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I. Introduction

The Joseph formula [1] is a general covariance update equation valid not only for the Kalman gain, but

for any linear unbiased estimator under standard Kalman filtering assumptions. The Joseph formula is given

by P+ = (I − KH)P−(I − KH)T + KRKT, where I is the identity matrix, K is the gain, H is the

measurement mapping matrix, R is the measurement noise covariance matrix, and P−, P+ are the pre and

post measurement update estimation error covariance matrices, respectively. The optimal linear unbiased

estimator (equivalently the optimal linear minimum mean square error estimator) or Kalman filter often

utilizes simplified covariance update equations such as P+ = (I−KH)P− and P+ = P−−K(HP−HT+

R)KT. While these alternative formulations require fewer computations than the Joseph formula, they are

only valid when K is chosen as the optimal Kalman gain. In engineering applications, situations arise where

the optimal Kalman gain is not utilized and the Joseph formula must be employed to update the estimation

error covariance. Two examples of such a scenario are underweighting measurements [2] and considering

states [3]. Even when the optimal gain is used, the Joseph formulation is still preferable because it possesses

greater numerical accuracy than the simplified equation [4].

In this note, an equivalent to the Joseph formula is derived for linear estimators but without the assump-

tion of linear measurements. The formula is applied to the quadrature filter [5] and the unscented filter [6] in
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the presence of consider parameters.

Schmidt’s approach for consider states (Schmidt-Kalman filter) is based on minimum variance estima-

tion [7]. Jazwinski [8] details the derivation of the consider Kalman filter in the presence of linear measure-

ments. For nonlinear measurements, the standard extended Kalman filter approach is used, i.e. linearization

around the conditional expectation is performed.

Woodbury and Junkins [3] performed a careful analysis of both the Schmidt-Kalman filter and the con-

sider analysis approach as derived by Tapley et al. [9]. The analysis by Woodbury and Junkins shows the

differences and the benefits of each of the two approaches. The consider filter has received considerable

attention in recent years. Woodbury et al. provide new insight into considering parameters in the measure-

ment model [10]. Equivalent formulations to the consider filter were also studied [11, 12] and applied to

Mars entry navigation [13] and orbit determination [14]. Lisano [15] introduced an unscented formulation

of the covariance analysis approach by Tapley et al. As described by Woodbury and Junkins that approach is

different from that of the Schmidt-Kalman filter.

Instead of deriving the consider filter for linear measurements and then extend the results to nonlinear

measurements, this work derives the general linear consider optimal filter in the presence of nonlinear mea-

surements. The optimal estimator reduces to the consider filter in the case of linear measurements and it can

be approximated by linearization around the conditional mean to obtain the well known consider filter re-

sults. However, this work does not approximate the general consider filter equations via linearization around

the mean, but through the use of a set of deterministic points. Depending on the scheme chosen for the points

selection, the consider quadrature filter and the consider unscented filter are obtained.

II. Generalized Joseph Formula and Linear Minimum Mean Square Consider Filter

Given an nx-dimensional random vector x, the mean is denoted by mx , E{x}, and the covariance is

denoted by Pxx , E{(x −mx)(x −mx)T}. Additionally, given an ny-dimensional random vector y, the

covariance between x and y is Pxy , E{(x−mx) (y −my)T}.

Let x be the random vector to be estimated and y be a random vector whose samples are available; y is

potentially a nonlinear function of x, as well as other non-estimated random states c, and zero-mean white
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noise v. Thus, in general, y may be of the form

y = h(x, c,v) .

The linear estimators of x from y is the family of functions given by x̂ = `(y) = Ay+b. The goal is to find

optimal values for A and b in a minimum mean square error (MMSE) sense. The optimal coefficients are

denoted with an asterisk. The orthogonality principle [16] is valid when the family of estimation functions

is closed under addition and multiplication by a scalar. Under this hypothesis the orthogonality principle

establishes that the optimal estimation error, e = x − (A∗y + b∗), is perpendicular to every possible

estimator, i.e.

