from Refs. [36,24], respectively.
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a widely adopted simple membrane solution for blisters
[48,49] and α ¼ 2=3 is well matched with the analytical
solution to an indented blister in the literature [28,50]. We
thus conclude that this simple power form can be a good
approximation for describing the profiles of 2D material
bubbles and tents.
Now that the out-of-plane displacement of 2D material

blisters is readily available as given in Eq. (1), we can try to
solve the in-plane displacement and then calculate strains
out of displacements. Attributing to the atomic thinness of
2D materials, it is sufficient to simply use the membrane
limit of the Föppl–von Kármán equations [28,48]. The in-
plane equilibrium equation in terms of displacements is
therefore

d2u
dr2

þ 1

r
du
dr

− u
r2

¼ − 1 − ν

2r

�
dw
dr

�
2 − dw

dr
d2w
dr2

; ð2Þ

where u is the in-plane displacement of the 2D material and
ν is the Poisson’s ratio. Plugging Eq. (1) into this equation
and solving the 2nd order ODE using the finite condition
when r → 0 can yield an analytical solution to the in-plane
displacement:

u ¼ ζðνÞ h
2

a

�
r
a
−
�
r
a

�
2α−1�

þ us
r
a
; ð3Þ

where ζðνÞ ¼ f½αð2α − 1 − νÞ�=½8ðα − 1Þ�g and us is a
constant related to the slippage at the edge of the blister
(r ¼ a). This explicit displacement field allows for the
direct solutions for both the radial and circumferential
strain fields:

εr ¼
8<
: ζðνÞ h2a2

h
1 − 1þν−2αν

2α−1−ν ðraÞ2α−2
i
þ us

a ; r ≤ a

− aus
r2 ; r > a

; ð4aÞ

εθ ¼
8<
:ζðνÞh2a2

h
1− ðraÞ2α−2

i
þ us

a ; r≤ a
aus
r2 ; r > a

: ð4bÞ

Clearly, the sliding of the 2D material-substrate interface
ðus ≠ 0Þ can induce nonzero strain in the supported zone
ðr > aÞ, which is important for strain engineering appli-
cations of 2D materials [35]. Typically, the edge of the 2D
material blister is assumed to be fully clamped due to
adhesion and strong shear interactions with the supporting
substrate outside of boundary [11,22.16]. However, the
atomically smooth surfaces of 2D materials make inter-
facial sliding particularly easy. Recent experiments on gas-
pressurized graphene bubbles revealed that the shear
interactions between graphene and its substrate can be
fairly weak, leading to nonlinear, deflection-dependent
interface sliding displacements [14,51]. It has also been

discovered that well-established theories assuming clamped
conditions offer good approximations only when the deflec-
tion is small (h=a < 0.1), while experimental measurements
deviated from theories with clamped boundaries in samples
with large deflection [14]. Recent studies on 2D material
interface further highlighted the so-called superlubrication
(near-zero friction) when a 2D material sits on atomically
smooth substrates, including itself, which is very common in
2D materials devices [52].
Considering that the graphene and MoS2 blisters in

Fig. 2 encompass either relatively strong interfaces with
small deflections or atomically lubricated interfaces, our
prime interest of this study is in two limits: strong-shear
limit (clamped, fully bonded interface) and weak-shear
limit (sliding, frictionless interface). For the former, we can
apply clamped boundary at the edge of the blister. For the
latter, the stress and displacement in the outer supported
region can be obtained as the classical Lamé problem in
linear elasticity [53]. The stress and displacement continu-
ity then leads to [39]

us ¼
(
0; strong-shear limit

− αð1þvÞ
8

h2
a ; weak-shear limit

: ð5Þ

Now Eqs. (4) and (5) combined offer the complete
analytical solutions to the strain field in 2D materials
forming blisters, with either strong or weak interaction
with their substrates. After appropriately choosing the α
and us according to the specific blister shape and 2D
material-substrate interface, one can easily compute the
strain distribution inside and outside of a 2D blister by
simply measuring its height and radius. We note that a
generalized analysis may be performed by accounting for
the detailed frictional resistance (e.g., the stick-slip behav-
ior) at the 2D material-substrate interface [54].
In Fig. 3, we plot the strain distributions of the 2D

material blister as solid curves using our equations. The
strain is normalized by h2=a2 such that the distribution will
only depend on the interface conditions and material
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FIG. 3. Normalized strain distribution curves predicted by our
analytical solution (solid lines) and solved by numerical analysis
(markers) in bubbles (a) and tents (b), subjected to both clamped
(strong interface) and frictionless (sliding interfaces) boundary
conditions. The strain is normalized by h2=a2, giving rise to
deflection-independent curves. The numerical results are solved
for a monolayer graphene with aspect ratios ranging from
0.02 < h=a < 0.2.
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properties, i.e., the Poisson’s ratio. Comparing Fig. 3(a) for
bubbles and Fig. 3(b) for tents, it is clear that the strain
gradients are much larger in tents, with strain divergence
towards the center of the tents due to the assumed point
load. Note that under the same aspect ratio, interface sliding
can considerably reduce the strain level in 2D material
blisters in comparison with blisters with strong-shear
interfaces. This highlights the importance of accounting
for the ultralubricated interface in the case that the 2D
material is supported by an atomically smooth substrate.
Next, we try to verify our analytical solutions numeri-

