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Nomenclature

b, b Bias states

e Estimation error

f Nonlinear state dynamics function

F Jacobian of state dynamics

g Gravity vector

G Gravity gradiant

h Nonlinear measurement function

H, or H̃ Measurement mapping matrix

I Identity matrix

K Kalman gain matrix

p parameters state vector

P Estimation error covariance

qa→b (Right) quaternion expressing the rotation from frame “a” to frame “b”

Q Process noise power spectral density

Q Process noise covariance

r Position vector

R Measurement error covariance

s scale factor vector

S scale factor matrix

t time

Tb
a Direction cosine matrix from frame “a” to frame “b”

U Element of UDUT covariance factorization

v Velocity vector

x or X State vector

y or ỹ Measurement vector
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γ Gyro non-orthogonality vector

Γ Gyro non-orthogonality matrix

δ deviation or error, e.g. δx

∆ variation or error

ε, ε Measurement residual

η, η Measurement noise

θ Attitude Rotation Vector

φ attitude error state

Φ State transition matrix

ν Process noise

ω Angular velocity

ξ Accelerometer misalignment/non-orthogonality vector

Ξ Accelerometer misalignment/non-orthogonality matrix

σ Standard deviation

Diacritic

x̂ Estimated “x”

Subscript and Superscript

a accelerometer

b Orion body coordinates

c IMU-Fixed case coordinates

g gyro

i Inertial coordinates (ICRF a.k.a. ECI)

− value prior to the measurement update

+ value posterior to the measurement update
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I. Introduction

The Orion vehicle, designed to take men back to the Moon and beyond, successfully completed

its first flight test, EFT-1 (Exploration Flight Test-1), on December 5th, 2014. The main objective

of the test was to demonstrate the capability to re-enter into the Earth’s atmosphere and safely

splash-down into the Pacific Ocean. This un-crewed mission completed two orbits around Earth,

the second of which was highly elliptical with an apogee altitude of approximately 5908 km, higher

than any vehicle designed for humans has been since the Apollo program. The trajectory was

designed in order to test a high-energy re-entry similar to those crews will undergo during lunar

missions. The mission overview is shown in Figure 1.

Fig. 1 EFT-1 Mission Profile

The first of the two orbits starts with the conclusion of the first upper stage burn (SECO1);

towards the end of the first orbit, the upper stage ignites again to raise the apogee, the conclusion

of this second upper stage burn (SECO2) places Orion on its final highly elliptical orbit. Following

apogee the Orion capsule separates from the upper stage, from this moment on Orion is responsible

for its own onboard Guidance, Navigation, and Control (GN&C) to safely take the vehicle to splash-

down in the Pacific Ocean; although the absolute navigation system was active during the entire

flight.
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The objective of this paper is to document the performance of the absolute navigation system

during EFT-1, which relies on the classic extended Kalman filter (EKF) [1]. A prior version of

this work introduced the navigation design [2], while pre-flight simulation performance was shown

in Ref. [3]. The UDU factorization as introduced by Bierman is employed in the filter design [4],

and measurements are included as scalars employing the Carlson [5] and Agee-Turner [6] Rank-One

updates. The possibility of considering only some of the filter’s states (rather than estimating all

of them [7]) is included in the design [8], and a method to eliminate low-elevation satellites is used

that does not rely on a fixed masking angle.

This paper focuses on the performance of the EFT-1 absolute navigation system after lift-off

and while incorporating GPS measurements. One of the EFT-1 mission goals was to test the new

GPS receiver’s clock stability, clock filter state restarts, and high altitude GPS processing.

This paper is organized as follows. First, the overall absolute navigation architecture is intro-

duced, followed by the design of the 40 Hz propagator and the 1 Hz EKF. The introduction of the

design is followed by the presentation of the actual flight data, and finally some conclusions are

drawn.

II. Absolute Navigation Architecture

Two Orion Inertial Measurement Units (OIMUs), a GPS receiver (GPSR) and three barometric

altimeters (BALTs) comprise the Orion sensor suite. The OIMUs provide integrated accelerometer

and gyro data at high rate. The inertial state is propagated at 40 Hz and is updated by GPSR

pseudorange (PR) and deltarange (DR) measurements at 1 Hz. The attitude of the vehicle is

initialized by gyro-compassing, is updated with integrated velocity (IV) measurements while on the

pad, and is updated with GPSR measurements, when available during flight.

The BALTs measurements are not incorporated into the navigation filter, but they are used

as backups by the Navigation Fault Detection, Isolation, and Recovery algorithm (FDIR). In the

event the GPSR fails or if the filtered solution has diverged, the FDIR logic autonomously selects

the BALT output as the primary source of altitude. The logic accomplishes this by comparing the

EKF covariance in the radial direction with a parameterized threshold value. FDIR also checks the
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filter’s performance by monitoring the measurements’ acceptances and rejections.

