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Autonomous navigation systems provide the vehicle with estimates of

its states without ground support. This work develops an autonomous nav-

igation architecture for lunar transfer using optical sensors and celestial

navigation. Measurement and error models are developed for two classes

of celestial measurements, the elevation of known stars from Earth’s or

Moon’s limb, and the apparent radius of the Earth or Moon. Monte Carlo

methods are used to support the development of measurement error mod-

els. The proposed architecture is tested with linear covariance techniques;

navigation errors and trajectory dispersions are obtained to confirm the

feasibility of the approach. The navigation system is required to provide

0.5 deg flight path angle accuracy at entry interface for mission safety. The

simulation results show that the proposed autonomous navigation system

meets the reentry safety requirement.

I. Nomenclature

b, b Bias states

c Speed of light

e Estimation error

f State dynamics

F Jacobian of state dynamics

H Measurement mapping matrix

i Unit vector

L Noise shaping matrix
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N Rotational maneuver’s noise covariance

P Estimation error covariance

P̄ Environment dispersion covariance

P̂ Navigation dispersion covariance

Q Process noise spectral density

Q̂ Spectral density of υ

Q̄ Spectral density of ν − υ

r Vehicle’s position vector

R Measurement error covariance

RP Radius of planet

t time

T Rotation matrix

v Vehicle’s velocity vector

x̄ Nominal state

x True state

x̂ Estimated state

γ Flight-path angle

γm Maneuver misalignment error state

Γ Jacobian of the Flight-path angle

δx Environment dispersion

δx̂ Navigation dispersion

ε Star-elevation angle

ζ Rotational maneuver’s noise

η, η Measurement noise

θ Rotation vector parameterization of the inertial to vehicle body rotation

ϕ Angle of the planet’s arc inside the field of view

ν Process noise

Π Augmented dispersions covariance matrix

ρ Apparent angular radius

σ Standard deviation

σm Maneuvers scale factor error state

υ Difference between nominal and estimated dynamics

Ψ Event trigger constraint

Ψx Jacobian of event trigger constraint

Subscripts

e Event

h Horizon
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m Translational maneuver

p Planet

r Rotational maneuver

s Star

se Star-elevation

ss Sub-stellar

st Star-tracker

v Vehicle

Functions

[·×] Function returning the cross product skew symmetric matrix

Unit(·) Function returning the normalized vector

II. Introduction

Vehicles navigating to or from the Moon usually rely on ground tracking and ground

updates to perform the insertion and correction maneuvers. A natural advancement in

technology is autonomy. The Orion vehicle, for example, is required to autonomously return

to Earth if communication with the ground is lost. When ground tracking estimates are

unavailable to the onboard targeting algorithm an alternative navigation strategy is needed.

Optical navigation is an attractive source of information for this emergency scenario. This

study focuses on navigating in cislunar space, when terrain measurements are unavailable.

From images of Earth, Moon, and stars two types of measurements can be generated: the

elevation of a star from the planet’s limb and the angular radius of the planet.

Recent studies focus on the lunar orbit determination problem.1,2 Tuckness and Young

consider autonomous navigation for lunar transfers.3 Their analysis focuses on azimuth and

elevation measurements of the Earth, Moon, and Sun. Two star-elevation measurements

relative to the planet’s limb provide the same kind of information as azimuth and elevation

of the apparent center of the planet. However, star-elevation measurements are the preferred

approach for two reasons. First, multiple stars can be processed simultaneously, and the

redundant information effectively filters out some noise. Second, the method used here

does not depend on the attitude of the spacecraft, or on the misalignments of the sensors,

reducing the possible error sources. In this work a coupled analysis of navigation errors and

trajectory dispersions is performed. The performance of the navigation system is evaluated

with mission success criteria.

This investigation specifically addresses the transfer from the Moon to the Earth. In an

emergency situation, during a loss of communication scenario, the primary objective is the

safety of the crew. This subsequently translates into a flight-path angle requirement at entry
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interface (EI) for a direct entry. A direct entry, as opposed to a skip entry, reduces the risk

of the capsule bouncing back into space, and allows for a greater margin on the flight-path

angle at EI.

The accuracy of the flight-path angle at EI is driven by several factors including the

navigation, targeting, and burn execution errors at the time of the last mid-course maneuver,

and unaccounted trajectory perturbations between the last mid-course maneuver and EI.

Apollo missions tolerated a maximum flight path angle error at EI of ±1 degree, with half of

this error allocated to navigation. The same criteria is employed in this study. Specifically, a

0.5 degrees 3σ flight-path angle error mapped at EI is required at the time the last mid-course

correction is targeted.

The primary objective of this investigation is to model the sensors and analyze the

navigation system to ensure that it meets the required safety performance. To that end,

mathematical models are developed for the optical measurements. In addition, a strategy

for the utilization of these measurements is devised. Lastly, the feasibility and performance

of the resulting optical navigation system are analyzed.