cally. We solved the nonlinear Föppl–von Kármán equa-
tions with clamped and slipping boundaries, where the
bending behavior is also considered for generality [39]. The
numerical solutions are plotted as markers in Fig. 3 for
monolayer graphene with aspect ratios ranging from 0.05 to
0.20, to directly compare with the analytical solutions
(solid curves). Since analytically solved strains are strictly
proportional to h2=a2, after normalization, the solid curves
are no longer dependent on the aspect ratio. However, the
numerically solved strains show more complicated depend-
ence on the aspect ratio, because the markers for different
aspect ratios do not fully collapse. Despite this small
discrepancy, the overall good agreement between the two
solutions indicates that for our experimentally observed
blisters with aspect ratios ranging from 0.05 to 0.20, bending
effects are negligible. Thus, the numerical results have
verified that our analytical solution given by Eq. (4) is a
reasonable estimation for strains in both bubbles and tents
under both clamped and slipping boundary conditions.
Our analytical solution, though verified numerically, is

still challenged by a widespread concern on the breakdown
of classical membrane theories at the atomic limit [30–34].
To examine the applicability of our analytical solutions, we
performed graphene bulging experiments with intentionally
designed strong- and weak-shear interfaces. Monolayer
graphene sealed microcavities were fabricated by micro-
mechanical cleavage of graphene over SiO2 substrate with
prepatterned 2.5-micron-radius holes [Fig. 4(a)]. Following
a well-developed gas diffusion method [16], we can create a
pressure difference across the monolayer and bulge it in a
controlled manner.
The strong-shear-interface graphene bubble was gener-

ated by pressurizing a graphene monolayer on SiO2 with
the maximum deflection less than 150 nm. Under this
condition, the interface sliding was found to be minimal;
thus it is compatible with the clamped interface assumption
[14]. To experimentally study the weak-shear case, we
assembled a graphene-SiO2 supporting substrate for the
graphene bubble [Fig. 4(b)]. First, few-layer graphene was
transferred over a SiO2 microhole. The suspended portion
of the multilayer graphene was then etched to open up the
microhole. After creating an atomically flat region around
the microhole, a monolayer graphene was precisely trans-
ferred to cover this microhole, resulting in a graphene

drumhead supported by few-layer graphene [39]. Applying
a differential pressure across the suspended graphene
membrane, this graphene bubble was expected to bulge
under weak-shear interface as the graphene-graphene inter-
face can be considered as superlubricated.
We performed multiple AFM and Raman characteri-

zations on the graphene bubbles with well-controlled
interfaces [39]. For an axisymmetric graphene bubble,
the G band shifts in the Raman spectrum are related to
the strain components through the following equation [55]:

ΔωG

ω0

¼ −γðεr þ εθÞ �
β

2
ðεr − εθÞ; ð6Þ

where εr and εθ are analytically expressed in Eq. (4), γ is
the Grüneisen parameter, and β is the shear deformation
potential that details the amount of splitting in the G bands,
which were experimentally calibrated for monolayer gra-
phene (γ ¼ 1.99 and β ¼ 0.99) [56]. Therefore, analytical
prediction for strain fields can be readily converted to
analytical prediction for the G band shifts using Eq. (6).
Particularly, at the center of the bubble where εr ¼ εθ, theG
band shifts are predicted by Eqs. (4) and (6) to take a very
simple form:

ΔωG ¼ −cγω0

h2

a2
ð7Þ

where the constant c is ½ð3 − νÞ=2� for bubbles supported
by strong shear interfaces and is (1 − ν) by weak shear
interfaces.
Because of space limitations, we present the details of

the experimental Raman characterizations in the Supple-
mental Material, Note 2 [39]. Here, we first show the

(a)

(c) (d)

(b)

FIG. 4. Schematics of the graphene drumheads formed on a
SiO2 substrate (a) and on a graphene-covered SiO2 substrate (b).
(c) Raman shifts of the G band at the center of graphene bubbles
predicted by our analytical solution (solid curves) and measured
by our experiments (markers). (d) Normalized Raman shifts of
the G band (ΔωGa2=ω0h2) as functions of the normalized radial
position (r=a) for monolayer graphene bubbles.
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Raman G band shifts at the center of graphene bubbles as a
function of h2=a2 in Fig. 4(c), which is predicted to be
linear by our analytical solution in Eq. (8). The markers
represent experimental data for both SiO2- (brown) and
graphene-supported (green) graphene bubbles and the solid
curves correspond to predicted G band shifts for strong-
(green) and weak-shear-interfaced (brown) 2D material
bubbles. By setting the Poisson’s ratio of graphene to be
0.165 in Eq. (7), we find good agreement between our
theoretical predictions and experimental measurements.
This may confirm the applicability of our simplified
membrane theory in relating the out-of-plane deformations
to in-plane strains for 2D material blisters.
In Fig. 4(d), we further normalize both the measured and

predictedG band shifts by h2=a2 and plot them as functions
of the normalized radial position r=a. Our weak-shear and
strong-shear model can partially capture the full-field strain
distribution in graphene-on-graphene and graphene-on-
SiO2 bubbles, respectively. However, deviation between
predicted and measured G band shifts occurs and enlarges
towards the edge of the bubble, especially for SiO2-
supported graphene bubbles. We attribute such edge
deviation in Fig. 4(d) to the limited spatial resolution of
Raman spectroscopy (∼1 μm) and the possible doping
effect by the substrate [57,58], which are further elucidated
in Figs. S9 and S10 [39]. As for 2D material tents, a recent
study reported the Raman 2D band shifts for a SiN=Si-
supported graphene drumhead subjected to nanoindenta-
tion [59]. The experimental results can be well captured by
our analytical solution to a 2D material tent with strong-
shear interface (Fig. S11 [39]). We thus claim that our
analytical solutions in Eq. (5), enabled by the shape
characteristics in Fig. 2, can offer valid estimation for
the in-plane strain in 2D material bubbles and tents simply
by knowing their height and radius. It is especially true at
the center of bubbles by Eq. (7), which may, in turn, be used
to measure the Grüneisen parameter for the broadly
extended 2D material family.
The 2D material bubble and tent structures have been