Each of the flight computers contains two instances of the navigation filter, each slaved to a

different OIMU. The purpose of this design is to allow for an instantaneous recovery after an OIMU

failure without having to go to a transient period to estimate the OIMU error states or for the filter

to re-converge. Each OIMU is tied to a navigation channel, each channel contains several Computer

Software Units (CSUs): an IMU Subsystem Operating Program (IMUSOP) that is responsible for

parsing the OIMU data, a Coarse Align (CAlign) CSU that is responsible for providing a crude

estimate of the initial attitude on the pad, a Filtered Navigator (FiltNav) CSU that is responsible

for multiplexing the OIMU data with the GPS updates and an Inertial Navigator (INRTLNAV)

CSU that is responsible for maintaining an unaided (OIMU-only) state. INRTLNAV and FiltNav

have counterparts on the 1 Hz side. The Inertial Navigator Gravity (InrtlNavGrav) and Extended

Kalman Filter (EKF) CSUs on the 1 Hz side provide a higher-order gravity estimate to INRTLNAV

and state updates to FiltNav, respectively.

IMU FDIR and GPS FDIR live outside of the channels and are responsable for detecting faulty

sensor data. The outputs of the two channels are received by Navigation FDIR (NAVFDIR) CSU

which selects the primary state. The NAVFDIR scheme relies on the IMUFDIR outputs and per-

forms additional tests on the filtered solution. One of the checks it relies on is the percentage of

PR/DR measurements being accepted by each channel.

Prior to launch the filter is initialized with the Coarse Align attitude and an inertial position

derived from the current time and the coordinates of the pad. This pre-launch navigation phase is

called Fine Align and the only measurement active in this mode is Integrated Velocity (IV), which

is a pseudo-measurement consisting of a zero change of Earth-referenced position over a 1 second

interval. GPSR measurements are not available during fine align. The main purpose of fine align is

to better estimate the attitude.

The ascent phase is divided in two parts, the first when GPSR measurements are not enabled

(Ascent Without GPS), and the second when they are (Ascent With GPS). The only difference

between Fine Align and Ascent Without GPS is that the IV measurement processing is inhibited in

the latter. The maximum number of processable GPS measurements is set to 12, which is a large
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enough number to obtain good performance while keeping the throughput reasonably low. To avoid

possible transient issues the very first PR measurement is not processed. Counters of consecutive

GPS measurements are kept and the measurements are included in the solution only when the

corresponding counter value is greater than one. After a long blackout the covariance becomes very

large and the inclusion of nonlinear measurements creates problems. In particular, inclusion of the

DR measurement creates convergence issues. Through numerical simulation it was determined that

allowing for multiple PRs (∼30) to be processed before incorporating a DR mitigates this issue

because the PRs shrink the uncertainty before DRs are introduced. If a satellite is not present for a

single cycle, the corresponding counter is not reset and if the satellite comes back it is immediately

used as a measurement. If the satellite is absent for more than a cycle the corresponding counter is

reset.

The GPSR provides an estimate of the PR variance together with the measurement. The

EKF uses this variance estimate together with a PR variance floor parameter which limits the

minimum value of PR measurement variance used in incorporating the measurement into the filter.

Underweighting is applied when the estimated measurement has an uncertainty greater than 100 ft.

GPSR measurements are processed throughout the orbit phase and during entry when available.

A GPS blackout was expected and experienced during entry. In order to process latent GPS mea-

surements the EKF necessitates to back-propagate its current state estimate to the measurement

time. This task is made possible by a 4Hz buffer of OIMU data provided to EKF by FiltNav. When

accelerating fast under the chutes during entry, the attitude dynamics are not accurately represented

by the 4Hz IMU buffer. Therefore PR and DR measurements are inhibited above a certain angular

velocity.

A major frame is a 1 Hz cycle and is denoted by a capital letter (A, B, C, etc.) individual EKF

calls are denoted by their major frame. A minor frame is a 40 Hz cycle and is denoted by a number

from 0 to 39, individual FiltNav calls are denoted by both their major and minor frame (A0, A1,

A39, B0, etc.). FiltNav receives EKF data at minor frame 0, that is to say that FiltNav B0 receives

EKF data A, C0 receives EKF data B, etc. The EKF receives FiltNav data from minor frame 0, that

is to say that EKF A receives FiltNav A0 data, B receives FiltNav B0 data, etc. As a consequence,

7



the data provided by the EKF at any major frame (e.g. C) is time-tagged with the same time as

the output of the first FiltNav call of this same major cycle (e.g. C0). Another consequence is that

FiltNav receives an EKF update that is exactly one major frame old, e.g. FiltNav B0 receives an

EKF update from major frame A that is time-tagged with the same time as FiltNav A0. The data

transfer is shown in Figure 2.