III. Linear Covariance Analysis

This investigation is performed using linear covariance (LinCov) analysis techniques.4,5

The state vector is composed of

x =
{
rT vT θT bT

m σT
m γT

m bT
r bst bss,earth bss,moon bh,earth bh,moon

}T
. (1)

The nominal trajectory is obtained by integrating the nominal dynamics model with an

Encke-Nystrom method.6 Neither the rotation vector θ nor its uncertainty are integrated

in this analysis. The nominal attitude is known at any time and it does not need to be

calculated. The attitude estimation error covariance is constant and is driven by the star

tracker accuracy. The attitude navigation dispersion covariance is constant and is given by

the attitude control dead-band. The attitude environment dispersion covariance is constant

and obtained from the above two quantities assumed uncorrelated. Before the star elevation

is determined, the vehicle slews in preparation for measurement acquisition. This attitude

maneuver is performed by the onboard thrusters and is assumed to be instantaneous. Due

to thruster misalignment, this maneuver adds uncertainty to the translational states. After

the batch of measurements is available, the vehicle returns to its nominal attitude.
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In linear covariance analysis, the difference between the true state and the nominal state

is defined as the environment dispersion

δx , x− x̄. (2)

The difference between the estimated state and the nominal state is defined as the navigation

dispersion

δx̂ , x̂− x̄. (3)

Finally, the difference between the true state and the estimated state, is defined as the

estimation error, sometimes referred to as the onboard error

e , x− x̂. (4)

Following the standard Kalman filter assumptions, the difference between the nominal and

estimate models is represented with zero-mean, white noise. The estimated state evolves as

˙̂x = f(x̂), (5)

where f is a nonlinear function representing the system dynamics as modeled by the filter.

The evolution of the nominal state is modeled as

˙̄x = f̄(x̄) = f(x̄) + υ, (6)

where f̄ is a nonlinear function representing the state dynamics as modeled in designing

the nominal trajectory. The nominal dynamics f̄ may be higher fidelity than the filter’s

dynamics f . The vector υ represents the dynamics modeled in the nominal trajectory but

neglected in the filter models. In Kalman filtering, the difference between the true dynamics

and the filter’s dynamics is called process noise. While these unmodeled dynamics are

not actually white noise, they are modeled as such. The covariance of process noise is then

tuned to achieve good performance. The same procedure is used here. In order to capture the

difference between the two dynamical models, υ is modeled as a zero-mean white process with

spectral density Q̂. The goal is to represent the increased value of the navigation dispersion

during propagation due to the difference between the nominal and filter’s dynamical models.

The evolution of the navigation dispersion can be approximated to first order as

δ ˙̂x = ˙̂x− ˙̄x = f(x̄ + δx̂)− f(x̄)− υ ' F(x̄)δx̂− υ. (7)
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The evolution of the navigation dispersion covariance is governed by

˙̂
P = F(x̄)P̂ + P̂F(x̄)T + Q̂. (8)

Similarly, the true state is modeled to evolve as

ẋ = f(x) + ν. (9)

The evolution of the estimation error is given by

ė = ẋ− ˙̂x ' f(x̄) + F(x̄)(x− x̄) + ν − f(x̄)− F(x̄)(x̂− x̄) = F(x̄)e + ν. (10)

Vector ν is modeled as zero mean white noise with spectral density Q. The onboard covari-

ance P evolves as

Ṗ = F(x̄)P + PF(x̄) + Q. (11)

Notice that the Jacobian F could be evaluated at the estimated state x̂ instead of the nominal

state x̄, as in the extended Kalman filter.

Finally

δẋ = ẋ− ˙̄x ' F(x̄)δx + ν − υ (12)

and P̄ evolves as
˙̄P = F(x̄)P̄ + P̄F(x̄) + Q̄. (13)

Notice that Q̄ = Q + Q̂ if ν and υ are assumed to be uncorrelated.

Since the environment and navigation dispersions are naturally correlated, it is intuitive

to create an augmented dispersion state, whose covariance is defined as Π

Π , E


δx
δx̂

δx
δx̂

T =

 P̄ C

CT P̂

 , (14)

C , E
{
δx δx̂T

}
. (15)

The evolution of the augmented covariance is given by

Π̇ =

F(x̄) O3×3

O3×3 F(x̄)

Π + Π

F(x̄) O3×3

O3×3 F(x̄)

T

+

Q̄ Q̂

Q̂ Q̂

 , (16)

where it is assumed that ν and υ are uncorrelated. All error states are modeled as first

order Markov processes and are assumed to be uncorrelated to each other.
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A. Rotation Conventions

The attitude is represented using a left rotation vector θ. Left rotations are used following

the heritage from the Space Shuttle quaternion convention. The rotation vector represents

the rotation from the inertial frame i to a body-fixed frame b. The corresponding rotation

matrix Tb
i is found as

Tb
i = T(θ) = I3×3 +

sin θ

θ
[θ×] +

1− cos θ

θ2
[θ×]2. (17)