exploited in many recent studies [17–22,27,60–64] where
people typically use prepatterned micropillars or interface-
confined contents to produce a single or an array of 2D
material blisters. Our findings show that the strain in
blisters highly hinges on their aspect ratio (h=a). We note
that a balance between adhesion (which favors large areas
of contact) and stretching energy (which diminishes in
blisters of large radius) dictates a constant aspect ratio:

h=a ¼ ðϕΔγ=E2DÞ1=4: ð8Þ

whereΔγ is energy change per unit area, E2D is the in-plane
stiffness of the 2D material, and ϕ is a constant prefactor.
Equation (8) implies that the aspect ratio or ultimately the
strain of a 2D material bubble or tent is dominated by the
ratio of the 2D material-substrate adhesion to the in-plane

stiffness of the 2D material. In fact, this interface- and
stiffness-dependent out-of-plane deformation characteristic
has been observed at a variety of length scales—from
graphene to polymer films with thicknesses ranging from
1 nm to 1 mm [50]. Here, we determine ϕ for 2D material
bubbles and tents of both strong- and weak-shear interfaces
in Table I [39]. Notably, recent experimental discovery of
the constant aspect ratio of 2D material bubbles for a given
2D material-substrate system provided a good validation
[17], and there is no available experimental data for 2D
material tents so far.
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The purpose of this supplementary material is to provide detailed experimental data, derivations 

of the equations discussed in the manuscript, and the numerical method used for solving the 

Föppl–von Kármán equations. In Note 1, we present detailed experimental data for the 

fabrication and characterization of graphene bubble and MoS2 bubble. In Note 2, we present the 

strain-related Raman analysis of our graphene bubbles. In Note 3, we present how the sliding 

displacement at the edge of the blister relates to the out-of-plane deformation inside the blister, 

i.e. Eq. (5) from the main text. In Note 4, we numerically solve the governing equations for a 

pressurized membrane (bubble) and a point-loaded membrane (tent) with clamped and sliding 

boundary conditions. In Note 5, we derive the relation between the work of adhesion and the 

aspect ratio of the nanoblister.  
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Supplementary Material Note 1 
 
Fabrication of spontaneously formed graphene and MoS2 blisters. The same exfoliation procedure is 

used for both HOPG and MoS2 crystals. Blue polyethylene cleanroom tape (CRT) was used to peel large 

and thick flake off the bulk crystal. The exfoliated flakes were then brought into contact with another 

piece of the CRT and exfoliated three more times. The flakes were then stored for a minimum of 3 hours 

in ambient conditions to allow ambient moisture and other contents to adsorb on the surface of the 

exposed flakes. The 300 nm SiO2/Si substrate wafer was first prepared by cutting a 1 cm × 1 cm chip 

from the wafer. To maximize the area of monolayer regions that were transferred to SiO2, the SiO2 chip 

was exposed to O2 plasma to remove any organic residue. Immediately after O2 plasma exposure, the 

exfoliated HOPG flakes on CRT were placed onto the surface of the SiO2 chip. Then the SiO2 chip was 

placed on a hot plate and was heated at 100°C for two minutes. The sample was removed from the hot 

plate and cooled to room temperature, after which the CRT was removed. The MoS2 on Al2O3 sample in 

this work is a different location on the same sample as used in a previous work, where the fabrication and 

characterization details can be found[1].  

Fabrication of air-pressurized MoS2 bubbles. MoS2 bubbles were prepared by micromechanical 

cleavage of a 4-layer MoS2 sheet on pre-patterned silicon substrates. The substrate was covered with a 

300 nm thick SiO2 layer. An array of round holes was fabricated by photolithography and reactive ion 

etching, resulting in a depth of 300 nm and a diameter of 3 μm. The lateral dimension was measured by 

AFM. The samples were placed into a pressure chamber to establish a pressure difference across the 

graphene membrane, and the accuracy of the gauge was 0.01 MPa. (see Supplementary Fig. S1 for more 

details) 

Fabrication of air-pressurized graphene bubbles. Few- and single- layer graphene were prepared by 

micromechanical cleavage on the substrates where an array of 5-μm-diameter holes was patterned. The 

lateral dimension of the monolayer graphene sheet was measured by the optical microscopy, and its 

monolayer thickness was identified by Raman spectroscopy. Monolayer graphene bubble supported by 
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the silicon substrate (strong-shear interface) was made by following the air-pressurizing process. For 

monolayer graphene bubble supported by the few-layer graphene (weak-shear interface), a FIB system 

(FEI 235 DualBeam) was also used to etch few-layer graphene without using masks, giving a resolution 

of 20 nm. The suspended part of the graphene few-layer was etched to expose the SiO2 micro-holes, and 

then a graphene monolayer was transferred on the top of the perforated multilayer. (see Supplementary 

Fig. S2 for more details). In efforts to avoid the sample variation regarding the graphene-substrate 

interaction, we prepared multiple samples, especially for the SiO2-supported case. Specifically, we made 

four SiO2-supported samples to provide bubbles with nine different heights. Preparation procedures are 

relatively challenging and tedious for graphene-supported bubbles. We successfully made three graphene-

supported samples which provided bubbles with six different heights. 