E
{

[x−A∗y − b∗]T [Ay + b]
}

= 0 ∀ A,b (1)

bTE {x−A∗y − b∗}+ trace
(
AE

{
y [x−A∗y − b∗]T

})
= 0 ∀ A,b. (2)

Noting that the orthogonality condition must be satisfied for all A and b it follows that the coefficients of b

and A in Eq. (2) must be zero

E {x−A∗y − b∗} = 0 (3)

E
{
y [x−A∗y − b∗]T

}
= O (4)

The first condition implies b∗ = E{x}−A∗E{y} = mx−A∗my. The linear MMSE (LMMSE) estimator

therefore has the form x̂ = mx + A∗(y −my), from which it is established that the estimate is unbiased

(i.e. the estimation error e = x − x̂ is zero mean). Combining Eq. (3) and Eq. (4) we obtain that for any

vector m of appropriate dimensions

E
{

(y −m) [x−A∗y − b∗]T
}

= O ∀m (5)

The optimal gain A∗ can be derived by substituting the optimal b∗ = mx −A∗my into Eq. (5) to obtain

E
{

(y −my) [(x−mx)−A∗(y −my)]T
}

= O ,

the optimal matrix is therefore given by

A∗ = PxyP−1
yy , (6)
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where P−1
yy is the matrix inverse of Pyy. The LMMSE estimator is therefore given by

x̂ = mx + PxyP−1
yy (y −my) . (7)

When introducing consider states c, it is necessary to know their covariance and the correlation between them

and x in order to calculate Pxy and Pyy. When measurements are linear and in the absence of consider states

y = Hx + v

Pxy = PxxHT

Pyy = HPxxHT + R ,

where R is the covariance of the zero-mean measurement noise v. When substituting the above equations in

Eq. (7) the familiar Kalman filter emerges.

The family of all linear unbiased estimators is given by x̂ = mx + A(y −my) and their estimation

error has covariance matrix Pee given by

Pee = Pxx −PxyAT −APT
xy + APyyAT . (8)

Eq. (8) is the equivalent to the Joseph formula in the case of nonlinear measurements; the equation is valid

for any value of A, not just the optimal value. When measurements are linear and in the absence of consider

states Eq. (8) reduces to the familiar Joseph formula

Pee = (I−AH)Pxx(I−AH)T + ARAT.

In the presence of nonlinear measurements and consider states, we define an augmented state vector

zT = [xT cT], and the linear consider estimator is given by

ẑ = b + Kcony ,

where the rows of Kcon corresponding to c are zero. The family of all linear consider estimators is closed

under addition and multiplication by a scalar, therefore the orthogonality principle holds, and the same steps

previously used in determining optimal values for b and Kcon can be repeated to obtain the optimal consider

state update

ẑ = mz + Kcon(y −my) =

 mx

mc

+

 A∗

O

 (y −my) =

 mx + A∗(y −my)

mc

 , (9)
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where A∗ is defined in Eq. (6). The update of the estimation error covariance is given by the generalized

Joseph formula

Paug = Pzz −PzyKT
con −KconPT

zy + PzyPyyPT
zy . (10)

For linear measurements and consider states Eqs. (9) and (10) reduce to the consider filter.

III. New Consider Filter Algorithms

In order to implement the consider filter that is described by Eqs. (9) and (10), the values of my, Pyy,

Pxy, and Pzy need to be determined. First, define a composite input, u, to the measurement function

such that uT = [xT cT vT]. Given x ∈ Rnx , c ∈ Rnc , and v ∈ Rnv , it follows that u ∈ Rn where

n = nx + nc + nv , and that the measurement function may be expressed as

y = h(u) .

Recalling that y ∈ Rny and given a value of Puy, it follows that Pzy is the upper (nx + nc)× ny block of

Puy. Furthermore, Pxy is the upper nx × ny block of Puy. Therefore, given the values of my, Pyy, and

Puy, the necessary components required in Eqs. (9) and (10) are available.

