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I. Introduction

This study introduces a new method to estimate spacecraft trajectories using non-rational

Bézier functions to fit a set of measured positions. These implicit functions are defined by

a set of control points that, in general, do not belong to the trajectory. The values of the

implicit parameters, the control points, and the Bézier function degree are estimated by

an iterative least-squares process. The main advantage of this approach is that it does not

require dynamics and perturbations models, and it provides not only a best fitting of the

trajectory, but also associates interpolated points with corresponding times. This approach

proves particularly useful either when dynamics and/or perturbations are difficult to model

(e.g., solar pressure depending on solar activities and attitude) or when unpredictable events

(e.g., pipe leak) make the expected dynamics model inaccurate. To validate the proposed

approach, comparison with Iterative Batch Least Squares and Extended Kalman Filter is

provided for three segments of a cislunar trajectory. The basic inspiration for this method

comes from the observation that Gooding’s initial orbit determination method3 provides,

in general, better performances than most alternative methods. This is because Gooding’s

method is based on the Lambert problem, which is a known Two-Point Boundary Value

Problem (TPBVP), while most of the other methods fall into the Initial Value Problem

(IVP) category. In general, IVP’s are easier to solve than TPBVP’s, but the solutions

are usually more sensitive to uncertainties in the data. This is because to solve an IVP all
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information is given at one point. On the other hand a TPBVP relies on information provided

at two distinct points, initial and final. This makes them usually more accurate and, more

importantly, less sensitive to small perturbations of the data. Bézier functions are uniquely

described by a set of coefficients called “control points”. For this reason trajectories described

by these functions are not very sensitive to uncertainty: the power of Bézier functions is that

the information is “distributed” along the trajectory.

The method proposed in this study is independent from the physics involved, relying only

on observations. Compared to other families of implicit functions, like B-splines, Bézier poly-

nomials can be rewritten in a linear form that greatly simplifies the optimization problem,

as explained below. Moreover, this approach not only performs best fitting of a trajectory,

but also associates points of the curve with measurement times by best-fitting time with a

Bézier curve found independently from the interpolated trajectory, but related to it by the

curvilinear parameter. Validation has been performed via estimation of a cislunar trajectory

using visual camera measurements which in turn has been simulated and with NASA-GMAT.

However the proposed method is applicable to different scenarios as long as an estimated set

of position vectors and associated times are available.

II. Trajectory Estimation using Non-Rational Bézier Functions

Expanding on previous developments,4 a Bézier function can be written as a linear com-

bination of Bernstein polynomials,

r =
n∑

k=0

ckB
n
k (s) where Bn

k (s) =

(
n

k

)
sk(1− s)n−k, s ∈ [0, 1]. (1)

Where ck are the control points in 3D and s is the implicit parameter with no physical

meaning. By use of the binomial theorem, any non-rational Bézier function can be written

as:

r =
n∑

k=0

{
ck

(
n

k

)[n−k∑
j=0

(
n− k
j

)
(−1)n−(k+j)sn−j

]}
. (2)

While Eq. (2) itself is rather cumbersome, by considering m points along the curve and the

corresponding values of the parameter s, {s1, . . . , sm}, we obtain a system of linear equations

in ck which can be rewritten in a much more compact form:

R
3×m

= C
3×(n+1)

M
(n+1)×(n+1)

S
(n+1)×m

(3)
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where


R = [ r1, r2, . . . , rm ]

C = [ c0, c1, . . . , cn ]

and S =



0 sn2 sn3 · · · snm−2 snm−1 1

0 sn−12 sn−13 · · · sn−1m−2 sn−1m−1 1
...

...
...

. . .
...

...
...

0 s2 s3 · · · sm−2 sm−1 1

1 1 1 · · · 1 1 1


(4)

and the elements of matrix M are of the form Mi,j =
(
n
i

) (
n−i
j

)
(−1)n−(i+j), i = 0, . . . , n, j =

0, . . . , n− i (to keep the numbering consistent with the control points, in this formalism the

first element of the M matrix is M0,0, and so on). It follows easily from the properties of

binomial coefficients that mi,j = mj,i, and also mi,j = 0 whenever i + j > n. Matrix C can

be obtained from Eq. (3) using Least Squares:

C = RST (SST)−1M−1 (5)

Solving Eq. (5) requires a choice for the degree n and the parameter distribution. To find

the optimal values, in the sense of minimizing a given error measure, two iterative processes

are used in sequence, one to establish the degree and one for the parameter.