Characterization of Graphene bubbles. AFM (Dimension Icon, Veeco) in the standard tapping mode 

was utilized to measure the shape of the graphene bubbles, including the maximum deflection and the 

radius. We also scanned the profiles of MoS2 bubbles and tents and graphene tents in the main text, where 

are captured by Eq. (1). Note that for the tent case, the Eq. (1) can be used as a fitting function. High-

frequency Raman measurements were performed using an Invo-Renishaw system with an incident 

wavelength of 532 nm from a diode-pumped solid-state laser. The spectral resolution was 1.0 cm−1, and 

the spatial resolution was ∼1 μm. The laser intensity was kept below 0.5 mW to avoid local heating 

induced by the laser. For the Raman scanning under various heights, Raman spectra from every spot of 

the sample were recorded with the step size of 100 nm. All featured bands in Raman spectra of graphene 

were fitted with Lorentzian functions to obtain the peak positions.  
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Figure S1 | Fabrication and characterization of an air-pressurized MoS2 bubble. (a) Optical 
microscopy image of MoS2 flake deposited on a micro-hole with a diameter of 3 μm. (b) AFM 
image of a MoS2 bubble at the applied pressure of 0.5 MPa. The graphs correspond to the 
topographic profiles along the red line and blue line in the AFM image showing (c) flake 
thickness and (d) bubble height. 
 



6 
 

 
Figure S2 | Fabrication process of a multilayer structure. A FIB system (FEI 235 DualBeam) 
was also used to etch few-layer graphene without using masks, giving a resolution of 20 nm. The 
suspended part of the graphene multilayer was etched to expose the SiO2 mirco-holes, and then a 
graphene monolayer was transferred on the top of the perforated multilayer. (see Supplementary 
Information Fig. S2 for more details) The beam current was 1 pA to ensure the integrity of 
graphene. Then the few-layer graphene was annealed at 200°C in both Ar and H2 processes for 
2h to minimize the number of defects. A thin layer (200 nm) of poly(methyl methacrylate) 
(PMMA) resist was then spin-coated on to a substrate containing the desired graphene and 
subsequently heated at 120 � for 12 min to evaporate the solvent from the resist. An adhesive 
tape window was placed above the PMMA layer, ensuring that the desired graphene flake was at 
the center of the open area. The entire sample was then placed in 3% NaOH solution to etch 
away the SiO2 layer and thereby the tape window with the PMMA layer containing the graphene 
flake floated on the surface of the NaOH solution due to the hydrophobic nature of PMMA, 
whereas the Si substrate stays at the bottom. Subsequently, the tape window holding the 
graphene-PMMA layer was rinsed with deionized water to remove any residual NaOH solution. 
After 12h drying, the graphene-PMMA layer was attached to the hollow metal frame, and then 
the positioning transfer stage was used to locate the monolayer graphene on the top of the 
graphene substrate using the optical microscopy. Finally, the samples were heated to 150 � for 
3h, and the top PMMA layer was removed using an acetone wash[2]. 
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Figure S3 | Optical images of our multilayer structure. From left to right: etched bottom few-
layer graphene on SiO2, positioning transfer of the top monolayer graphene on the bottom one, 
final configuration of the multilayer structure. The diameter of large holes is 5 μm. 
 
 
 
 
 

 
Figure S4 | SEM of the FIB-etched few-layer graphene.  A focused ion beam (Ga+ ions, FIB – 
NOVA 200 Nanolab – FEI Co.) were used to fabricate the multilayer graphene substrate. To 
minimize the influence of radiation, the processing parameters were set as operated at 30 kV, 
1PA and an annealing treatment were also performed after FIB etching[3]. 
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Figure S5 | Raman characterization of the bottom and top layer graphene. The layer 
numbers of graphene layers were identified by Invo-Renishaw system via the intensity ratio of 
G-band and 2D -band. Here, the layer numbers of bottom graphene were determined to be three 
layers. 

 
 

  
Figure S6 | Annealing FIB-etched graphene to reduce the defects. Compared with pristine 
graphene having G-band and 2D-band, D-band and D′-band occurred with Raman double 
resonance process induced by vacancy defects (caused by the bombardment of Ga+) in graphene 
structure. Both the Raman D-band and D′-band are enhanced simultaneously with increasing 
irradiation time. Here, the Raman intensity ratio ID/IG is proportional to the defect concentration 
at low defect density[4]. 
  



9 
 

Supplementary Material Note 2 
 
 

 
Figure S7 | Representative Raman spectra obtained from the SiO2-supported graphene 
(red line), graphene-supported graphene, and the suspended graphene with h/a = 0.004 
(blue line). Compared with those measured at the center of the suspended graphene with near 
zero deformation, the Raman G bands measured at SiO2-supported and graphene-supported 
monolayer graphene are upshifted by 2-4 cm-1 and downshifted by 0-2 cm-1, respectively. Such 
variations in Raman modes are mainly stemmed from doping effect by SiO2 substrate [5]. In the 
main text, we used the center of suspended graphene with nearly zero deformation (݄/ܽ ൌ0.004, ݄ଶ/ܽଶ ൌ 1.6 ൈ 10ିହ ) as the zero-strain reference since we are dealing with the 
suspended part of the graphene bubble. However, the doping effect may cause errors in the strain 
calculation of bubbles (especially formed by SiO2-supported graphene) that are close to the edge 
(the substrate). This may explain the deviation between our theoretical predictions and 
experimental measurements in Figure 4d in the main text. 
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Figure S8 | Representative Raman spectra measured at the center of the graphene bubble 
under different levels of deformation (h/a). (a) SiO2-supported graphene bubbles. (b) 
Graphene-supported graphene bubbles. We note that when subjected to equal deformation level, 
SiO2-supported graphene bubbles exhibit much more significant G and 2D band shifts than 
graphene-supported graphene bubbles. Specifically, when the h/a ≈ 0.1, the G band downshifted 
by 53 and 34 cm-1 for the SiO2-supported and the graphene-supported graphene bubble, 
respectively. And the 2D band downshifted by 102 and 84 cm-1 for the SiO2-supported and the 
graphene-supported graphene bubble, respectively.  This fact implies that the sliding behavior of 
graphene-graphene interface at the edge can considerably reduce the strain magnitude in the 
bubble.  
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Figure S9 | Line mapping of Raman G band frequency. (a) SiO2-supported graphene bubbles. 
(b) Graphene-supported graphene bubbles. Unsurprisingly, the Raman G band shifts increase 
with the applied out-of-plane deformation. Also, the shifts decrease from the center (r/a = 0) to 
the edge (r/a = 1) of the bubble, implying that the “strain” increases from the edge to the center. 
When approaching the edge, the curves of Raman G band shift (as functions of the radial 
position) behave differently between SiO2-supported and graphene-supported graphene bubbles. 
One possible reason likely comes from the different doping levels by the substrate, which is SiO2 
for (a) and few-layer graphene for (b). For instance, in Fig. S7, we found the upshifting of G 
band with 2-4 cm-1 by the SiO2 doping while the downshifting of G band with 0-2 cm-1 by the 
hybrid substrate doping (few-layer graphene on SiO2). 
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Figure S10 | Line mapping of the width of Raman G band. (a) For a SiO2-supported graphene 
bubble at h/a= 0.074, a series of Raman spectra (G band) are stacked vertically in the direction 
of the line scan. The x is defined by the distance to the center of the hole (the bubble). 
Substantial variations in both the frequency and the full width at half-maximum (FWHM) can be 
detected. The apparent downshift of Raman G band has been shown in Figure S9. The peak 
broadening at the edge ( ) and the sharpening at the center ( ) of the hole are 
highlighted. (b) We further quantitatively illustrate the FWHM as a function of the radius 
location. Solid vertical lines are positioned at the edges of the bubble. We note that: 