The a priori mean and covariance of the composite input, mu and Puu, are known, and are given by

mu =


mx

mc

mv

 and Puu =


Pxx Pxc Pxv

Pcx Pcc Pcv

Pvx Pvc Pvv

 ,

where Pcx = PT
xc, Pvx = PT

xv, and Pvc = PT
cv. For zero-mean noise with covariance R, mv = 0 and

Pvv = R. Additionally, when the noise is not correlated with the state or consider states, Pxv = PT
vx = O

and Pcv = PT
vc = O.

The a priori probability density function of u is denoted as p(u); from it, the mean, covariance, and

cross-covariance are obtained as

my =
∫

Rn

h(u)p(u)du (11)

Pyy =
∫

Rn

(h(u)−my)(h(u)−my)Tp(u)du

Puy =
∫

Rn

(u−mu)(h(u)−my)Tp(u)du .
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The covariance terms admit a simplification as Pyy = P̃yy −mymT
y and Puy = P̃uy −mumT

y , where

P̃yy =
∫

Rn

h(u)hT(u)p(u)du (12)

P̃uy =
∫

Rn

uhT(u)p(u)du . (13)

Therefore, the three integral terms of Eqs. (11)–(13) need to be evaluated in order to evaluate the consider

filter that is described by Eqs. (9) and (10), where each of the three terms has the form

I =
∫

Rn

f(u)p(u)du ; (14)

the quadrature and unscented filters approximate these integrals by the summation of a finite number of

deterministic points.

A. The Consider Quadrature Kalman Filter

The quadrature Kalman filter assumes that the a priori density is Gaussian with mean mu and covariance

Puu, i.e.

p(u) = |2πPuu|−1/2 exp
{
−1

2
(u−mu)TP−1

uu(u−mu)
}
.

The method is based on the Gauss-Hermite quadrature rule, which is given by

1√
π

∫ ∞
−∞

f(u)e−u2
du =

m∑
i=1

wif(qi) ,

where qi andwi are the quadrature points and weights, respectively, and the equality holds for all polynomials

of degree up to 2m−1, wherem is the chosen order of the quadrature rule. The quadrature points and weights

can be determined via an eigenvalue problem as follows. Let J be a symmetric, tridiagonal matrix with zeros

on the main diagonal. The elements of the first upper and lower diagonals are given by Ji,i+1 = Ji+1,i =√
i/2 for 1 ≤ i ≤ m − 1. Then, the quadrature points are the eigenvalues of J and the quadrature weights

are given by wi = |(vi)1|2, where (vi)1 is the first element of the ith normalized eigenvector of J [5, 17].

Consider a scalar random variable, u, which is distributed according to a standard normal distribution

(i.e. a Gaussian distribution with zero mean and unit variance). It readily follows by a change of variables

that the Gauss-Hermite quadrature rule may be employed as∫ ∞
−∞

f(u)N (u; 0, 1)du =
1√
2π

∫ ∞
−∞

f(u)e−u2/2du =
m∑

i=1

wif(κi) ,
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where κi =
√

2 qi. In the case of an n-dimensional vector-valued random variable, u′, with zero mean and

identity variance, the univariate Gauss-Hermite quadrature rule is extended to a multivariate quadrature rule

by successive application to the mutually uncorrelated elements of u′, yielding [5]∫
Rn

f(u′)N (u′;0, I)du′ =
m∑

in=1

win · · ·
m∑

i1=1

wi1f(κi1 , . . . , κin) =
mn∑
i=1

λif(κi) ,

where κi = [κi1 · · ·κin
]T and λi =

∏n
j=1 wij

. Thus, an m-point univariate quadrature rule generates an

mn-point quadrature rule for n-dimensional integral evaluations. While the previous equation represents an

n-dimensional quadrature, it is not of the form expressed in Eq. (14). Since an arbitrary multivariate Gaussian

distribution is a linear transformation from a zero-mean, unit-variance Gaussian distribution, the final step is

to perform a linear change of variables, which yields∫
Rn

f(u)N (u;mu,Puu)du =
mn∑
i=1

λif(U i) , (15)

where U i = mu + Suuκi and Suu is a square-root factor of Puu, such that Puu = SuuST
uu.