The attitude is the only state that is not integrated to obtain its nominal value. The attitude

errors are defined in a multiplicative way

T(δθ) , T(θ)T(θ̄)T, T(δθ̂) , T(θ̂)T(θ̄)T, T(eθ) , T(θ)T(θ̂)T. (18)

The attitude uncertainty is fixed and obtained from the dead-band value. The attitude con-

trol system of the vehicle keeps the difference between the estimated attitude and the nominal

attitude within a pre-determined dead-band. The root sum square navigation dispersion is

therefore modeled as having a 3σ value equal to the dead-band.

P̂θθ , E
{
δθ̂δθ̂

T
}

= σ̂2
θ I3×3. (19)

The estimation error is modeled as zero mean with covariance

Pθθ , E
{
eθe

T
θ

}
= σ2

θ I3×3. (20)

The estimation error is given by

T(eθ) = T(δθ)T(δθ̂)T ' T(δθ − δθ̂), (21)

therefore

Pθθ , E
{
δθδθT

}
= P̄θθ + P̂θθ − E

{
δθδθ̂

T
}
− E

{
δθ̂δθT

}
, (22)

where

E
{
δθδθ̂

T
}

= P̂θθ, (23)

which results in the attitude environment dispersions having covariance

P̄θθ = Pθθ + P̂θθ. (24)
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B. Maneuvers

During the trans-Earth phase, various maneuvers occur. They are grouped as either trans-

Earth injections (TEI) or trajectory correction maneuvers (TCM), are modeled as impulsive,

and provide an instantaneous change in the spacecraft’s velocity. The translational maneu-

vers are introduced in LinCov as in Ref. 5.

The nominal orientation of the vehicle during Earth transfers is usually dictated by ther-

mal, power, or communication constraints. From an optical navigation standpoint such

orientations are not always ideal for measurement acquisition using star cameras. There-

fore, if ground updates are not available, it is necessary to reorient the vehicle to acquire

measurements and improve the state estimate before each translational maneuver. These

corrections point the cameras towards the Earth or Moon to collect the appropriate data.

After a sufficient number of measurements are acquired the vehicle returns to its previous

attitude. Due to uncoupled jet firings, these maneuvers increase the uncertainty in both the

orientation and the velocity of the vehicle. Only the velocity uncertainty due to the rota-

tional maneuvers is of interest here. The true change in velocity due to rotational maneuver

∆vr is modeled as

∆vir = Ti
bbr + ζ, (25)

where br is a bias expressed in the body frame and ζ is zero mean white noise. The estimated

perturbation is

∆v̂ir = T̂i
bb̂r, (26)

from which it is obtained that

∆vir −∆v̂ir ' T̄i
b[b̄r×]eθ + T̄i

bebr + ζ, (27)

where b̄r is set to zero. Including only the active states

x =
[
rT vT θT bT

r

]T

, (28)

the contribution to the estimation error from the rotational maneuvers is given by

e+r = e−r +


03×1

T̄i
b[b̄r×]eθ + T̄i

bebr

06×1

+


03×1

ζ

06×1

 = (I + E) e−r +


03×1

ζ

06×1

 , (29)
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where

E =


O3×6 O3×3 O3×3

O3×6 T̄i
b[b̄r×] T̄i

b

O3×6 O3×3 O3×3

 . (30)

As a result, the expression to update the covariance becomes

P+r = (I + E) P−r (I + E)T + N. (31)

The change in augmented dispersions covariance is given by

Π+r =

 I + E O12×12

O12×12 I + E

Π−r

 I + E O12×12

O12×12 I + E

T

+

 N O12×12

O12×12 O12×12

 . (32)

IV. Filter Update

The optical measurements available to update the state in cislunar space are the star

elevation from the planetary limb and the apparent planet radius, as shown in Fig. 1. LinCov

update equations can be found in Ref. 5.

ε = star eleva*on from 
horizon 

ρ = apparent angular radius 

Earth / Moon 

Star 

ε 

2ρ 

Fig. 1. Optical measurements available for Cislunar navigation
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A. Star-Horizon Elevation Measurement

The model for the star-horizon measurement is based on Battin,6 but the measurement errors

are different and introduced in alternative ways. Battin introduced an additive error, while

in this work three error contributions are accurately represented. All unit vectors derived in

this section represent apparent directions, therefore aberration due to relative velocities are

included. The apparent direction of the star, including stellar aberration is given by

i∗s = Unit(is +
vsv
c

). (33)

Vector vsv is the velocity of the vehicle with respect of the sun. The apparent direction of

the horizon is given by

i∗h = Unit(ih +
vpv
c

), (34)

where vpv is the velocity of the vehicle with respect to the planet from which the elevation

measurement is taken (Earth or Moon).