i) Raman peak width mainly relies on the lattice deformations and is regarded as a 
measure of strain distribution in graphene. Typically, the full width at half-
maximum (FWHM) of graphene on a substrate is ranging from 11.5-14 cm-1 [4,6]. 
In Figure S10, we find that the formation of the suspended graphene bubble 
obviously enhance the FWHM of G band, especially near the edge of the hole (up 
to 20 cm-1). 

ii) The broadening behavior of the G band FWHM is a result of so-called 
convoluting shifted peaks from the almost unstrained region (substrate-supported 
graphene) and highly strained region (suspended graphene) [7]. The FWHM starts 
broadening inside the hole because of the ~1 μm size of the laser spot. In other 
words, when the laser is focused on the suspended graphene that is close to the 
edge, signals from both suspended graphene and supported graphene may be 
detected. These two signal components add up, yielding a non-Lorentzian shape 
with relatively large width. Such fact may also contribute to the deviation 
between predicted Raman shifts by our theory and measured by experiments, 
especially near the edge of graphene bubbles. 
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Figure S11 | (a) Raman shifts of the 2D band of a multilayer graphene tent as a function of r/a 
(from K. Elibol et al. [8]). Like that in bubbles, r is defined by the distance to the center of the 
tent and a is the radius of the tent. (b) Normalized Raman shifts predicted by our analytical 
solution (solid curves) and measured by experiments [8]. Following the same strategy outlined 
for the bubbles, we plotted the measured and predicted 2D band shifts for strong- -

neisen parameter  for the 2D band shift of the multilayer 
graphene [9]. The shear deformation potential term in Eq. (6) was neglected since the  is not 
well-characterized for multilayer graphene and it

neisen parameter term under biaxial stress state.  



14 
 

Supplementary Material Note 3 

In main text, we have the explicit radius and circumferential strain fields with the sliding 

displacement to be determined: 

௥ߝ   ൌ ቐߚ ௛మ௔మ ൬1 െ ଵାఔିଶఈఔଶఈିଵିఔ ቀ௥௔ቁଶఈିଶ൰ ൅ ௨ೞ௔ , ݎ ൑ ܽ – ௔௨ೞ௥మ ݎ   , ൐ ܽ  (1a), 

ఏߝ  ൌ ቐߚ ௛మ௔మ ൬1 െ ቀ௥௔ቁଶఈିଶ൰ ൅ ௨ೞ௔ , ݎ ൑ ܽ ௔௨ೞ௥మ ݎ   , ൐ ܽ   (1b). 

To determine ݑ௦ in terms of the out-of-plane deformations of the blister, we consider the weak-

shear limit, where the membrane in the annular region outside of the blister edge (ݎ ൐ ܽ) slides 

inward. With zero shear stress at the frictionless interface between the membrane and the 

substrate, the stress and displacement in the annular region can be obtained as the classical Lamé 

problem in linear elasticity [9]. The radial and circumferential components of the membrane 

stress are: 

 ௥ܰ ൌ ஼భ௥మ ൅  ,ଶ (2a)ܥ

 ఏܰ ൌ െ ஼భ௥మ ൅  ,ଶ (2b)ܥ

where ௥ܰ ൌ ݐ௥ߪ  and ఏܰ ൌ ݐఏߪ ௥ߪ ;  and ߪఏ  are, respectively, the radial and circumferential 

stresses; and ݐ is the membrane thickness. Correspondingly, the radial displacement is  

ݑ  ൌ ଵாమವ ቂെ ሺଵାఔሻ஼భ௥ ൅ ଶሺ1ܥ െ  .ቃ (3)ݎሻߥ

For an infinitely large membrane, both the stress and the displacement approach zero as ݎ ՜ ∞, 

which requires ܥଶ ൌ 0.  At the edge of the blister (ݎ ൌ ܽ), the radial stress and displacement are 

continuous. By letting Eq. (3) be ݑ௦ at ݎ ൌ ܽ, we obtain ܥଵ ൌ  െ ாమವ௔௨ೞଵ ା ௩ . For the radial stress, we 

have by Hooke’s law 

 ௥ܰ ൌ ாమವଵିఔమ ሺߝ௥ ൅  ,ఏሻ (4)ߝߥ
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where the strain components on the right-hand side are given by Supplementary Eqs. (1a) and 

(1b) at ݎ ൌ ܽ, and the radial stress on the left-hand side is given by Supplementary Eq. (2a) at ݎ ൌ ܽ.  The stress continuity then leads to 

௦ݑ  ൌ െ ఈሺଵା௩ሻ଼ ௛మ௔  (5). 