Because all but the simplest trajectories have variable curvature, and small values of

curvature are often hidden by noise, it is not possible to define a priori the optimal degree to

use in a specific application. In general, trajectories with more variable curvature are better

approximated by polynomials of higher degree. On the other hand, the maximum degree

usable for a given segment is limited by the number of data points available, according to:

n =
⌈m

3
− 1
⌉
. (6)

This condition must be satisfied to guarantee that the linear system is not undetermined.

However, this is just an upper limit for the range in which the algorithm can search for the

optimal degree, and not a condition to be enforced as the number of measurement accrued

increases. In fact, a stricter limit on the degree is imposed by numerical reasons as matrix

S becomes progressively ill-conditioned for increasing values of n, becoming finally unstable

around n ' 10, as found experimentally. Therefore, to find the optimal degree, the algorithm

starts approximating the data with a polynomial of degree 2 and then increases this value

until an appropriately chosen measure of the error reaches a local minimum, or the degree

reaches either of the limits introduced above, whichever is smaller. In most cases, the optimal

degree found iteratively will be close or equal to the maximum defined by Eq. (6). Thus,

that while currently there are limits to the maximum degree achievable with this method,
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this does not reflect negatively on the ability of the curve to interpolate the data, for the

applications here considered.

A. Bézier Parameters Least Squares optimization

To solve Eq. (5), a distribution of the parameter s corresponding to the measurements has

to be assumed. If the data is provided at constant time step, a uniform distribution can be

used:

sk =
k − 1

n− 1
where k ∈ [1,m]. (7)

Another valid approximation relates the distribution with the relative distance of subsequent

data points, as per the following:

 s1 = 0

sm = 1
and sk =

k∑
j=2

|r̃j − r̃j−1|

m∑
j=2

|r̃j − r̃j−1|
where k ∈ [2,m− 1]. (8)

where the r̃j are the position measurements. In general, solving Eq. (5) with either distri-

bution leads to estimates displaced from the actual measurements, by a value of:

dk = |CMsk − r̃k| k ∈ [1,m]. (9)

where sk is a vector of all the powers of sk. Obviously, changing a certain sk will only affect

the value of the corresponding dk. Thus, it is possible to find a new set of parameters by

minimizing a set of aptly chosen cost functions {Lk}:

Lk = (CMsk − r̃k)T(CMsk − r̃k) k ∈ [2,m− 1] (10)

by expanding:

Lk = sT

kMCTCMsk − 2rT

kCMsk + rT

krk (11)

Applying the necessary condition for a stationary point leads to a polynomial in sk:

dLk

dsk
=
dLk

dsk
· dsk
dsk

= 2 sT

kMCTCM
dsk
dsk
− 2rT

kCM
dsk
dsk

= 0 (12)

or equivalently

F (sk) = sT

kMCTCM
dsk
dsk
− rT

kCM
dsk
dsk

= 0 (13)
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Eq. (13) is a polynomial in sk which can be solved for instance via Newton-Raphson itera-

tions, given an initial guess s̄k:

s∗k = s̄k −
F (s̄k)

F ′(s̄k)
(14)

where

F ′(sk) =
dF (sk)

dsk
=
dsT

k

dsk
MCTCM

dsk
dsk

+ sT

kMCTCM
d2sk
ds2k
− rT

kCM
d2sk
ds2k

(15)

In Eqs. (9 - 15), vector sk and its derivatives have the following expressions:

sk =



snk

sn−1k
...

sk

1


dsk
dsk

=



nsn−1k

(n− 1)sn−2k
...

1

0


d2sk
ds2k

=



n(n− 1)sn−2k

(n− 1)(n− 2)sn−3k
...

0

0


(16)

Minimizing Eq. (10) (note how the first and last point are left unchanged, to ensure the

parameter always spans the range [0, 1]), leads to a new parameter distribution, that can in

turn be used in Eq. (5) to find a new set of control points. To further generalize the method,

Eq. (5) can be modified to include measurement weights. Assuming, as is often the case, all

measurements to be uncorrelated, the weights matrix W is diagonal. Then:

C = RWST(SWST)−1M−1 (17)

It is immediate to see that Eq. (17) reduces to Eq. (5) when all the weights are equals.

Therefore, the algorithm is constituted of two cycles in sequence: the first, starting

at n = 2, progressively increases the degree until a local minimum in the average error

along the trajectory is found. Once this criterion is met, and the number of control points

is established, a second cycle improves on the parameter distribution as explained above.

Finally, this optimal distribution is also used to find a best fitting of the measurement times.

To summarize, the overall algorithm of the Bézier Least Squares (BLS) is described in Fig. 1.