Vector rh is the position of the substellar point on the horizon6 and

ih = Unit(rh − r) (35)

defines the direction of the horizon with respect to the vehicle. The perfect star-elevation

measurement ε is shown in Fig. 1 and can be expressed mathematically as

ε = arccos(i∗h · i∗s). (36)

Three error sources are modeled, each having both bias and noise. The first source of error

is the precision of the star camera. The noise is ηsc and the bias is bsc. The other two

sources of error are shown in Fig. 2. Figure 2 represents a star camera snapshot as viewed

by the spacecraft being outside the page. The second source of error is the identification of

the substellar point along the planet’s horizon, with bias bss and noise ηss. Finally there is

the error in determining the altitude of the horizon, whose bias is bh and noise is ηh. The

measurement model is obtained using the cosine law and is given by

yse =

{(
ε+ arcsin

Rp

rpv

)2

+

(
arcsin

Rp

rpv
+ arcsin

bh + ηh
rpv

)2

+

− 2

(
ε+ arcsin

Rp

rpv

)(
arcsin

Rp

rpv
+ arcsin

bh + ηh
rpv

)
cos(bss + ηss)

} 1
2

+ bsc + ηsc, (37)

where rpv is the distance between the planet and the vehicle and Rp is the local radius of

the planet given by the distance between the center of the planet and the substellar point.
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Fig. 2. Horizon-Star elevation measurement errors

The nominal measurement is given by

ȳse =

{(
ε̄+ arcsin

Rp

r̄pv

)2

+

(
arcsin

Rp

r̄pv
+ arcsin

b̄h
r̄pv

)2

+

− 2

(
ε̄+ arcsin

Rp

r̄pv

)(
arcsin

Rp

r̄pv
+ arcsin

b̄h
r̄pv

)
cos b̄ss

} 1
2

+ b̄sc. (38)

The measurement mapping matrix and the noise shaping matrix are defined as

Hse =
∂yse
∂x

∣∣∣∣
x=x̄,ηse=0

Lse =
∂yse
∂ηse

∣∣∣∣
x=x̄,ηse=0

, (39)

where

ηse =
[
ηst ηss ηh

]T

, (40)

and

Rse = Lse E
{
ηseη

T
se

}
LT
se. (41)
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B. Apparent Angular Radius Measurement

The sensed radius of the planet is corrupted by two errors: the horizon determination bias

bh and the horizon determination noise ηR.

Rp,meas = Rp + bh + ηR. (42)

In order to characterize the measurement noise statistics, a simplified algorithm to determine

the radius is used. The sensor software employs many points on the planet disk to determine

the radius. For this analysis only three points are used. The assumption is that by using

more points the error in reconstructing the planet radius decreases, but the shape of the

curves stay the same. Hence this approach is more conservative, following the general theme

of this analysis.

Let pi = [xi yi]
T i = 1 : 3 be three points that are not collinear. To find the coordinates

of the center of a circle passing through the three points, the two chords passing through

the points are used. The center is the interception between the two lines perpendicular to

the chords and passing through the chords’ midpoint. Mathematically the center is

xc =
mamb(y1 − y3) +mb(x1 + x2)−ma(x2 + x3)

2(mb −ma)
(43)

yc =
(x1 − x3) +ma(y1 + y2)−mb(y2 + y3)

2(ma −mb)
, (44)

where

ma =
y2 − y1

x2 − x1

mb =
y3 − y2

x3 − x2

. (45)

The order of the points is selected such that the denominators in Eq. (45) do not vanish.

Once the center is known, the radius follows immediately as the distance between the center

and any of the three points. The estimation error of the radius is weakly dependent from

the true radius itself as shown by the numerical data in Fig. 3. Let ϕ be the angle describing

the arc of the planet disk inside the field of view. The three points are equally spaced along

the arc. Under these hypotheses the error ηR is modeled as a function of ϕ and the accuracy

of the sensor to locate points on the planet’s limb ηh

ηR = f1(ϕ, ηh). (46)

Let σR be the standard deviation of ηR, and σh the standard deviation of ηh. In order to

model σR Monte Carlo runs are used. The location of each point is corrupted with a zero-

mean, Gaussian radial error with standard deviation ranging from 1 km to 15 km. There
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is no error in the position of the point along the arc. It is assumed that the length of the

planet’s arc inside the field of view ranges from 45 degrees to 240 degrees. There is no need

to simulate arcs beyond 240 degrees because in those cases the three points are still placed

120 degrees apart.

Ten thousand Monte Carlo runs are considered for each case. Every run is based on

different circle center, location and error of the three points. Figure 3 shows the sample

standard deviation for ranges between 90 and 240 degrees. The sample mean is very close

to zero.