 

Supplementary Material Note 4 

In this section, we numerically solve the Föppl–von Kármán (FvK) equations for a circular 

membrane under uniform pressure (bubble) and a point load (tent). Here, we briefly introduce 

our modifications to a previously established finite difference method to solve for the sliding 

boundary case for bubbles and tents [11]. We consider the bending stiffness of the membrane 

and write the FvK equations in terms of the displacement [11]: 

 ௗమ௨ௗ௥మ ൅ ଵ௥ ௗ௨ௗ௥ െ ௨௥మ ൌ െ ଵିఔଶ௥ ቀௗ௪ௗ௥ ቁଶ െ ௗ௪ௗ௥ ௗమ௪ௗ௥మ  (6), 

ܦ  ቀௗయ௪ௗ௥య ൅ ଵ௥ ௗమ௪ௗ௥మ െ ଵ௥మ ௗ௪ௗ௥ ቁ െ ாమವଵିఔమ ௗ௪ௗ௥ ൬ௗ௨ௗ௥ ൅ ߥ ௨௥ ൅ ଵଶ ቀௗ௪ௗ௥ ቁଶ൰ ൌ ଵ௥ ׬ ௥଴ݎ݀ݎሻݎሺݍ  (7), 

where ܦ is the bending rigidity of the membrane, ܧଶ஽ is the in-plane stiffness of the membrane. 

The lateral loading intensity, ݍሺݎሻ, can take two forms depending on the type of load. For a 

bubble, ݍሺݎሻ is a constant; for a tent, ݍሺݎሻ ൌ ௉ఋሺ௥ሻଶగ௥  , where ܲ is the magnitude of the point load 

and ߜሺݎሻ is the Dirac delta function. We then adopt the classical relation between the bending 

stiffness and in-plane stiffness such that the thickness is described as ݐ ൌ ඥ12ሺ1 െ νଶሻܧ/ܦଶ஽. 

For convenience, we normalize the FvK equations using the following dimensionless quantities: ݎҧ ൌ ݐ/ݎ , തܽ ൌ ݐ/ܽ തݑ , ൌ ݐ/ݑ ഥݓ , ൌ ݐ/ݓ ത௦ݑ , ൌ ሻݎതሺݍ , ݐ/௦ݑ ൌ ܦ/ଷݐሻݎሺݍ , and തܲ ൌ ܦ/ݐܲ . We 

replace the deflection with the angle of rotation, ߠ ൌ  such that Eq. (6) and Eq. (7) ,ݎ݀/ݓ݀

become the following nondimensional equations: 

 ݃ ൌ ௗమ௨ഥௗ௥ҧమ ൅ ଵ௥ҧ ௗ௨ഥௗ௥ҧ െ ௨ഥ௥ҧమ ൅ ଵିఔଶ௥ҧ ଶߠ ൅ ߠ ௗఏௗ௥ҧ ൌ 0 (8), 

 ݂ ൌ ௗమఏௗ௥ҧమ ൅ ଵ௥ҧ ௗఏௗ௥ҧ െ ఏ௥ҧమ െ ߠ12 ቀௗ௨ഥௗ௥ҧ ൅ ߥ ௨ഥ௥ҧ ൅ ఏమଶ ቁ െ ଵ௥ҧ ׬ ҧ௥ҧ଴ݎҧ݀ݎሻݎതሺݍ ൌ 0 (9). 
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Following the finite difference method, we discretize the equations with  Δݎҧ ൌ തܽ/݊ and ݎҧ௞ ൌ݇Δݎҧ for ݇ ൌ 0 to ݊. At each internal node (݇ ൌ 1 to ݊ െ 1), we have 

 ݃௞ ൌ ௡మ௔തమ ቀ1 ൅ ଵଶ௞ቁ ത௞ାଵݑ െ ௡మ௔തమ ቀ2 ൅ ଵ௞మቁ ത௞ݑ ൅ ௡మ௔തమ ቀ1 െ ଵଶ௞ቁ ത௞ିଵݑ ൅ ଵିఔଶ௞௔ത ௞ଶߠ ൅ ௡ଶ௔ത ௞ାଵߠ௞ሺߠ െ ௞ିଵሻߠ
 (10), 

௞݂ ൌ ௡మ௔തమ ቀ1 ൅ ଵଶ௞ቁ ௞ାଵߠ െ ௡మ௔തమ ቀ2 ൅ ଵ௞మቁ ௞ߠ ൅ ௡మ௔തమ ቀ1 െ ଵଶ௞ቁ ௞ିଵߠ െ ଺௡௔ത ሺݑത௞ାଵ െ ത௞ିଵሻݑ െ ଵଶఔ௡௞௔ത ത௞ݑ௞ߠ െ6ߠ௞ଷ െ ௞ߞ ൌ 0  (11), 

where ߞ௞ is ݍത݇ തܽ/2݊ for the bubble and is തܲ݊/ሺ2݇ߨ തܽሻ for the tent. The boundary conditions are ߠ଴ ൌ ௡ߠ ൌ ത଴ݑ ,0 ൌ ത଴ݑ ,0 ൌ  ത௦ is a prescribed but not arbitrary quantity. Forݑ ,ത௦. In calculationsݑ

each given ݑത௦, the load തܲ needs to be solved by matching the boundary conditions at the edge: ݑത௦ ൌ 0 for a clamped interface; the displacement and radial stress component are continuous 

across the edge for a sliding interface. The Newton-Raphson method was used to solve 