B. Least Squares for Bézier time description

Analogous to what has been done for position, time along the trajectory can also be expressed

as a function of the parameter s. When measurements are taken at constant time steps, the

implicit assumption is that t varies linearly with the parameter, as in t = ti (1−s)+tf s, which

5 of 12



Figure 1. Algorithm scheme.
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can be seen as a Bézier function of degree 1. However, velocity variations along the trajectory

can be better described with polynomials of higher degree. This degree is generally different

from the optimal degree of the interpolated trajectory. The two polynomials exist in different

dimensional spaces, with the “time curve” being effectively one dimensional. However, the

two are still related via the parameter s, because each measurement is associated with a time

instant. Therefore, upon reaching convergence in the estimation of sk, the control points τ

for the “time curve” are easily found by applying the same procedure as above:

t̃ = τMpSp → τ = t̃ST

p (SpS
T

p )−1M−1
p (18)

where the subscript “p” indicates the degree used in this calculation, which is not necessarily

equal to n. Similarly to what is done for position estimation, its value is found by searching

for the minimum difference between measured and estimated times:

min
p
|t̃− t̂|2. (19)

Because of the monotonic behavior of time, the control points τk must satisfy the series of

inequalities:

ti < τ1 < · · · < τn−1 < tf . (20)

It is worth emphasizing that while all of the τk are expressed in seconds, they do not represent

times of any specific point along the trajectory, but rather, are the control points associated

with the time description of the trajectory.

C. Velocity Estimation

As an added result of the method, it is possible to obtain an estimate for the velocity at the

measured positions; indeed:

v(t) =
dr

dt
=

(
dr

ds

) ∣∣∣∣
sk

(
ds

dt

) ∣∣∣∣
sk

=

(
dr

ds

) ∣∣∣∣
sk

(
dt

ds

) ∣∣∣∣−1
sk

(21)

Because both r(s) and t(s) are polynomials, these derivatives are extremely simple to find.

It is worth noting that Eq. (21) does not return the Bézier function for the velocity (i.e. its

control points), but only the estimated velocities at sk.

III. Bézier Least Squares Sensitivity Analysis

Sensitivity analysis is performed considering a one-dimensional Bézier function. Figure 2

and Figure 3 describe the effect of Gaussian noise in the measurements and convergence of
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the method when starting with a poor choice of the parameter s, respectively.

Figure 2. Average error for increasing
noise in the measurements.

Figure 3. Average error for increasing dis-
turbances in the s distribution.

IV. Numerical tests on Cislunar trajectory

For the estimation of segments of a cislunar trajectory for an Earth-to-Moon mission,

the measurements are simulated assuming a camera of focal length 300 mm and random

Gaussian noise whose standard deviation is based on the optical properties of the supposed

sensor.1 Weights are introduced by considering the specific geometry at work. Along the

trajectory, three segments are considered, close to the Earth, midway, and close to the Moon.

Along the first segment the spacecraft is mainly subject to Earth gravitational effects, while

along the third the Moon is the principal gravitational body. Each segment consists of 25

measurements, equally spaced over a period of 2 hours. The trajectory is simulated with the

GMAT software, taking into account the full gravitational effects of Sun, Earth and Moon,

in addition to non-gravitational effects such as solar radiation pressure. The results show

the performance of the proposed method point by point along the segments, compared with

a Weighted Iterative Least Square (ILS) and an Extended Kalman Filter (EKF), both of

which, it is worth reminding, require full state propagation to compute the estimate. For

these two methods, the simplified physical model implemented only includes the point mass

effects of the Earth and the Moon.

A. Simulation results

For all segments, the ILS reaches convergence after 8 iterations, and the optimal degree

found by BLS is 7. As mentioned above, Gaussian noise is superimposed to the simulated
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measurements. As seen in Figs. (4) to (9), BLS performs comparably with ILS and EKF.

Each figure shows the root sum squared of the errors at each measurement time for the

three algorithms. The overall performance of the three methods is summarized by taking

the average error along each segment in both position and velocity. The results are reported

in Table 1.

Close to Earth Midway Close to Moon

ILS Position error (km) 1.4719 0.3519 0.3509

BLS Position error (km) 2.7362 0.6935 0.2212

EKF Position error (km) 1.8694 0.6203 0.3616

ILS Velocity error (km/s) 0.0017 0.0003 0.0003

BLS Velocity error (km/s) 0.0083 0.0022 0.0005

EKF Velocity error (km/s) 0.0108 0.0063 0.0063

Table 1. Average error comparison

It can be seen that the EKF provides progressively worse results as the spacecraft moves

further from Earth, while BLS improves. This is mainly due to the fact that EKF (like the

ILS) uses a model which does not take into account any perturbation and has zero process

noise, therefore its results are less accurate where such perturbations are more prominent.