In order to utilize the quadrature approach for the consider filter, first select the quadrature rule via the

parameterm. Using the previously described approach, generate the n-dimensional quadrature rule, yielding

the mn quadrature points κi and associated weights λi. Compute the square-root factor Suu from Puu (e.g.

using a Cholesky factorization) in order to determine U i = mu + Suuκi. Then, the integral terms of

Eqs. (11)–(13) are computed via Eq. (15) as

my =
mn∑
i=1

λih(U i)

P̃yy =
mn∑
i=1

λih(U i)hT(U i)

P̃uy =
mn∑
i=1

λiU ihT(U i) .

Pyy and Puy are then given by Pyy = P̃yy −mymT
y and Puy = P̃uy −mumT

y , from which Pzy and

Pxy may be extracted. Finally, use Eqs. (9) and (10) to complete the quadrature consider filter.

B. The Consider Unscented Kalman Filter

Given an n-dimensional random variable u with mean and covariance, mu and Puu, respectively, and

a nonlinear transformation

y = h(u) ,
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the unscented Kalman filter, like the quadrature Kalman filter, employs a set of deterministically selected

points in order to compute the mean and covariance of y, as well as the cross-covariance between u and

y. Unlike the quadrature Kalman filter, the unscented Kalman filter selects its points based on moment

matching. That is, a set of sigma-points, U i and associated weights, wi, are selected so that the moments

of y are well approximated. In general, given a set of K sigma-points, U i, and the transformed values,

Yi = h(U i), the mean, covariance, and cross-covariance are computed as

my =
∑
i∈I

w
(m)
i Yi (16a)

P̃yy =
∑
i∈I

w
(c)
i YiYT

i (16b)

P̃uy =
∑
i∈I

w
(c)
i U iYT

i , (16c)

with Pyy = P̃yy − mymT
y and Puy = P̃uy − mumT

y , and where the cardinality of I is K, i.e. the

number of sigma-points. It should be noted that the unscented Kalman filter can employ different weights

for the mean and covariance calculations. Three methods for constructing the input sigma-points and their

associated weights are reviewed: the symmetric, extended symmetric, and scaled extended symmetric sigma-

point selection schemes.

The symmetric sigma-point selection scheme chooses a set of K = 2n sigma-points that are on the

√
n

th covariance contour as [18]

U i = mu +
√
n si i = 1, . . . , n

U i = mu −
√
n si−n i = n+ 1, . . . , 2n ,

with associated weights ofw(m)
i = w

(c)
i = 1/2n for i = 1, . . . , 2n, and I = {1, . . . , 2n}. Here, si represents

the ith column of the square-root factor of the covariance matrix, i.e. si is the ith column of Suu, where

SuuST
uu = Puu.

The symmetric sigma-point selection scheme guarantees matching of the mean and covariance of the

input distribution. Additionally, since the scheme is symmetric by construction, the third moment for sym-

metric distributions is also matched; however, introduction of a tuning parameter (and another sigma-point)

enables the sigma-points to capture up to 4th moments. This is done by extending the symmetric sigma-

point set to include an additional sigma-point that is the mean, yielding the extended symmetric sigma-point
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selection scheme as [19]

U i = mu i = 0

U i = mu +
√
n+ κ si i = 1, . . . , n

U i = mu −
√
n+ κ si−n i = n+ 1, . . . , 2n ,

with weights given byw(m)
i = w

(c)
i = κ/(n+κ) for i = 0, andw(m)

i = w
(c)
i = 1/2(n+κ) for i = 1, . . . , 2n,

and with I = {1, . . . , 2n+ 1}. Choosing κ such that n+ κ = 3 ensures that the 4th moment matches [19].