Supplementary Eqs. (10) and (11). The analytical plate solution was used to provide the initial 

guess for the bubble, while Schwerin’s classic solution was used for the tent:  

௞ሺ଴ሻ௕௨௕௕௟௘ߠ  ൌ ௤ത௞ଵ଺௡ ቀ௞మ௡మ െ 1ቁ (12), 

௞ሺ଴ሻ௧௘௡௧ߠ  ൌ െ ଶଷ ቀ ௉ത௡ସగሺଵିఔమሻ௔ത௞ቁభయ (13), 

and ݑത௞ሺ଴ሻ ൌ 0 . We successively iterate until the convergence condition is satisfied. At each 

iteration, the residuals are calculated by Supplementary Eqs. (12) and (13) at each internal node, 

and the correction vector is calculated as 

 ൫୼ࣂ୼ഥ࢛൯ ൌ െ ቎ࣔࣂࣔࢌ ࣂࣔࢍഥ࢛ࣔࣔࢌࣔ ഥ࢛቏ିଵࣔࢍࣔ ቀ܏ࢌቁ (14), 

where Δࣂ is a vector of n-1 components (Δࣂ௞, ݇ ൌ 1 to ݊ െ 1) and same for Δഥ࢛, ࢌ, and ࢍ. The 

Jacobian matrix on the right-hand side of Eq. (14) consists of four square blocks, each with a 

rank of n-1. This matrix can be readily constructed from Supplementary Eqs. (10) and (11). For 

the convergence criterion, we require that the L2-norm of the relative correction vector is smaller 

than 10ିସ, i.e. 1% accuracy. If the convergence criterion is not satisfied, the iteration procedure 

then repeats with a new approximation, ߠ௞ሺ௜ାଵሻ ൌ ௞ሺ௜ሻߠ ൅ Δߠ௞ and ݑത௞ሺ௜ାଵሻ ൌ ത௞ሺ௜ሻݑ ൅ Δݑത. 

Subsequently, we calculate the deflection at each node by numerical integration:  
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  (15)  

for  to , and . In Fig. S1, we plotted the calculated deflection normalized by 

the center deflection ( . The strain components at each node can also be calculated as  

  (16), 

  (17), 

for  to . At the center, . Note that at the edge, we can have 

 and , due to the continuity of radial stress and displacement across the 

edge. 

 
Figure S12 | Out-of-plane deformations in 2D material blisters. Normalized deflection curves 
predicted by our theoretical solution (solid lines) and solved by numerical analysis (dash lines) 
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for the bubble (a, b) and tent (c, d), subject to both clamped, strong and frictionless, sliding 
interfaces. The deflection curve is normalized by the center deflection. The numerical result is 
solved for a monolayer graphene with ܽ ൌ 200 nm and 0.01 ൏ ݄/ܽ ൏ 0.2. 
 

Supplementary Material Note 5 
 
In main text, we derived a scaling law by considering the balance between adhesion and strain 

energy in a bubble or a tent: 

  ݄/ܽ ൌ ሺ߶ܧ/ߛ߂ଶ஽ሻଵ/ସ  (18). 

The prefactor, ߶, can be obtained by minimizing the total energy. The total energy of the system ௧ܷ௢௧௔௟ consists of the following three energy terms: 

 ௧ܷ௢௧௔௟ ൌ ܷா ൅ ூܷ ൅ ܷ௉ (19), 

where ௘ܷ  is the elastic strain energy of the membrane, ௜ܷ  is the interface adhesion energy 

between the membrane and the substrate, and ܷ௣  is the potential energy associated with the 

blister contents. We can now derive the elastic strain energy by Eq. (4) from the main text, 

consisting of two parts, one due to stretching and the other due to bending. According to our 

numerical results, the bending effects can reasonably be neglected for our experimentally 

observed blisters. The elastic stretching energy per unit area of the membrane is 

 ௦ܷሺݎሻ ൌ ாమವଶሺଵିఔమሻ ሺߝ௥ଶ ൅ ఏߝ௥ߝߥ2 ൅  ,ఏଶሻ (20)ߝ

This leads to the strain energy of a blister in the present study: 

 ܷா ൌ ߨ2 ׬ ௌܷሺݎሻ௔଴ ݎ݀ݎ ൅ ߨ2 ׬ ௌܷሺݎሻஶ௔  ,(21)  ݎ݀ݎ

where the first term represents the strain energy in the laterally loaded membrane, and the second 

term is a result of interface sliding (which is negligible for the strong-shear limit). 

The adhesion energy required to form the blister is simply the energy change per unit area, ߛ߂, 

multiplied by the blister area, 

 ூܷ ൌ  ,(22) ߛ߂ଶܽߨ

where we assume that the change in contact area due to the deformation is negligible since it 

scales as ܽଶࡻሺ݄ଶ/ܽଶሻ.  
The last term in the Supplementary Eq. (19) is the potential energy associated with contents, 

which is to be determined according to the interface confining conditions. For a liquid-filled 

bubble and a post-supported tent, ܷ௉ ൌ 0. For a bubble filled with ideal gas, ܷ௉ follows the ideal 
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gas law. Here, we derive ߶  for the six different scenarios with differing interfacial shear 

conditions and interfacial contents. 