100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

Planet Angle in Field of View (deg)

1σ
  E

rr
or

 (
K

m
)

 

 

σα = 15 Km

σα = 10 Km

σα = 7 Km

σα = 5 Km

σα = 3 Km

σα = 1 Km

Fig. 3. Monte Carlo analysis of apparent angular radius measurement.

From Fig. 3, it is observed that the curves are proportional to σh. Therefore σR can be

represented as
σR
σh

= f2(ϕ). (47)

Function f2 is expanded in series

f2(ϕ) '
n∑
i=0

ciϕ
−i, (48)
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the coefficients ci are obtained using least squares. For n = 5, the coefficients are determined

as

c =
[
1.8911 −12.5306 33.3895 −19.3107 5.7692

]T

. (49)

The apparent angular radius ρ is shown in Fig. 1 and can be expressed mathematically

as

ρ = arcsin

(
Rp

rvp

)
, (50)

where rvp = ‖r − rp‖ is the distance between the vehicle and the center of the planet. The

angular radius measurement yρ is given by

yρ = arcsin

(
Rp + bh + ηR

rvp

)
. (51)

The Jacobian is given by

Hρ(1 : 3) ,
∂yρ
∂r

∣∣∣∣
x̄

=
−Rp − b̄h√

1−
(
Rp+b̄h
r̄vp

)2

r̄T − rT
p

r̄3
vp

(52)

Hρ(4) ,
∂yρ
∂bh

∣∣∣∣
x̄

=
1/r̄vp√

1−
(
Rp+b̄h
r̄vp

)2
, (53)

where rp is the position of the planet. The indices 1 through 4 are used because only the

active states are included in xT =
[
rT bh

]
.

Hence, a Kalman filter that processes the measurement yρ employs Eq. (52) end Eq. (53)

to obtain the measurement mapping matrix and

Rρ =
σ2
h/r̄

2
vp

1−
(
Rp+b̄h
r̄vp

)2

(
n∑
i=0

ciϕ
−i

)2

(54)

is the measurement covariance matrix.

C. Implementation

After the rotational maneuver, the vehicle is nominally oriented such that the edge of the

Earth or Moon is at the center of the star camera field of view (FOV). Two cases may arise;

the angular radius of the planet as seen from the vehicle’s position is either bigger than the

FOV, or it is smaller. The first case is depicted in Fig. 4, where an isosceles triangle is drawn

with b = c = ρ and a = FOV . All lengths are measured in radians, since they correspond

14 of 25



to apparent angles as seen by the camera. Using the cosine theorem

cos β =
a2 + c2 − b2

2ac
=
FOV

2ρ
. (55)

The smaller triangle in Fig. 4 is also isosceles, therefore it can be deduced that the semi-angle

of the planet’s arc inside the FOV ϕ/2 is

ϕ/2 =
π − β

2
. (56)

Figure 5 shows the case in which the angular radius of the planet is smaller than the star

camera FOV. The angle β is still found using Eq. (55), and ϕ/2 is simply given by

ϕ/2 = π − 2β. (57)

If ϕ is greater than 240 degrees it is set to 240 degrees, since the three points need to be

equally spaced. This is consistent with the conservative approach selected, because the FOV

is likely square and not circular, which increases its size.

Fig. 4. Planet bigger than FOV
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Fig. 5. Planet smaller than FOV

D. Sensor Utilization

The strategy for sensor utilization is similar to that of ground updates. Ground updates occur

before each maneuver in order to provide the targeting algorithm with the most reliable state

estimate. Similarly, the star-elevation measurements occur in batches before each maneuver.

Experience indicates that similar accuracies are obtained by performing all the measurements

in a batch before the maneuver rather than equally distributing them along the trajectory.

(The batch of measurement is taken before the errors grow enough to violate the linearization

hypothesis of the Kalman filter.) For this particular application, it is advantageous to take

the measurement in batches because it minimizes the number of slews. Since each slew adds

dispersions to the trajectory, it is desirable to have as few as possible.

The number of measurements taken for each batch is determined to ensure steady-state

is attainable. In this case steady-state implies that additional measurements do not further

reduce the covariance, but only cancel the process noise effect.

There is a 50-hour period between the first and second mid-course correction. The

navigation covariance grows too large if no update is performed during this period. Therefore

two batches of measurements are taken between the first and second mid-course correction.
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V. LinCov Parameters

This section contains all the parameters used in the LinCov run. The parameters are

chosen as representative of the Orion lunar return, which is used as the case study to validate

the developed navigation strategy.

A. Nominal Trajectory

The nominal trajectory has initial and final conditions given in Table 1. The nominal Orion

attitude during transfers between Earth and Moon has the engines pointing towards the

Sun to maximize the solar arrays’ energy production and for other thermal advantages. The

vehicle’s attitude is not integrated, but the nominal orientation always points the engines

towards the sun.