When κ = 3 − n < 0, the weight for U0 becomes negative, and the calculated covariance can become

non-positive semidefinite [20]. This effect motivated the development of the scaled unscented transform

which replaces the extended symmetric sigma-points with the scaled extended symmetric set of sigma-points

as

U ′i = U0 + α(U i − U0)

for i = 1, . . . , 2n, where α is a positive scaling parameter such that 0 ≤ α ≤ 1. Additionally, since the

weighting of the mean sigma-point directly affects the magnitude of the errors in the fourth and higher order

terms for symmetric prior distributions, a third parameter, β is introduced to allow for the minimization

of higher order errors in the presence of knowledge of the prior distribution. Thus, the scaled extended

symmetric sigma-point selection scheme is given by [20]

U i = mu i = 0

U i = mu +
√
n+ λ si i = 1, . . . , n

U i = mu −
√
n+ λ si−n i = n+ 1, . . . , 2n ,

where λ = α2(n+ κ)− n, and the weights are given by w(m)
i = λ/(n+ λ) for i = 0, w(c)

i = λ/(n+ λ) +

(1−α2+β) for i = 0, and w(m)
i = w

(c)
i = 1/2(n+λ) for i = 1, . . . , 2n. Additionally, I = {1, . . . , 2n+1}

for the scaled symmetric sigma-point selection scheme.

In contrast to the extended symmetric sigma-point selection scheme, the scaled extended symmetric

sigma-point selection scheme has three tuning parameters: κ, α, and β. Choosing κ ≥ 0 guarantees positive

semidefiniteness of the covariance matrix, so a good default value is κ = 0 [20]. Since α controls the spread

of the sigma-points, choosing smaller values of α ensures the avoidance of non-local sampling; choosing

α = 1, however, produces the same set of sigma-points as the extended symmetric method. Finally, β is a
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non-negative parameter that can be used to incoporate prior distribution knowledge; in the case that the prior

is Gaussian, the optimal choice is β = 2 [21].

In order to utilize the unscented approach for the consider filter, first select the sigma-point scheme and

any associated tuning parameters. Using the square-root factor Suu of Puu, determine the sigma-points, U i,

and the associated weights,w(m)
i andw(c)

i , according to the chosen scheme. After computing the transformed

sigma-points via Yi = h(U i) for i ∈ I, the integral terms of Eqs. (11)–(13) are computed using Eqs. (16).

Pyy and Puy are then given by Pyy = P̃yy −mymT
y and Puy = P̃uy −mumT

y , from which Pzy and

Pxy may be extracted. Finally, use Eqs. (9) and (10) to complete the unscented consider filter.

IV. Conclusions

This note introduces a general covariance update equation which is the extension of the well-known

Joseph formula for the nonlinear measurements case. This formula can be used in linear estimators for

nonlinear measurements that do not rely on linearization around the current estimate; which is the assumption

made by the extended Kalman filter. Two estimation schemes that do not rely on linearization centered the

current estimate are the unscented Kalman filter and quadrature filters. The proposed generalized Joseph

formula is necessary to update the estimation error covariance whenever a non-optimal gain is chosen in

the linear unbiased estimator. Various reasons could dictate the need of a non-optimal gain selection. One

reason for the utilization of the generalized Joseph formula and a non-optimal gain is detailed in this note:

the inclusion of consider states into the linear estimator. The resulting algorithms are the extension of the

well-known consider filter to either the unscented transformation or the Gauss-Hermite quadrature rule.

The classic Joseph formula is known to be more numerically stable than the simplified optimal covari-

ance update equation. The proposed generalized Joseph formula is potentially preferable over the standard

covariance update of the unscented and quadrature filters even in the presence of optimal gains for the same

reason.
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