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Abstract

Non-convex and non-affine parameterizations of uncertainty are intrinsic within every attitude esti-
mation problem given the fact that minimal and/or nonsingular representations of the attitude matrix
are invariably nonlinear functions of the unknown attitude variables. Of course, this fact remains true for
rotation matrices both in the 2-D plane (flatland) and in higher dimensional spaces (otherlands). There-
fore, estimation problems involving minimal nonsingular representations of unknown attitude matrices
bring significant challenges to the adaptive estimation community. This paper develops a novel algorithm
for attitude estimation. The proposed algorithm relies upon the design of an adaptive update law for the
attitude estimate while preserving its inherent orthogonal structure. The underlying approach borrows
from the classical Poisson differential equation in rigid-body rotational kinematics and endows certain
manifold attractivity features within the adaptive estimation algorithm. Consequently, we are not only
able to efficiently handle the non-affine and non-convex nature of the parameter uncertainty, but are also
ensured of estimation algorithm stability and robustness under bounded measurement noise. In addition
to a rigorous discussion on the overall methodology, the paper provides example simulations that help
demonstrate the effectiveness of the attracting manifolds design.

1. Introduction

Attitude estimation problems routinely arise in numerous aerospace engineering and robotics applications.
More specifically, relative navigation and attitude determination problems are linearly parameterized by
unknown 3×3 proper orthogonal matrices SO(3). Numerous attitude estimation/determination algorithms
are available in the literature developed by both control and estimation communities. Of immense significance
is the fact that every orthogonal matrix is nonlinear in its degrees of freedom[1, 2]. Virtually every existing
attitude estimation method converts this nonlinear parameterization into a linear over-parameterization[3].
Depending on how the underlying attitude estimation algorithm is implemented, existing methods can be
broadly categorized into two classes: batch type and sequential type estimators.

Batch type estimators such as QUEST[4] and FOAM[5] utilize more than two observations at each obser-
vation instant to determine the attitude matrix in three-dimensions, thereby necessitating the use of two
or more independent sensors. The underlying estimation is accomplished by minimizing a quadratic cost
function originally proposed by Wahba[6]. TRIAD[7] is another variant among existing batch type attitude
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estimation algorithms which requires at most n − 1 linearly independent observation vectors for attitude
determination in an n-dimensional space[8].

Sequential type estimators, in contrast with batch type estimators, need only one observation at each time.
The most common implementation of sequential estimators adopt an extended Kalman filter[9]. Instead of
fusing measurements from multiple sensors at each instant, sequential type estimators utilize an analytic
model of the system to forward propagate the observation data. Attitude estimates are then generated by
comparing predicted observations with actual measurements while updating the underlying analytic model
through minimization of a suitable optimality criterion. The standardly adopted optimality criterion for
Kalman filtering is the minimization of variances between estimates from sensor measurement and predicted
values derived from the system analytic model. Recent applications of extended Kalman filter type sequential
estimators are documented for missions such as the Earth Radiation Budget Satellite (ERBS)[10, 11] and
the Solar Anomalous Magnetospheric Particle Explorer (SAMPEX)[12, 13].

Even though batch and sequential type estimators have been successfully applied to a wide array of
actual spacecraft missions, both classes of methods usually suffer from a crucial limitation – that of over-
parameterization and the resulting non-enforcement of the orthogonality structure on the attitude matrix
estimate. In order to eliminate problems associated with over-parameterization, recently, an adaptive al-
gorithm for orthogonal matrix estimation was developed by Kinsey and Whitcomb[14]. The convergence
proof for their estimation algorithm, applicable only for attitude estimation in the three-dimensional space,
utilizes a matrix logarithmic map defined over the attitude estimation error matrices. Further, this loga-
rithmic map is not injective for certain class of orthogonal matrices. To be precise, this restriction pertains
to non-inclusion of SO(3) matrices whose trace is equal to −1 (the corresponding Euler principal rotation
angle φ = ±π).

This paper aims at deriving new classes of adaptive estimation algorithms for uncertain n×n proper
orthogonal matrices. The proposed estimation methodology involves introduction of an attracting manifold
about the “true” but “unknown” attitude matrix which helps in automatically enforcing the attitude matrix
estimate to be proper and orthogonal at every time step. Design of the attracting manifold results in
significant reduction of computational burden associated with: (a) being able to fully utilize the available
prior information on orthogonality of the unknown attitude and thereby avoiding over-parameterization;
and (b) not having to perform the re-orthogonalization process at each time step. Additionally, under
standard assumptions involving availability of persistence in excitation (PE), we are able to show that the
attitude estimate is guaranteed to converge to the corresponding true value. Convergence proof for the
estimation algorithm presented in this paper is accomplished in such a way that not only are the restrictions
associated with the logarithmic map of Kinsey and Whitcomb[14] are completely eliminated but our results
also generalize nicely for attitude matrices on all n-dimensional spaces.

The paper is organized as follows. In section 2, we present our main results that establish a new orthogo-
nality preserving attitude matrix estimation algorithm valid for the general n-dimensional case. Robustness
analysis for this estimation algorithm under the influence of measurement noise is also presented in sec-
tion 2. Implications of the proposed attitude estimation algorithm for two-dimensions (flatland case) and
three-dimensions (otherlands) are discussed in section 3 and section 4 respectively. Numerical simulations
are presented in section 5 to demonstrate and validate the various technical claims of this paper. Section 6
provides a discussion with concluding remarks.

2. Problem Statement and Main Result

2.1 Problem Definition

Succinctly stated, the attitude estimation problem is that of finding a direction cosine matrix describing
the orientation of any body fixed frame with respect to the inertial frame. In order to formulate this
problem within an analytical framework, we consider estimation of an unknown and time-varying n×n
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proper orthogonal matrix C(t) (i.e., satisfying C(t)CT (t) = CT (t)C(t) = In×n and det(C(t))=1 for all t)
defined through the following continuous-time input-output mapping

y(t) = C(t)r(t) (1)

where unit vectors r(t) ∈ Rn and y(t) ∈ Rn respectively correspond to the input and output signals, both of
which are assumed accessible for all time t. Further, we assume the input vector r(t) to be a differentiable
function of time with a bounded derivative.

From a practical standpoint, in three-dimensions, the measurement model Eq. (1) is typical for single input-
output type unit vector measurement sensors such as star trackers, sun sensors and magnetometers[15]. More
specific examples of star sensor modeling in attitude determination problems can be found in [16, 17, 18, 19].