INITIAL LUNAR ORBIT CONDITIONS AT EI

Moon Centered J2000 Earth Centered J2000

Universal Time 2018 August 02 17:16:10.0 2018 August 07 07:59:59.7

ECI X pos (m) -1,834,714.32 -5,895,686.46

ECI Y pos (m) -66,256.22 -1,734,099.86

ECI Z pos (m) -73,974.33 -2,117,665.81

ECI X vel (m/s) -86.39 6,269.76

ECI Y vel (m/s) 813.94 -8,032.14

ECI Z vel (m/s) 1,413.63 8,665.97

Table 1. Nominal initial and final conditions

B. Errors and Dispersions

The initial environment dispersions and estimation errors are chosen to have the same nu-

merical values and are shown in Table 2. The error components are given in the local vertical

local horizontal frame (LVLH). The LVLH frame is defined with the z axis along the position

vector pointing downward towards the center of the Earth. The x axis points in the same

direction as the velocity vector. The y axis completes the right-orthogonal triad.

The 3σ root sum square (RSS) navigation dispersion in attitude is modeled as being

equal to the attitude dead-band, which is 20 deg. The attitude navigation error is 0.1 deg,

as shown in Table 3.
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STATE STANDARD DEVIATION

LVLH X pos (m) 1603

LVLH Y pos (m) 333

LVLH Z pos (m) 1000

LVLH X vel (m/s) 0.9466

LVLH Y vel (m/s) 0.5

LVLH Z vel (m/s) 1.61

Table 2. Initial state variances

STANDARD DEVIATION VALUE

σ̂θ (deg) 20/(3
√

3)

σθ (deg) 0.1

Table 3. Attitude variances

C. Process and Measurement Noise

The Orion vehicle is required to have quiescent times in which all possible trajectory perturb-

ing activities are reduced to a minimum. These periods mostly coincide with the astronauts’

sleeping schedule. In this simulation, two values of process noise are used, one for active pe-

riods and one for quiescent, as shown in Table 4. Table 5 shows the quiescent time schedule.

Table 6 shows the measurement noise standard deviations. The values used for the

horizon and substellar point errors are those of the Apollo missions.

ERROR TYPE VALUE

Active (µg
√
s) 20

Quiescent (µg
√
s) 2

Table 4. Process noise values

D. Maneuvers Errors

Table 7 shows the six planned maneuvers during Earth return. The vehicle departs the

vicinity of the Moon through a sequence of three TEI maneuvers. Three TCMs are also

performed. Times are expressed as hours from the beginning of the simulation which occurs

1.11 days before TEI-3. Table 8 shows the maneuver errors used in the simulation (all values

are 1σ per axis).
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BEGIN QUIESCENT TIME END QUIESCENT TIME

TEI-1 + 3 hrs TEI-1 + 11 hrs

TEI-3 + 3.5 hrs TEI-3 + 11.5 hrs

TEI-3 + 25 hrs TEI-3 + 33 hrs

TEI-3 + 47 hrs TEI-3 + 55 hrs

EI - 14 hrs EI - 7 hrs

Table 5. Quiescent time schedule

SENSOR ERROR TYPE MOON EARTH

star camera ηsc (arcsec) 5 5

bsc (arcsec) 3.33 3.33

stellar subpoint ηss (arcsec) 5 10

bss(arcsec) 2 5

horizon ηh (km) 5 10

bh (km) 3 3

Table 6. Star elevation measurement errors, all values 1σ

MANEUVER TIME (hr) Nominal ∆v (m/s)

TEI-1 2.68 [439.00 − 255.15 − 261.37]

TEI-2 17.84 [29.38 100.42 − 96.05]

TEI-3 26.73 [264.62 − 206.67 23.27]

TCM-1 44.73 [0 0 0]

TCM-2 94.73 [0 0 0]

TCM-3 105.73 [0 0 0]

Table 7. Trans-Earth nominal maneuver sequence

ERROR TYPE VALUE

Misalignment (deg) 0.01

Bias (m/s) 0.001

Scale factor (ppm) 10

Noise (m/s) 0.001

Table 8. Trans-Earth maneuver errors, all values 1σ
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VI. Event Triggers

Using linear covariance techniques, events are usually time driven. Some events, like EI,

are naturally defined by the state and not by time. The technique to introduce these events

into LinCov is that presented in reference 7 with some modifications due to the fact that the

event is triggered by the true state and not by the navigated state.