i) Liquid-filled bubbles with a strong-shear interface. The membrane outside the bubble 

edge does not deform and confined liquid does not contribute to ܷ௉ due to its 

incompressibility. The total free energy for the bubble is then obtained as a function 

of two kinematic parameters by explicitly rewriting Supplementary Eq. (19) as 

 ௧ܷ௢௧௔௟ሺܽሻ ൌ ଶሺ଻ିఔሻாమವ௏రଷగయሺଵିఔሻ௔భబ ൅  ,(23) ߛ߂ଶܽߨ

where ܸ ൌ గଶ ܽଶ݄, due to the Eq. (1) with ߙ ൌ 2 from the main text, is the volume of 

the interface confined liquid. Given the incompressible ܸ, the first term on the right-

hand side of Supplementary Eq. (23) is the elastic strain energy in the membrane, 

which decreases with increasing the bubble radius ܽ. The second term stems from the 

change of interface energy, which increases with increasing bubble radius. The 

competition between the two terms leads to an equilibrium bubble radius that 

minimizes the total free energy, namely 

 ቀడ௎೟೚೟ೌ೗డ௔ ቁ௏ ൌ 0 (24), 

which gives rise to Eq. (18) with ߶ ൌ ଶସሺଵିఔሻହሺ଻ିఔሻ . 

ii) Liquid-filled bubbles with a weak-shear interface. The elastic strain energy outside 

the bubble has to be considered due to the interfacial sliding. Following 

Supplementary Eqs. (19) – (23), the total free energy is obtained as 

 ௧ܷ௢௧௔௟ሺܽሻ ൌ ଼ாమವ௏రଷగయ௔భబ ൅  .(25) ߛ߂ଶܽߨ

Similarly, ቀడ௎೟೚೟ೌ೗డ௔ ቁ௏ ൌ 0 gives rise to Eq. (18) with ߶ ൌ ଺ହ. 

iii) Gas-filled bubbles with a strong-shear interface. In this case, the isothermal 

expansion of fixed number of interface confined gas molecules (ܰ) contributes to the 

potential energy: 

 ܷ௣ ൌ ׬ ௏ሺ௣బሻ௏ሺ௣ሻܸ݀݌  (26), 
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where ܸሺ݌ሻ is the volume of an ideal gas under current pressure  ݌ and ܸሺ݌଴ሻ is the 

volume of an ideal gas under atmospheric pressure. The pressure and volume of the 

ideal gas are assumed to follow the ideal gas law, which behaves as a constraint when 

minimizing the total energy of the system: 

 ܰ݇ܶ ൌ ܸ݌ ؄ గሺ଻ିఔሻ଺ሺଵିఔሻ ாమವ௛ర௔మ , (27), 

where ݇ is Boltzmann constant and ܶ is temperature, and the right-hand side relation 

is readily obtained by minimizing the potential energy of the uniformly pressurized 

membrane [12]. By combining Supplementary Eqs. (19) – (22) with Supplementary 

Eq. (27), we write the total free energy in terms of only two kinematic parameters 

(ܰ, ܽ): 

 ௧ܷ௢௧௔௟ሺܽሻ ൌ ே௞்ସ െ ܰ݇ܶ ln ଶ/ହܽܣ ൅  ,(28) ߛ߂ଶܽߨ

where ܣ is a constant related to the reference state of gas in ambient condition. The 

first term on the right-hand side of Supplementary Eq. (28) is the elastic strain energy 

in the membrane, which is independent of both the bubble radius and height under 

constant ܰ. The second term is the potential energy of the gas which decreases with 

increasing bubble radius, ܽ. Meanwhile, the interfacial energy term increases as part 

of graphene is detached from the substrate. The competition of the last two terms 

leads to an equilibrium bubble radius when the total free energy is minimized such 

that 

 ቀడ௎೟೚೟ೌ೗డ௔ ቁே ൌ 0 (29). 

Supplementary Eq. (29) thus gives rise to 

ߛ߂  ൌ ହே௄்ସగ௔మ  (30). 

By plugging Supplementary Eq. (27), we derive ߶ ൌ ଶସሺଵିఔሻହሺ଻ିఔሻ  for Supplementary Eq. 

(17), which is also the case for liquid-filled bubbles with a strong-shear interface. 

iv) Gas-filled bubbles with a weak-shear interface. When interface sliding occurs, Eq. 

(27) becomes 
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 ܰ݇ܶ ൌ ܸ݌ ؄ ଶగଷ ாమವ௛ర௔మ  (31). 

After combining Eqs. (19-22) and Eq. (31), we find that Eqs. (28-30) still work for 

the gas-filled bubbles with a weak-shear interface. Then combining Eq. (30) and Eq. 

(31) gives us ߶ ൌ ଺ହ, which also applies to liquid-filled bubbles with a weak-shear 

interface. 

v) Tents with a strong-shear interface. The tent can be treated as a displacement-

controlled delamination experiment where the height is fixed and ܷ௉ is zero. From 

Supplementary Eqs. (18) – (21), the total energy of a tent with clamped boundaries is 

 ௧ܷ௢௧௔௟ሺܽሻ ൌ గሺହିଷఔሻாమವ௛ర଻ଶሺଵିఔሻ௔మ ൅  .(32) ߛ߂ଶܽߨ

Clearly, the competition between the elastic strain energy and the interface energy 

leads to 

 ቀడ௎೟೚೟ೌ೗డ௔ ቁ௛ ൌ 0, (33), 

which gives rise to Eq. (18) with ߶ ൌ ଻ଶሺଵିఔሻହିଷఔ . 

vi) Tents with a weak-shear interface. The elastic strain energy outside the tent is 

considered. Following Supplementary Eqs. (19) – (22), the total energy is then 

obtained: 

 ௧ܷ௢௧௔௟ሺܽሻ ൌ గாమವ௛రଵ଼௔మ ൅  .(34) ߛ߂ଶܽߨ

Similarly, ቀడ௎೟೚೟ೌ೗డ௔ ቁ௛ ൌ 0 which gives rise to Eq. (18) with ߶ ൌ 18. 
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