The evolution of C(t) in Eq. (1) is governed by the Poisson differential equation as described by

Ċ(t) = −S(ω(t))C(t) (2)

where ω(t) ∈ Rm is any prescribed/measured bounded signal for m = n(n − 1)/2, and S(·) : Rm → Rn×n

is a skew-symmetric matrix function such that ST = −S. It is a well known fact that if C(0) is a proper
orthogonal matrix, then C(t) will remain a proper and orthogonal matrix for all t whenever it evolves along
Eq. (2)[20]. Now, the estimation objective is to find an appropriate adaptive algorithm that generates the
proper orthogonal matrix Ĉ(t) ∈ Rn×n as an estimate for the “true” but unknown matrix C(t) at each
instant t. The output model based on Ĉ(t) can be established by

ŷ(t) = Ĉ(t)r(t). (3)

Discrete-time analogues of the aforementioned attitude estimation problem routinely arise within the field
of spacecraft attitude determination. In such cases, r(t) and y(t) are respectively interpreted as the star
catalog values (inertial) and the corresponding star tracker measurements. Estimation problems within this
framework also occur in space applications of rendezvous and proximity operations that involve computation
of the relative navigation solutions.

The attitude estimation error matrix C̃(t) defined by

C̃(t) = Ĉ(t)− C(t) (4)

represents the element-by-element error between the estimate Ĉ(t) and the “true” attitude C(t). Obvious
from the definitions in Eq. (1) and Eq. (3) is the fact that the attitude error convergence, limt→∞ C̃(t) = 0,
automatically implies the output estimation error, e(t) .= ŷ(t) − y(t) → 0 as t → ∞. In the following
developments, unless considered necessary, the time argument t is omitted from various signals for the sake
of notational simplicity.

2.2 Main Result

In this section, we present a new attitude estimation algorithm which preserves orthogonality of the estimated
attitude matrix Ĉ(t).

Theorem 1. If the attitude estimate Ĉ(t) is generated according to

˙̂
C(t) = −

[
S(ω)− γ(yŷT − ŷyT )

]
Ĉ(t); any real γ > 0, any proper orthogonal Ĉ(0) ∈ Rn×n (5)

then, Ĉ(t) remains a proper orthogonal matrix for all t > 0 implying that attitude matrix estimation er-
ror C̃(t) and the output estimation error e(t) remain bounded for all t ≥ 0. In addition, the estimation
process for Ĉ(t) is driven along an “attracting manifold” according to the following convergence condition

lim
t→∞

(
In×n − CT ĈCT Ĉ

)
r(t) = 0. (6)
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Proof. Just the same way that the Poisson differential equation Eq. (2) enforces othogonality on C(t)
for all t, the attitude estimate Ĉ(t) is also ensured to be proper and orthogonal by virtue of the fact that
it is generated by another Poisson differential equation given in Eq. (5). This similarity can be made more
explicit by recognizing that the additional term within Eq. (5) given by (yŷT−ŷyT ) is also a skew-symmetric
matrix. Since Ĉ(t) is guaranteed to be an orthogonal matrix for all t ≥ 0, it follows that Ĉ(t) and C̃(t) remain
bounded for all t ≥ 0. This is sufficient to demonstrate boundedness of the output estimation error e(t).

Next, in order to prove the convergence claim along the attracting manifold in Eq. (6), we consider the
following Lyapunov candidate function

V (t) =
1
2
tr(C̃T (t)C̃(t)) (7)

where tr(·) is the matrix trace operator. Then, the time derivative of V (t), evaluated along Eq. (2) and
Eq. (5) is given by

V̇ (t) = tr
(
−C̃T S(ω)C̃ + γC̃T (yŷT − ŷyT )Ĉ

)
= γtr

(
C̃T (yŷT − ŷyT )Ĉ

)
= γtr

(
(ĈT − CT )(CrrT − ĈrrT CT Ĉ)

)
= γtr

(
−rrT + CT ĈCT ĈrrT

)
= −γrT (In×n − CT ĈCT Ĉ)r

= −γ

2
rT (In×n − CT ĈCT Ĉ − ĈT CĈT C + In×n)r

= −γ

2
rT (In×n − CT ĈCT Ĉ − ĈT CĈT C + (CT ĈCT Ĉ)T (CT ĈCT Ĉ))r

= −γ

2
rT (In×n − CT ĈCT Ĉ)T (In×n − CT ĈCT Ĉ)r

= −γ

2
‖(In×n − CT ĈCT Ĉ)r‖2 (8)

which demonstrates V̇ (t) ≤ 0 and thereby uniform boundedness of V (t). Since V (t) ≥ 0 by definition
from Eq. (7) and V̇ (t) ≤ 0 from Eq. (8), we have existence of V∞

.= limt→∞ V (t). Further, from the fact
that V̈ (t) is bounded (seen by differentiating both sides of Eq. (8)), using Barbalat’s lemma, we conclude
limt→∞(In×n − CT ĈCT Ĉ)r(t) = 0. �

Remark 1. In the case that the attitude estimate Ĉ(t) converges to the corresponding “true” attitude C(t)
(i.e., limt→∞ C̃(t) = 0), using the matrix orthogonality property, it is easy to recognize that CT (t)Ĉ(t) →
In×n as t → ∞ which obviously satisfies the convergence condition of Theorem 1 given in Eq. (6). On the
other hand, mere presence of the attracting manifold as governed by Eq. (6) does not in general guarantee
regulation of attitude estimation error C̃(t) to zero unless certain persistence of excitation (PE) conditions
are additionally satisfied by the input signal r(t). These PE conditions will be further elaborated upon in
the later sections of the paper.

2.3 Robustness to measurement noise

We next present robustness properties of the estimation algorithm from Theorem 1 to account for possible
presence of bounded measurement noise. Introducing a bounded noise signal v(t) in Eq. (1) to reflect the
presence of error in the measurement signal, we have

y(t) = C(t)r(t) + v(t) (9)

wherein we assume the noise signal satisfies vmax
.= supt‖v(t)‖. Even though not required for any of our

further developments, from a practical standpoint, it is perfectly meaningful to assume that vmax � 1. While
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retaining the same estimation rule for the attitude matrix Ĉ(t) as given by Eq. (5), we consider the following
Lyapunov candidate function that enables demonstration of the robustness properties:

Vr(t) =
1
2
tr
[
C̃T C̃

]
. (10)

Since presence of measurement noise v(t) in no way changes the fact that Ĉ(t), estimated according to Eq. (5),
is a proper and orthogonal matrix for all t ≥ 0, the function Vr(t) is uniformly bounded. Further, using
Eq. (3), Eq. (5), and Eq. (9), the time derivative of Vr(t) can we written as as

V̇r(t) = tr
(
C̃

˙̂
C
)