The event is defined by some function of the true state

Ψ(x) = 0. (58)

The true state at the true event time (te) differs from the nominal state at the nominal event

time (t̄e) because of differences in both state and time

x(te) ' x(t̄e) + ẋ(t̄e)[te − t̄e], (59)

x̂(te) ' x̂(t̄e) + ˙̂x(t̄e)[te − t̄e], (60)

where

ẋ(t̄e) = ˙̄x(t̄e) + δẋ(t̄e), (61)

˙̂x(t̄e) = ˙̄x(t̄e) + δ ˙̂x(t̄e). (62)

Expanding Eq. (58)

0 = Ψ(x̄(t̄e)) + Ψx[δx(t̄e) + ˙̄x(t̄e)δte], (63)

where

Ψx ,
∂Ψ

∂x

∣∣∣∣
x̄

δte , te − t̄e. (64)

Noticing that Ψ(x̄(t̄e)) = 0 and solving for δte

δte = −Ψx δx(t̄e)

Ψx ˙̄x(t̄e)
, (65)

substituting the above expression into Eqs. (59-60), using Eqs. (61-62), and neglecting

second-order terms leads to

x(te) ' x(t̄e)− ˙̄x(t̄e)
Ψx δx(t̄e)

Ψx ˙̄x(t̄e)
, (66)

x̂(te) ' x̂(t̄e)− ˙̄x(t̄e)
Ψx δx(t̄e)

Ψx ˙̄x(t̄e)
. (67)
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Matrix U is defined as

U ,
˙̄x(t̄e)Ψx

Ψx ˙̄x(t̄e)
. (68)

The difference between the true/nav state at the time of the event and the nominal state at

the nominal time of the event is given by

δx(te) = x(te)− x̄(t̄e) = (I−U) δx(t̄e), (69)

δx̂(te) = x̂(te)− x̄(t̄e) = δx̂(t̄e)−Uδx(t̄e), (70)

e(te) = e(t̄e). (71)

Therefore, to first order the estimation error remains unchanged. (Notice that te is a ran-

dom variable and not a deterministic time. The dispersions are still unbiased.7 Thus, the

augmented covariance at the event (no precise time can be attributed to this covariance) is

given by

Πe =

I−U O

−U I

Π(t̄e)

I−U O

−U I

T

. (72)

A. Entry Interface

Entry interface is defined as a constant altitude hEI = 400, 000 feet; therefore, the function

Ψ is equal to

Ψ = rTr− (hEI +REARTH)2 = 0. (73)

Vector x̄EI is the nominal state at EI. Matrix U at EI is

UEI =
1

r̄T
EI v̄EI

[
˙̄xEI r̄

T
EI O

]
. (74)

Notice that there is no radial uncertainty in the environment dispersion since the environment

dispersion is perpendicular to r̄EI

r̄T
EIδrEI = r̄T

EI

(
I− v̄EI r̄

T
EI

r̄T
EI v̄EI

)
δr(t̄EI) =

(
r̄T
EI − r̄T

EI

)
δr(t̄EI) = 0. (75)

This is to be expected, since at the event the altitude is fixed and equal to hEI .

VII. Results

In this section, the results of various numerical simulations are shown. Targeting occurs

approximately 45 minutes before the maneuver. In this simulation, the vehicle is rotated

to acquire measurements 2 hours before the maneuver and takes 60 measurements 1 minute
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apart. Measurement acquisition also occurs between the second and third midcourse correc-

tion, more precisely at 60 and 80 hours from the beginning of the simulation.

A. Flight-Path Angle

The single most important parameter to assure crew safety during entry is the flight-path

angle γ

γ = arcsin
rTv

‖r‖ ‖v‖
. (76)

The flight-path angle error covariance is approximately given by

Pγγ(t) = Γ(x)P(t)Γ(x)T, (77)

where Γ , ∂γ
∂x
. Only the partials with respect to position and velocity are non-zero

∂γ

∂r
=

1

cos γ

vT

‖r‖ ‖v‖

(
I− rrT

‖r‖2

)
∂γ

∂v
=

1

cos γ

rT

‖r‖ ‖v‖

(
I− vvT

‖v‖2

)
. (78)

Notice that the flight-path angle uncertainty at each given time is not of interest. The

important quantity is the uncertainty mapped to EI. For example, if at the time of the

last maneuver the flight-path angle onboard uncertainty mapped to EI is 0.5 degrees 3σ, a

better environment dispersion cannot be achieved than that at EI. The uncertainty actually

increases due to acceleration perturbations, maneuver errors, targeting errors, etc. Therefore,

there are two values of interest: the onboard uncertainty at the time the last maneuver is

targeted, and the environment dispersion at EI. The first is a factor in determining if the

vehicle can be safely guided to EI, the second tells whether the safety conditions are met.

The plots presented in this section show the flight-path angle error mapped to EI. This is

done by propagating the covariance matrix to the final time with the state transition matrix

and evaluating the partial derivatives at the nominal value at EI. Let Pγγ(tEI , t) denote the

onboard variance of the flight-path angle error mapped to EI, from Eq. (77) it follows that

Pγγ(tEI , t) = ΓEIΦ(tEI , t)P(t)Φ(tEI , t)
TΓT

EI , (79)

where ΓEI = Γ(x̄EI). Similarly

P̄γγ(tEI , t) = ΓEI(In×n −UEI)Φ(tEI , t)P̄(t)Φ(tEI , t)
T(In×n −UEI)

TΓT
EI . (80)

Figures 6–7 show the numerical results. It can be seen that the navigation system meets the

requirements since the navigation error at the time of the last maneuver is less than 0.5 deg

3σ and the environment dispersion at EI is less than 1 deg 3σ.
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Fig. 6. Onboard Flight path angle error mapped to EI
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Figure 6 shows the variance of the flight-path angle estimation error mapped to EI. Two

hours prior to each translational maneuver the uncertainty decreases because the measure-

ments are acquired. The last two measurements from the Moon’s horizon (at times 60 and

80 hours) do not contribute as much because most of the information has already been

extracted.