In contrast, BLS only uses measurements and it is “closer” to the truth along segment 3.

For this same reason BLS performs better than ILS along segment 3. It is worth noting that

even when BLS has a greater margin of error than the other methods, it remains a sensibly

simpler method to implement, because it does not require any of the tuning procedures

typically associated with the Kalman filters. Moreover, the velocity estimates are obtained

very simply as a secondary result according to Eq. (21), while EKF and ILS perform a full

state propagation to obtain the same result. Lastly, because of the much simpler mathematics

of the BLS, in each case the computational time is roughly one order of magnitude smaller

than the one required for EKF and ILS.

Figure 4. Position estimation error along
segment 1. Bézier optimal degree: 7.

Figure 5. Velocity estimation error along
segment 1.
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Figure 6. Position estimation error along
segment 2. Bézier optimal degree: 6.

Figure 7. Velocity estimation error along
segment 2.

Figure 8. Position estimation error along
segment 3. Bézier optimal degree: 7.

Figure 9. Velocity estimation error along
segment 3.

These results suggest that the dynamics is quite perturbed during segment 3 and there-

fore the EKF could benefit from the addition of process noise. Figs. 10 and 11 show the

performance of estimating the trajectory during segment 3 when process noise is added to

the EKF with a power spectral density of 1 mm2/s2 per axis. It can be noticed that the

EKF with and without process noise start out providing similar results but eventually the

implementation that includes process noise performs better. BLS and the EKF with process

noise provide similar results, however BLS performs slightly better in terms of position error

root sum square (0.201 km versus 0.254 km).

Figure 10. Position estimation error along
segment 3 (EKF w. process noise in-
cluded).

Figure 11. Velocity estimation error along
segment 3 (EKF w. process noise in-
cluded).
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V. Conclusions

This work shows that Least Squares applied to Non-Rational Bézier functions provide a

reliable approach to describe space trajectories based on a set of measured position vectors.

The method has been implemented in an algorithm composed of two main loops, to optimize

both the distribution of the implicit parameter s and the degree of the polynomial n. While

the latter is limited by numerical instability issues, satisfactory performances are nevertheless

achieved thanks to the flexibility of Bézier curves, avoiding the necessity to use polynomials of

even higher degree. The proposed approach has been tested in three segments of a simulated

cislunar trajectory and compared with iterative Least Squares and extended Kalman filter

estimators. The proposed method, simpler in approach and implementation, does not require

any dynamical model to work. For this reason it is suitable in those situations where accurate

dynamics models are complicate, change often, or are unknown. Since dynamical models are

not used, knowledge of process noise and/or dynamical model uncertainty are not needed.

Typical examples of such are the solar radiation pressure model (which depends on attitude

and solar activity) or venting and accidental pipe leaking events. Compared to other best

fitting methods, this approach also provides with velocity estimates, obtained indirectly by

interpolating both positions and times rather than directly from velocity measurements.

Numerical test scenarios have been simulated using NASA’s “General Mission Analysis

Tool” software. Three segments of a cislunar trajectory have been considered. Accuracy

results in term of position and velocity estimation are shown to be comparable with those

provided by iterative Least Squares and extended Kalman filter estimators. Better per-

formance is shown in the third segment, where the gravitational contribution of the Moon

becomes more important. The promising results have encouraged the authors to explore

the possibility of using different type of parametric curves, like Rational Bézier Curves and

splines, which will be the focus of future research.

Obviously the accuracy obtained using trajectory estimators based on correct dynamical

models is certainly better than that obtained using the proposed Least Squares applied to

Bézier functions. For this reason the proposed approach is not meant to substitute Kalman

filter-type estimators, but it can be used when these estimators need to work far from their

nominal (and optimal) range of applicability or when they provide doubtful results. In these

cases the proposed method still provides good estimates of both position and velocity.

When the extended Kalman filter is used in a highly uncertain dynamical environment,

process noise is used to de-weight the contribution of the prior state to the updated state.

In practice this means that both the dynamics model and all of the prior measurements are

de-weighted in favor of the current measurement. On the one hand this procedure decreases

the estimation error because it does not completely rely on faulty propagation models. On
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the other hand, however, less information is made available because prior measurements are

not completely used. Tuning the process noise is usually an iterative process. The proposed

approach is an alternative that does not necessitate tuning and produces comparable results.
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