= γtr
(
C̃T (yŷT − ŷyT )Ĉ

)
= −γrT

(
I − CT ĈCT Ĉ

)
r − γvT C

(
I − CT ĈCT Ĉ

)
r

6 −γ

2
‖(In×n − CT ĈCT Ĉ)r‖

[
‖(In×n − CT ĈCT Ĉ)r‖ − 2vmax

]
. (11)

In the presence of measurement noise, the convergence condition of Theorem 1 along the attracting man-
ifold (In×n − CT ĈCT Ĉ)r(t) = 0 is no longer preserved. However, it is also obvious from Eq. (11) that
V̇r(t) ≤ 0, whenever ‖(In×n −CT ĈCT Ĉ)r‖ − 2vmax ≥ 0 and therefore the size of the residual set governing
Vr(t) is ultimately dictated by the upper bound on the noise signal v(t). The foregoing analysis of the
proposed attitude estimation algorithm provides confirmation that while all the computed signals remain
bounded in the presence of measurement uncertainty, presence of large magnitude noise leads to increasing
dilution of attitude estimation accuracy.

2.4 Estimation within the Certainty-Equivalence Framework

The main result of this paper derived in Theorem 1 will now be compared with an alternative estimation
mechanism based on the traditional/conventional certainty-equivalence (CE) framework[21]. In order to be
consistent with the standard assumptions of the CE methodology, we restrict the attitude matrix C(t) in
Eq. (1) to be a constant C∗ (i.e., ω(t) = 0 in Eq. (2)), and that there exists no measurement noise (v(t) =
0). Important to mention here is the fact that recognition and utilization of prior information on the
structure of unknown parameter C∗ leads us to nonlinear parameterization of the unknown elements in
Eq. (1). On the other hand, if we ignore this prior information on orthogonality of C∗, then the unknown
parameter appears linearly (affinely) in the governing input-output relationship, Eq. (1), thereby making
feasible application of the CE-based adaptive estimation method. This convenient simplification comes
at a heavy price: over-parameterization and/or permitting the parameter estimation (search) process for
Ĉ(t) to potentially evolve outside the region where the true parameter C∗ lies - ultimately leading to the
unacceptably slow/poor estimator performance. On the other hand, any attempt to explicitly utilize the a
priori known parameter structure causes nonlinear parameterization which is not readily amenable to most
existing CE-based formulations. For the case when C(t) = C∗, a simple CE-based formulation based on
standard methods[21] may be obtained as given by

˙̂
C(t) = −γerT ; any real γ > 0, any Ĉ(0) ∈ Rn×n (12)

where just as before, the output estimation error e(t) is defined by e(t) = ŷ(t)− y(t). Stability for the CE-
based estimation algorithm given in Eq. (12) can be demonstrated by considering the following Lyapunov
candidate function

V ce(t) =
1
2
tr
(
C̃T C̃

)
(13)
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where C̃(t) is defined in Eq. (4). Then, the time derivative of V ce(t) taken along solutions generated by
Eq. (12) is given as

V̇ ce(t) = tr
(
C̃T ˙̃C

)
= −γtr

(
C̃T erT

)
= −γtr

(
C̃T C̃rrT

)
= −γrT C̃T C̃r

= −γ‖C̃r‖2 = −γ‖e‖2 ≤ 0 (14)

Since V ce(t) ≥ 0 and V̇ ce(t) ≤ 0, we have boundedness for the parameter estimation error C̃(t) and there-
fore boundedness for the attitude estimate matrix Ĉ(t). Also, V ce

∞
.= limt→∞ V ce(t) exists and is finite

because V ce(t) ≥ 0 and V̇ ce(t) ≤ 0. Integrating both sides of Eq. (14), we can show that V ce
∞ − Vce(0) =

−
∫∞
0
‖e(t)‖2 dt which implies that e ∈ L2∩L∞. Furthermore, from the fact that ė = ˙̃Cr+ C̃ṙ whose terms

are all bounded signals, we have ė ∈ L∞. Therefore, from Barbalat’s lemma, we guarantee that the output
estimation error e(t) → 0 as t →∞.

One very important point we should emphasize here is that limt→∞ e(t) = 0 does not always imply
limt→∞ C̃(t) = 0 unless the reference signal r(t) satisfies certain additional persistence of excitation (PE)
conditions. For example, if n = 2 (two-dimensional case) and the reference input signal r(t) = r∗, i.e., a
constant vector in R2, then e = C̃r∗ = 0 can always be satisfied without C̃ equalling zero provided the
vector r∗ resides within the kernel (null space) of the matrix C̃.

A few important remarks are now in order to highlight the limitations of the CE-based attitude estimation
scheme.

1. A proof of stability, boundedness, and convergence can be derived for the CE-based method (as out-
lined in the foregoing) only when the unknown attitude matrix remains constant with time. No such
restriction exists on the result proposed under Theorem 1.

2. Under the CE-based estimation scheme, even when one selects the initial estimate Ĉ(0) to be proper and
orthogonal, there is no assurance whatsoever that Ĉ(t) estimated through Eq. (12) remains orthogonal
for t > 0. On the other hand, by the very fact that the attitude estimation under the proposed approach
proceeds along Eq. (5) (Poisson differential equation), orthogonality of the estimate matrix Ĉ(t) is
rigorously assured for all t ≥ 0.

3. Further, in the next sections, we will show that when compared with CE-based attitude estimation,
the main result of this paper needs weaker (less-restrictive) PE conditions on the reference input signal
so as to ensure that the parameter estimation error converges to zero.

3. Attitude Estimation in Flatland

In this section, we specialize the main result for attitude matrix estimation to the two-dimensional (flatland)
case, i.e., n = 2 in Eq. (1). While doing so, we will also be able to precisely characterize the persistence of
excitation (PE) conditions that would regulate the attitude estimation error matrix C̃(t) to zero. Our use
of the term “flatland” is inspired and motivated to a great extent by the work of Shuster[22] that addressed
attitude analysis in two-dimensions.

Note that for the flatland case, the true/unknown attitude matrix C(t) and its estimate Ĉ(t) can be
parameterized in terms of scalar “angle-like” variables respectively designated by θ(t) and θ̂(t) in the following
fashion

C(t) = eJθ(t) =
[

cos θ − sin θ
sin θ cos θ

]
, Ĉ(t) = eJθ̂(t) =

[
cos θ̂ − sin θ̂

sin θ̂ cos θ̂

]
(15)
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where J is the 2× 2 matrix generalization of
√
−1 and is given by

J =
[

0 −1
1 0

]
(16)

For the flatland case, the following result can be established as a direct consequence of Theorem 1.