Figure 7 shows the variance of the flight-path angle environment dispersion mapped to

EI. At each maneuver the uncertainty decreases. Notice that the sudden drop in uncertainty

is due to the fact that the error is mapped to EI. By plotting the error at the current time

without mapping it to EI the uncertainty decreases gradually. The behavior occurring after

the last TEI maneuver is also due to the way the data is plotted. After that maneuver the

uncertainty projected to EI is very low. It seems that the uncertainty increases very rapidly

right after that. This is due to the fact that the errors are projected to EI. By plotting the

errors at the current time, the error increases more gradually and is due to the geometry of

the problem.

One final comment on the two plots. It seems that the uncertainty remains quite con-

stant in between drops, suggesting small values of process noise. In fact, position and velocity

uncertainty grows rapidly. For example, position uncertainty is on the order of tens of kilo-

meters. However, it takes large changes in position and velocity errors to produce appreciable

changes in flight-path angle error.

VIII. Conclusion

A new onboard system for autonomous mid-course navigation is proposed and analyzed.

Optical measurements are used to achieve autonomy. The measurements chosen are the

elevation of a known star from the Earth or Moon’s horizon and the apparent angular radius

of the planetary body. New models are developed to describe both measurement types. These

models include different error sources and the statistical properties of the measurement error

are confirmed with the aid of Monte Carlo methods.

A navigation strategy is developed to achieve the desired flight-path angle accuracy.

Either the Earth or Moon needs to be inside the camera’s field of view in order to obtain

a measurement. The nominal attitude of the vehicle does not guarantee visibility of the

two bodies. Slew maneuvers are prescribed to obtain a batch of measurements prior to

the targeting of each translational maneuver. These maneuvers increase the environment

dispersion due to imperfect coupling of the jet firings.

Linear covariance analysis techniques with realistic models of the guidance, navigation,

and control system, as well as the true dynamics, are used to obtain statistical properties of

the navigation error and of the trajectory dispersions. These statistical properties are used
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to verify the proposed autonomous navigation system design. The success of the navigation

system is measured against safety requirements. A direct Earth entry requires flight-path

angle accuracy at EI of plus or minus 1 degree. Therefore the flight-path angle environment

dispersion must be less than 1 degree. Half of this uncertainty is allocated to the navigation

system, with the other half being allocated to targeting, control, un-modeled dynamics, etc.

The results indicate that the proposed architecture is a viable solution for an autonomous

mid-course navigation system since all the requirements are met. The navigation errors at

the time of the last mid-course maneuver provide an EI flight-path angle accuracy of more

than 0.5 degrees 3σ. The environment dispersions at EI are less than 1 degree 3σ.

Acknowledgments

The author is very grateful to Chris D’Souza at NASA Johnson Space Center for devel-

oping and making available many of the tools used to produce the LinCov runs.

References

1Hill, K. and Born, G. H., “Autonomous Orbit Determination from Lunar Halo Orbits Using Crosslink
Range,” Journal of Spacecraft and Rockets, Vol. 45, No. 3, May-June 2008, pp. 548–553.

2Psiaki, M. L. and Hinks, J. C., “Autonomous Lunar Orbit Determination using Star Occultation Mea-
surements,” Guidance Navigation and Control Conference and Exhibit , AIAA, Hilton Head, NC, 20-23
August 2007.

3Tuckness, D. G. and Young, S.-Y., “Autonomous Navigation for Lunar Transfer,” Journal of Spacecraft
and Rockets, Vol. 32, No. 2, March-April 1995, pp. 279–285.

4Mayback, P. S., Stochastic Models, Estimation, And Control Volume 1 , Mathematics in Science and
Engineering, Academic Press, Orlando, FL, 1979.

5Geller, D. K., “Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous On-
board Mission Planning,” Journal of Guidance Control and Dynamics, Vol. 29, No. 6, November-December
2006, pp. 1404–1414.

6Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education
Series, American Institude of Aeronautics and Astronautics, New York, NY, 1987.

7Geller, D. K., Rose, M. B., and Woffinden, D. C., “Event Triggeres in Linear Covariance Analysis With
Applications to Orbital Rendezvous Analysis,” AAS Guidance and Control Conference, Breckenridge, CO,
1-6 February 2008.

25 of 25