Corollary 1. Consider the input-output system described by Eq. (1), with n = 2. If the initial value of the
attitude estimate Ĉ(0) = eJθ̂(0) is such that θ̂(0) ∈ Θs where

Θs = {φ ∈ R : φ− θ(0) 6= (2k + 1)π} , k = 0,±1,±2, . . .

then the attitude estimate matrix Ĉ(t) generated through Eq. (5) exponentially converges to the unknown
true value C(t) for all non-zero (unit-vector) reference inputs r(t) ∈ R2.

Proof. We begin by specializing the Lyapunov candidate function V (t) given in Eq. (7) for the two-
dimensional (flatland) case as VF (t) which may readily be expressed in terms of the parameterization defined
by Eq. (15) as follows:

VF (t) =
1
2
tr(C̃T (t)C̃(t)) =

1
2
tr
[
(Ĉ − C)T (Ĉ − C)

]
=

1
2
tr
[
2I2×2 − (ĈT C + CT Ĉ)

]
=

1
2
tr
[
2I2×2 − e−J(θ̂−θ) − eJ(θ̂−θ)

]
= 2

[
1− cos(θ̂ − θ)

]
= 4 sin2

(
θ̂ − θ

2

)
. (17)

It is clear from the last step of the preceding development that not only is VF (t) bounded for all t ≥ 0
but in fact, we have 0 ≤ VF (t) ≤ 4 for all t ≥ 0. Further, it can be seen that VF (t) = 4, its maximum
value, whenever θ̂(t) − θ(t) = (2k + 1)π for all integers k. Thus, VF (0) < 4 if θ̂(0) ∈ Θs is satisfied. On
the other hand, VF (t) = 0, its minimum value, whenever θ̂(t) = θ(t) (estimated variable θ̂(t) exactly equals
the true/unknown variable θ(t) value). Of course, more generally, VF (t) = 0 whenever, θ̂(t) − θ(t) = 2kπ
for integers k. All the aforementioned interesting and important characteristics of the Lyapunov candidate
function VF (t) for the flatland case are illustrated in Fig. 1.

1

2

3

4

VF

^

Figure 1: Plot showing variation of the bounded Lyapunov candidate function for flatland case VF (t) with respect
to the estimated variable θ̂(t).

Additional insights into the characterization of dynamics of VF (t) can be obtained by specializing func-
tion V̇ (t) in Eq. (8) with n = 2 for the flatland case. Since the quantity CT ĈCT Ĉ can be written as
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CT ĈCT Ĉ = eJ(2θ̂−2θ) in the flatland case, making using of Eq. (17), we may derive a simplified expression
for V̇F (t) in the following fashion

V̇F (t) = −γrT
[
I2×2 − eJ(2θ̂−2θ)

]
r

= −γrT

[
1− cos(2θ̂ − 2θ) − sin(2θ̂ − 2θ)

sin(2θ̂ − 2θ) 1− cos(2θ̂ − 2θ)

]
r

= −γ
[
1− cos(2θ̂ − 2θ)

]
‖r‖2

= −8γ sin2

(
θ̂ − θ

2

)
cos2

(
θ̂ − θ

2

)
‖r‖2

= −γ

2
VF (4− VF )‖r‖2 ≤ 0. (18)

As stated before, the reference input r(t) is an unit vector for all t ≥ 0 and thus, we have

V̇F (t) = −γ

2
VF (t) [4− VF (t)] (19)

which indicates the fact that the dynamics of VF (t) is governed by an infinite number of equilibrium points
whenever V̇F (t) = 0 is satisfied along the θ̂-axis as can be seen in Fig. 1. However, those equilibrium points
clearly segment into two distinct categories. One is an unstable branch in the sense that V̇F (t) = 0 while
VF (t) = 4, i.e., θ̂(t) − θ(t) = (2k + 1)π for integer values of variable k. Thus, if VF (0) = 4, then VF (t) = 4
for all t > 0 irrespective of the reference input vector r(t). The other set of equilibrium points form a
stable branch satisfying the conditions V̇F (t) = 0 and VF (t) = 0 ⇐⇒ θ̂(t) − θ(t) = 2kπ for all integers k.
The equilibrium points corresponding to the condition VF (t) = 4 are designated unstable because whenever
VF (0) 6= 4, we are guaranteed that VF (t) < 4 for all t > 0 due to the fact that V̇F (t) ≤ 0 for all t ≥ 0. Clearly,
if θ̂(0) ∈ Θs, then VF (t) < 4 for t ≥ 0 is assured resulting in the fact that V̇F (t) → 0 only when VF (t) → 0
(stable and attracting manifold).

The convergence properties of VF (t) starting from any initial value VF (0) /∈ {0, 4} can be established by
recognizing that the first order ordinary differential equation governing VF (t) in Eq. (19) admits an analytical
solution as given by

VF (t) =
4ce−2γt

1 + ce−2γt
for all t ≥ 0, where c =

VF (0)
4− VF (0)

. (20)

Therefore it immediately follows that any initial condition θ̂(0) ∈ Θs implying VF (0) < 4 leads to exponential
convergence of VF (t) to zero. In terms of the attitude estimate matrix, this result means exponential conver-
gence along θ̂(t) − θ(t) → 2kπ for all integers k, and accordingly, we conclude that C̃(t) → 0 exponentially
as t →∞. �

In light of Corollary 1, the following observations are in order.

1. In flatland, whereas the 2× 2 matrix Ĉ(t) has four elements that need to be estimated, the process of
updating estimates of Ĉ(t) can be accomplished by updating a single scalar variable thereby eliminating
any scope for overparameterization. More specifically, instead of directly estimating Ĉ(t) through the
matrix differential equation of Eq. (5), one can efficiently generate the same Ĉ(t) matrix through the
identity Ĉ(t) = eJθ̂(t) given from Eq. (15). It is straightforward algebra to show that the “angle”
variable θ̂(t) needed for computation of the attitude estimate matrix Ĉ(t) is updated through the
scalar differential equation

˙̂
θ(t) = ω(t) + γ [y2(t)ŷ1(t)− y1(t)ŷ2(t)] (21)

where the scalar ω(t) can be physically interpreted as an “angular velocity” variable such that ω(t) =
ω(t)ek in Eq. (2), and ek denotes an unit vector normal to the flatland.
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2. Exponential convergence of C̃(t) to zero is guaranteed regardless of r(t) (non-zero) values so long
as θ̂(0) ∈ Θs. This remarkable feature holds true without requiring the unknown matrix C(t) to
be a constant, i.e., ω(t) 6= 0 in Eq. (2). Further, the same exponential convergence condition holds
even when r(t) = r∗ (any non-zero constant vector) and thus every non-zero reference input vector
is persistently exciting in the flatland case. As already mentioned in the previous section, similar
convergence assurances are impossible from the conventional CE-based estimation framework.

3. If θ̂(0) /∈ Θs, then VF (t) = VF (0) = 4 for all t > 0 (the unstable equilibrium branch) and obviously,
there is no way to regulate the estimation error C̃(t) to zero irrespective of the reference input r(t).
However, from a practical standpoint, even the smallest of perturbations and/or numerical drift that
causes VF (t) to deviate from VF (0) at some t = t∗ > 0 would ensure that θ̂(t) ∈ Θs for all t ≥ t∗ (the
stable and attracting manifold) and consequently we are again assured of C̃(t) exponentially converging
to zero on t ≥ t∗.

4. In the presence of bounded measurement noise v(t), the robustness result for the general n-dimensional
case from the previous section can be specialized for the flatland case by rewriting Eq. (11) as follows:

V̇r(t) = −2γ sin2(θ̂ − θ)‖r‖2 − γ
[
cos θ − cos(2θ̂ − θ)

]
vT r

≤ −2γ sin2(θ̂ − θ)‖r‖2 + 2γ sin(θ̂ − θ)vT r. (22)

Recalling the reference input r(t) to be an unit vector, the previous inequality may further be simplified
and arranged as

V̇r(t) ≤ −2γ |sin(θ̂ − θ) |
[
|sin(θ̂ − θ) | −vmax

]
(23)

It is clear from here that V̇r(t) ≤ 0 whenever | sin(θ̂ − θ) | −vmax ≥ 0. Further, Eq. (23) can also
be adopted for the case of relatively low magnitude measurement noise (i.e., vmax is small enough
for the small angle approximation sin(vmax) ≈ vmax to hold), so that as t → ∞, the inequality
| θ̂(t) − θ(t) |≤ vmax serves as an useful approximate upper bound on the estimation error. Clearly, if
vmax = 0 is applied in this approximation result (the ideal no-noise case), we immediately recover the
(exponential) convergence property limt→∞ θ̂(t)−θ(t) = 0 which was established earlier in this section.

4. Attitude Estimation in Three-Dimensions

Although the input-output model in Eq. (1) is for a single measurement system, the results from Theorem 1
can be readily extended to the systems having multiple measurement devices. Let M denote the total number
of measurement devices, i.e.,

yk(t) = C(t)rk(t), k = 1, 2, . . . ,M (24)

Then, the update law from Eq. (5) needs to be modified to account for the presence of more than one
input-output pair and is now given by

˙̂
C(t) = −

[
S(ω)− γ

M∑
k=1

(ykŷT
k − ŷkyT

k )

]
Ĉ(t); any real γ > 0, any proper orthogonal Ĉ(0) ∈ Rn×n (25)

wherein the kth estimated output ŷk(t) is defined through

ŷk(t) = Ĉ(t)rk(t), k = 1, 2, . . . ,M (26)
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From the same definition of Lyapunov candidate Eq. (7) with a subscript M , we can derive the following
time derivative of VM (t):

V̇M (t) = tr

(
−C̃T S(ω)C̃ + γ

M∑
k=1

C̃T (ykŷT
k − ŷkyT

k )Ĉ

)

= γtr

(
M∑

k=1

(−rkrT
k + CT ĈCT ĈrkrT

k )

)

= −γ
M∑

k=1

(
rT

k (In×n − CT ĈCT Ĉ)rk

)
= −γ

2

M∑
k=1

‖(In×n − CT ĈCT Ĉ)rk‖2 (27)

which identically covers Eq. (8) when M = 1. Stability proof remains the same as Theorem 1 except
for the summation. One thing should be noted in Eq. (27) is that we can obtain the same effect from a
single measurement device by tuning γ of Eq. (5) instead of adopting M measurement devices. Given that
all technical details remain unaltered with single or multiple measurements, to keep the notation simple,
we retain the single measurement model while discussing all further implications of our proposed attitude
estimation algorithm for three-dimensions.

We adopt the four-dimensional unit-norm constrained quaternion vector representation for a singularity-
free parameterization of the attitude matrix while specializing the results of Theorem 1 to the case of
three-dimensions (n = 3). Accordingly, we assume that the true attitude matrix C(t) is represented by the
quaternion vector q(t) = [qo(t), qv(t)]T where the subscripts ‘o’ and ‘v’ respectively designate the scalar and
vector parts of the quaternion representation. This quaternion parameterization is mathematically realized
through the relationship

C(t) = I3×3 − 2qo(t)S(qv(t)) + 2S2(qv(t)) (28)

where the 3×3 skew-symmetric matrix operator S(·) designates the vector cross product operation such that
S(a)b = a× b for all three-dimensional vectors a and b. Similarly, the estimate matrix Ĉ(t) is represented
through the quaternion parameterization q̂(t) = [q̂o(t), q̂v(t)]T so that we have

Ĉ(t) = I3×3 − 2q̂o(t)S(q̂v(t)) + 2S2(q̂v(t)) (29)

Further, if we designate the quaternion z(t) = [zo(t),zv(t)]T to parameterize the proper orthogonal ma-
trix CT (t)Ĉ(t), it follows that

CT (t)Ĉ(t) = I3×3 − 2zo(t)S(zv(t)) + 2S2(zv(t)) (30)

where, by virtue of the quaternion multiplication property[23], the following identity holds

zo(t) = qT (t)q̂(t). (31)

In other words, if vectors q and q̂ are aligned in the same direction (i.e., if q = ±q̂ or in other words, C = Ĉ),
we have zo = ±1 which from the unit vector constraint on the quaternion implies that ‖zv‖ = 0. Recalling the
definition of the attitude estimation error matrix C̃(t) in Eq. (4), it is obvious that C̃ = C(CT Ĉ−I3×3), and
accordingly, we have C̃(t) = 0 whenever CT (t)Ĉ(t) = I3×3. Thus, the vector z(t) has the interpretation of the
error quaternion such that zo(t) = ±1 ⇐⇒ zv(t) = 0 if and only if matrix CT (t)Ĉ(t) = I3×3 ⇐⇒ C̃(t) = 0.

Note that the cascade matrix CT ĈCT Ĉ is encountered in the convergence result of Theorem 1. Accord-
ingly, we adopt yet another quaternion representation for the proper orthogonal matrix CT ĈCT Ĉ given by
w(t) = [wo(t),wv(t)]T such that

CT (t)Ĉ(t)CT (t)Ĉ(t) = I3×3 − 2wo(t)S(wv(t)) + 2S2(wv(t)) (32)

Through the quaternion multiplication property, it is easy to establish the following identities

wo = 2z2
o − 1, wv = 2zozv (33)

We are now ready to state the following result applicable to the three-dimensional case.
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Corollary 2. For the given input-output system of Eq. (1) in the three-dimensional case, suppose the
true/unknown attitude matrix C(t) evolving according to Eq. (2) is parameterized by the quaternion vec-
tor q(t) through Eq. (28). If the attitude estimate matrix Ĉ(t) is parameterized by the unit quaternion q̂(t)
according to Eq. (29) and is updated according to Eq. (5) subject to the condition that q̂(0) /∈ Ψu where

Ψu =
{
η ∈ R4 : ‖η‖ = 1;ηT q(0) = 0

}
then for all non-zero (unit-vector) reference inputs r(t) ∈ R3 the following convergence condition holds
asymptotically

lim
t→∞

‖r(t)× zv(t)‖ = 0 (34)

where z(t) = [zo(t),zv(t)]T is a quaternion representation for the cascaded proper orthogonal matrix CT (t)Ĉ(t).

Proof. Consider the same Lyapunov candidate function from Eq. (7) specialized to the three-dimensional
case (n = 3) as follows

Vo(t) =
1
2
tr
(
C̃T C̃

)
=

1
2
tr
(
2I3×3 − (ĈT C + CT Ĉ)

)
(35)

Making use of the quaternion parameterization z(t) for the proper orthogonal matrix CT (t)Ĉ(t) given in
Eq. (30), we may rewrite Vo(t) in the following manner:

Vo(t) =
1
2
tr
[
−2S2(zv)− 2S2(zv)

]
= −2tr

[
S2(zv)

]
= −2tr

 −z2
3 − z2

2 z1z2 z1z3

z1z2 −z2
1 − z2

3 z2z3

z1z3 z2z3 −z2
2 − z2

1


= 4(z2

1 + z2
2 + z2

3) = 4zT
v zv

= 4(1− z2
0) (36)

where zv = [z1, z2, z3]T . Now, it is clear that Vo(t) is an uniformly bounded function for all t ≥ 0. More
specifically, 0 ≤ Vo(t) ≤ 4 and there exists a very interesting geometric interpretation for Vo(t) in Eq. (36)
which can be explained through the quantities q̂ and q using the quaternion multiplication identity of
Eq. (31). If q̂ is on the hyperplane normal to q (i.e., z0 = qT q̂ = 0), then Vo = 4, its maximum value. On
the other hand, if q̂ is aligned along q (i.e., z0 = 1 or − 1), then Vo = 0, its minimum value. Physically,
zo = 0 corresponds to an error in the Euler principal rotation angle (for the matrix CT Ĉ) given by ±π and
therefore, the properties of Vo(t) in the three-dimensional case are very much analogous to the function VF (t)
of the flatland case.

Starting from Eq. (8), and making use of the quaternion representation given in Eq. (32) for the ma-
trix CT ĈCT Ĉ together with the identities listed in Eq. (33), the time-derivative of function Vo(t) can be
written as follows

V̇o(t) = −γ

2
‖(I3×3 − CT ĈCT Ĉ)r‖2

= −γrT
[
(1− 2z2

0)(2z0)S(zv)− 8z2
0S2(zv)

]
r

= −8γz2
0rT ST (zv)S(zv)r

= −8γz2
0‖zv × r‖2 ≤ 0. (37)

From the foregoing analysis, it is clear that the dynamics of Vo(t) have an equilibrium manifold corresponding
to zo(0) = 0 which corresponds to the set of all possible initial conditions q̂(0) ∈ Ψu. In this case, Vo(0) = 4
and V̇o(t) = 0 for all t ≥ 0 resulting in the fact that Vo(t) remains fixed at its initial value. Instability of
this equilibrium manifold Ψu can be demonstrated by the argument that if zo(0) .= ξ 6= 0, with ξ being
arbitrarily small, then due to V̇o(t) ≤ 0 from Eq. (37), we are guaranteed that |zo(t) |≥|ξ | for all t > 0 and
accordingly, there is no way for convergence zo(t) → 0 to happen as t → ∞. We geometrically depict this
interpretation of the unstable manifold in Fig. 2.
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Unstable manifold

4-D unit hypersphere

Figure 2: Illustration of the error quaternion vector z = [zo, zv]T representing the proper orthogonal matrix CT Ĉ.
The hyperplane zo = 0 represents an unstable equilibrium manifold.

On the other hand, assuming q̂(0) /∈ Ψu, we know that Vo(0) < 4 thus precluding the possibility
limt→∞ zo(t) = 0. Using the facts Vo(t) ≥ 0 and V̇o(t) ≤ 0, we are assured the limit as t → ∞ of
Vo(t) exists and is finite. As a consequence, the integral

∫ t

0
V̇o(t)dt also exists as t → ∞. Further, from

boundedness of V̈o(t) (seen by differentiating both sides of Eq. (37) and recognizing that each term therein is
bounded), we have uniform continuity of V̇o(t). Using Barbalat’s lemma, we are therefore led to conclude that
limt→∞ V̇o(t) = 0. From Eq. (37), since we already ruled out the possibility of limt→∞ zo(t) = 0 from hap-
pening, the only other remaining way for limt→∞ V̇o(t) = 0 to be satisfied is when limt→∞ ‖r(t)×zv(t)‖ = 0
thereby completing the proof. �

For the case of attitude matrix estimation in three-dimensions, the following observations are now in order.

1. An important consequence of Corollary 2 is the fact that whenever q̂(0) /∈ Ψu, not only are we assured
of convergence limt→∞ ‖r(t)× zv(t)‖ = 0 but in fact, the output estimation error e(t) also converges
to zero as t → ∞. This result can be easily established as follows: first, from Eq. (30) we note that
zv × r = S(zv)r = 0 implies CT Ĉr = r; subsequently, starting with the definition of the output
estimation error e(t), in the limit t →∞, we obtain

e(t) = ŷ(t)− y(t) = C̃(t)r(t) = C(t)[CT (t)Ĉ(t)− I3×3]r(t) = 0

which proves the stated assertion.

2. In three-dimensions, the attitude estimate Ĉ(t) is 3× 3 matrix and hence has nine entries that need to
be updated if we are to adopt the matrix differential equation described by Eq. (2). However, a compu-
tationally efficient method for estimating the Ĉ(t) matrix would be by updating the four-dimensional
quaternion vector q̂(t) satisfying the parameterization of Eq. (29). Such an update differential equation
for q̂(t) can indeed be derived. To do so, we first recognize that for three-dimensional vectors y(t)
and ŷ(t), the skew-symmetric matrix yŷT − ŷyT listed in Eq. (2) can be expressed in terms of the
vector cross-product as follows

γ(yŷT − ŷyT ) = −S(γy × ŷ) (38)

Accordingly, an update law for the unit-quaternion q̂(t) = [qo(t), q̂v(t)]T may be expressed by

˙̂qo(t) = −1
2
q̂T

v (ω + γy × ŷ); ˙̂qv(t) =
1
2
[q̂oI3×3 + S(q̂v)](ω + γy × ŷ) (39)
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3. The error quaternion vector z(t) = [zo(t),zv(t)]T parameterizing the proper orthogonal matrix CT (t)Ĉ(t)
according to Eq. (30) has time-evolution described by

żo(t) = −1
2
zT

v CT (t)(γy × ŷ); żv(t) =
1
2
[zoI3×3 + S(zv)]CT (t)(γy × ŷ) (40)

Using the rotational invariance property of the cross product,

CT (t)(γy × ŷ) = γCT (t)y × CT (t)ŷ = γr × CT (t)Ĉ(t)r

which can be substituted in Eq. (40) to establish the following

żo(t) = −γ

2
zT

v [r × CT (t)Ĉ(t)r]; żv(t) =
γ

2
[zoI3×3 + S(zv)][r × CT (t)Ĉ(t)r] (41)

4. From corollary 2, it is possible to show that when q̂(0) /∈ Ψu together with ṙ(t) 6= 0 (i.e., the reference
input not a constant vector), then the attitude estimation error C̃(t) asymptotically converges to zero.
In order to prove this statement, we start from corollary 2 where we already proved that limt→∞[zv(t)×
r(t)] = 0. This result can be applied in Eq. (30) to infer that CT (t)Ĉ(t)r(t) = r(t) as t →∞ which may
further be substituted in Eq. (41) leading us to limt→∞ żv(t) = 0. Further, from uniform continuity of
zv(t)× r(t), we have

lim
t→∞

[zv(t)× r(t)] = 0 =⇒ lim
t→∞

d
dt

[zv(t)× r(t)] = 0

which implies that limt→∞[żv(t) × r(t) + zv(t) × ṙ(t)] = 0 or limt→∞[zv(t) × ṙ(t)] = 0. So far, we
have proved that as t → ∞, we have quantities zv(t) × ṙ(t) → 0 and zv(t) × r(t) → 0, i.e., the
vector zv(t) is simultaneously parallel to both r(t) and ṙ(t). This can be possible only if zv(t) = 0
since every unit vector r(t) satisfies rT (t)ṙ(t) = 0, and therefore vectors r(t) and ṙ(t) remain normal
to one other for all t. Now that we have limt→∞ zv(t) = 0, from Eq. (30), it is possible to conclude
that CT (t)Ĉ(t) → I3×3 as t →∞ and accordingly, the asymptotic convergence result limt→∞ C̃(t) = 0
for the attitude estimation error matrix.

5. We note that our proposed attitude estimation algorithm is developed under the assumption that
the angular velocity vector ω(t) is perfectly measured/determined. This assumption is easily violated
in practical applications due to the fact that gyros that measure angular velocity exhibit drift over
time. Typically, such gyro drift is slow and small (at least for high-grade gyros) and hence the bias in
angular velocity measurements may be considered to remain constant. When angular velocity biases
are included, the stability of the proposed estimator may be presented in a robustness context. Suppose
a small constant bias b exists in the measurement of the angular velocity ω(t), i.e.,

ω̃(t) = ω(t) + b

and the attitude estimate update law from Eq. (5) is accordingly modified as follows:

˙̂
C(t) = −

[
S(ω̃)− γ(yŷT − ŷyT )

]
Ĉ(t); any real γ > 0, any proper orthogonal Ĉ(0) ∈ Rn×n (42)

Then, the dynamics of the vector part of the error quaternion vector zv(t) is modified from Eq. (41)
and can be determined as follows

żv(t) =
γ

2
[zoI3×3 + S(zv)][r × CT (t)Ĉ(t)r] +

1
2
[zoI3×3 + S(zv)]CT (t)b (43)

When compared to the no bias case of Eq. (41), we note that presence of gyro bias introduces the
bounded perturbation term seen from the last term of Eq. (43). This perturbation vanishes when
b = 0 but is otherwise non-vanishing when zv(t) → 0.

From a dynamic stability standpoint, obviously, we are now looking at an asymptotically stable system
Eq. (41) being perturbed by a bounded perturbation. Linearization of the unperturbed system Eq. (41)
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and evaluating about the equilibrium zv = 0 results in a time-varying Jacobian matrix (rrT − I3×3)
whose eigenvalues are evaluated as {−1,−1, 0}. The fact that the eigenvalues don’t all have strictly
negative real parts prevents us from using any of the stability/robustness results available through the
linearized approximations. On the other hand, the unit norm constraint on zv(t) obviously holds even
in the presence of the bias error, and hence boundedness of trajectories for Eq. 43 in the presence of
perturbations is not an issue. However, an interesting theoretical question is whether a meaningful
upper bound can be derived on the difference between the solutions of the unperturbed system of
Eq. (41) and the perturbed system in Eq. (43). It is reasonable to hypothesize that small bias errors
(small perturbations) would maintain solutions of the perturbed system to remain “close” to those of
the asymptotically stable unperturbed system. However, such conclusions are meaningful and may only
be drawn on compact time intervals since difference between the unperturbed and perturbed solutions
is governed through exponential terms involving the Lipschitz constants of the unperturbed system
which grow to infinity as t →∞. A great technical obstacle for drawing bounds valid for all time t is
the fact that we only have proof of asymptotic stability for the zv(t) states in the unperturbed case. In
other words, a lack of proof for exponential stability for the nonlinear unperturbed system prevents us
from making any authoritative comments on how far the trajectories of the perturbed system deviate
from those of the unperturbed (no gyro bias case) nominal system. Of course, the fact that we cannot
show that the difference between the unperturbed and perturbed trajectories remains small (at least
when the bias error is small) doesn’t mean it is not true§.

6. It is possible to derive further insights into the convergence properties of the attitude estimation
algorithm for the case of constant reference input, i.e., r(t) = r∗ for all t ≥ 0. To enable this analysis,
using Eq. (40), we derive the projection of żv(t) along r∗ as given by

rT
∗ żv(t) =

γ

2
rT
∗ [zoI3×3 + S(zv)]CT (t)(y × ŷ)

= γrT
∗ [zoI3×3 + S(zv)]

[
zo(zv × r∗)× r∗ − (rT

∗ zv)(zv × r∗)
]

= γ(rT
∗ zv)‖zv × r∗‖2 (44)

The preceding expression for rT
∗ żv(t) has two important consequences. The first is that when the

component of zv(t) along r∗ is zero, then zv(t) will always remain bounded to a plane that is normal
to the r∗ vector. This implies that the vector part of the quaternion estimation error vector zv(t) → 0
as t → ∞ whenever q̂(0) /∈ Ψu, i.e., zo(0) 6= 0, because of the fact that limt→∞[zv(t) × r∗] = 0 as
provided by corollary 2. The other consequence of Eq.(44) is that any non-zero component of zv(t)
along the direction of r∗ has the same sign as that of the component of żv(t) along r∗. Therefore, the
absolute value of rT

∗ zv(t) increases monotonically so that the vector part of the error quaternion zv(t)
never converges to zero.

The foregoing discussion can be formalized through an elegant geometric interpretation about an unit
sphere in three-dimensions. Note that the vector part of the quaternion estimation error zv(t) evolves
on or inside a unit three-dimensional sphere. Now, consider the constant reference input vector r∗
as the axis of this sphere so that its intercepts with the sphere are respectively the North and South
poles. The plane normal to the r∗ direction may be designated the equatorial plane. With these
definitions, now, depending on various possibilities for the initial conditions on zv(0) and zo(0), we
have the following convergence conditions:

(a) If zv(0) is on the equator, i.e., zo(0) = 0 and zv(0)T r∗ = 0, then zv(t) will always remain on the
equator.

(b) If zv(0) is on the equatorial plane but not on the equator, i.e., zo(0) 6= 0 and zv(0)T r∗ = 0, the
vector part of the quaternion estimation error zv(t) asymptotically converges to zero (the center
of the sphere). Accordingly, the attitude estimation matrix C̃(t) also converges to zero.

(c) If zv(0) is inside the sphere but not on the equatorial plane, then zv(t) will converge to a point
on the axis towards the closest pole.

§We acknowledge the insight provided to us by an anonymous reviewer who performed numerical simulations including a
small gyro bias term and discovered satisfactory performance by the proposed attitude estimator.
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(d) If zv(0) is on the surface of sphere but not on the equator, then zv(t) will converge to one of the
poles. More precisely, if zv(0) is in the Northern hemisphere, then zv(t) converges to the North
pole. Likewise for zv(0) in the Southern hemisphere, the vector part of the quaternion estimation
error zv(t) converges to the South pole.

5. Numerical Simulations

In this section, we present results from numerical simulation of the attitude estimation algorithm. We restrict
attention to the three-dimensional case so as to mimic the problem of estimating the attitude of a satellite
stationed in a geosynchronous orbit. Accordingly, the reference input signal r(t), and angular velocity of the
satellite ω expressed in body frame are taken as follows

r(t) = [sin t, cos t, 0]T , ω = [0, 0, 1]T . (45)

For all our simulations, the initial value of the quaternion representing the true/unknown attitude ma-
trix C(0) according to Eq. (28) is fixed as q(0) = [0.5, 0.5, 0.5, 0.5]T .

Three different simulations are performed with γ = 1. By changing γ value, we can adjust the convergence
speed of the attitude estimator. For the first case, the the initial condition for the quaternion estimate q̂(0)
parameterizing the attitude estimate matrix Ĉ(0) is selected to be

q̂(0) = [
√

0.9,
√

0.1/3,
√

0.1/3,
√

0.1/3]T (46)

For this choice, it is easy to verify that q̂(0) /∈ Ψu and therefore, zo(0) 6= 0. Given that the reference
input r(t) satisfies ṙ(t) 6= 0 and based on the discussion from previous section, we know that the attitude
estimation error C̃(t) asymptotically converges to zero. Simulation results for this case are presented in
Fig. 3 where it can be seen, quite expectedly, that limt→∞ zv(t) = [z1(t), z2(t), z3(t)] = 0.
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(a) The trajectory of zo(t).
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(b) The trajectory of z1(t).
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(c) The trajectory of z2(t).
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(d) The trajectory of z3(t).

Figure 3: The trajectory of the error quaternion z(t) as a function of time t. The initial condition q̂(0) /∈ Ψu so that
zo(0) 6= 0.
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As a second case for our simulation studies, we select a different value for the initial condition for the es-
timate quaternion q̂(0). This time the estimation starts from q̂(0) = [0.5

√
2, 0,−0.5

√
2, 0]T ∈ Ψu. Obviously,

for this choice, we have zo(0) = 0 and therefore theoretically speaking, we should have {zo(t) = 0, ‖zv(t)‖ = 1}
for all t > 0. However, from the fact that zo = 0 is an unstable equilibrium manifold, we see in Fig. 4 that
the vector part of the error quaternion zv(t) converges to nearly zero after about 40 seconds of simulation
time.
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(a) The trajectory of zo(t).
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(b) The trajectory of z1(t).
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(c) The trajectory of z2(t).
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(d) The trajectory of z3(t).

Figure 4: The trajectory of the error quaternion z(t) as a function of time t. The initial condition q̂(0) ∈ Ψu (the
unstable equilibrium manifold) so that zo(0) = 0. Accumulation of numerical round-off errors ultimately results in
regulation of the attitude estimation error to zero.

Finally, the measurement noise is introduced to illustrate the robustness properties of the attitude es-
timation algorithm. The bounded measurement noise v(t) has uniform random distribution on the inter-
val [−0.05, 0.05]. The initial value of the estimate quaternion q̂(0) is again taken according to Eq. (46) so
that q̂(0) /∈ Ψu. Simulation results including the effects of measurement noise are shown in Fig. 5. As dis-
cussed earlier, we no longer have the asymptotic convergence of error quaternion zv(t) to zero. Instead, each
component of the estimation error quaternion remains bounded so that ultimately the magnitude of ‖zv(t)‖
is dictated by the magnitude of the measurement noise.

6. Concluding Remarks

This paper presents an adaptive estimation algorithm, together with a convergence proof that holds for all
n× n proper orthogonal matrices. The importance of this problem, particularly in three-dimensions, lies in
the fact that no attitude representation is ever directly measured. Instead, such information always needs to
be reconstructed through techniques presented in this paper while using available input-output observations.
In practice, measurements from sensors that generate input-output type vectors may be used in conjunction
with the proposed methodology to reliably reconstruct the attitude information.

The results obtained here have broader implications, particularly for purposes of generating feedback
control signals on the group of rigid body motions wherein signals corresponding to attitude representations
(Euler angles, Gibbs vector, and/or quaternions) are estimated on the basis of measurement models.
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Figure 5: The trajectory of the error quaternion z(t) as a function of time t. The initial condition q̂(0) /∈ Ψu

Measurement noise is introduced as a signal having an uniform distribution between -0.05 and 0.05.
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