Fig. 2 Data Transfer Between EKF and FiltNav

III. Filtered Navigator Design

The Filtered Navigator is a flight software CSU running at 40 Hz responsible for providing

users with high rate inertial position, velocity, and attitude. The 1 Hz EKF also utilizes the

propagated position, velocity, and attitude from FiltNav, but also need the IMU’s accumulated ∆v

and ∆θ measurements (both compensated and non-compensated) in order to compute the dynamics

partials and the state transition matrix, which is needed by the EKF to propagate forward in time

the estimation error covariance matrix.

A. IMU Measurements Accumulation

Accumulated IMU measurements and the attitude quaternion are buffered by FiltNav at 4 Hz

in order to back propagate the EKF state and process latent measurements.

8



FiltNav receives from the IMU SOP four to six new samples (nominally five) of 200 Hz in-

cremental gyro and accelerometer measurements: ∆θbk,j and ∆vb
k,j . The subscript k indicates the

40 Hz FiltNav cycle, the subscript j ranging from one to six indicates the 200 Hz sample, and

the superscript b indicates the Orion body frame. The IMU case frame c is defined such that the

x-axis of the gyro is the reference direction with the xy-plane being the reference plane; the y-

and z-axes are not mounted perfectly orthogonal to it (this is the reason of the absence of a full

misalignment/nonorthogonality matrix as there is in the accelerometer model).

The gyro measurement in the IMU case frame is given by

∆θck,j = Tc
b ∆θbk,j (1)

where Tc
b is the matrix that transforms Orion body coordinates into IMU case coordiantes. The

compensated gyro measurement is obtained using the 1 Hz estimates of the gyro bias b̂g, scale factor

errors ŝg, and non-orthogonality γ̂g, all three of these vectors are coordinatized in the IMU case

frame. Define matrix Γg, as

Γ̂g =


0 0 0

γ̂z 0 0

γ̂y γ̂x 0


and Sg as

Ŝg =


ŝgx 0 0

0 ŝgy 0

0 0 ŝgz


The compensated gyro measurement ∆θ̂

c

k,j is

∆θ̂
c

k,j =
(
I3 − Γ̂g − Ŝg

)
∆θck,j − b̂g (2)

where I3 is the 3 × 3 identity matrix. The accumulated raw and compensated gyro measurements

are initialized at zero and computed by FiltNav as

∆θaccum,c
k,j = ∆θaccum,c

k,j−1 + ∆θck,j (3)

∆θ̂
accum,c

k,j = ∆θ̂
accum,c

k,j−1 + ∆θ̂
c

k,j (4)
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with the understanding that the following two epochs are the same: tk,0 = tk−1,N , where N is the

last of the 200 Hz samples (either the fourth, fifth, or sixth). Notice that by adding quantities in

different frames (the case frame rotates between one measurement to the next) an approximation

is made. This approximation is deemed acceptable because these quantities are solely used in

the calculation of partials of the dynamics and the covariance matrix, which is a linearized and

approximated quantity in any case. This ∆θ buffers are not in the actual propagation of any state.

The raw accelerometer measurement is defined as the measurement in the IMU case frame

∆vc
k,j = Tc

b ∆vb
k,j (5)

The compensated accelerometer measurement is obtained using the 1 Hz estimates of the accelerom-

eter bias b̂a, scale factors ŝa, and non-orthogonality/misalignment ξ̂a, all three these vectors are

coordinatized in the IMU case frame. Define matrix Ξ̂a, as

Ξ̂a =


0 ξ̂xy ξ̂xz

ξ̂yx 0 ξ̂yz

ξ̂zx ξ̂zy 0


and Sa as

Ŝa =


ŝax 0 0

0 ŝay 0

0 0 ŝaz


The compensated accelerometer measurement in the inertial frame ∆v̂i

k,j is

∆v̂i
k,j = Ti

c

[(
I3 − Ξ̂a − Ŝa

)
∆vc

k,j − b̂a

]
(6)

The accumulated raw and compensated accelerometer measurements are initialized at zero and

computed by FiltNav as

∆vaccum,c
k,j = ∆vaccum,c

k,j−1 + ∆vc
k,j (7)

∆v̂accum,i
k,j = ∆v̂accum,i

k,j−1 + ∆v̂i
k,j (8)

Only the accumulated raw measurement contains the approximation of adding quantities in slightly

different frames (the case frame rotates between measurements), once again this approximation
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is deemed acceptable because these quantities are solely used in the calculation of the covariance

matrix. The compensated accumulated accelerometer measurement, on the other hand, is used to

propagate the state; however no approximation is made since the accumulation occurs in the inertial

frame.

In order to reduce computations, gravity is only evaluated once a second and the 40 Hz in-

between values needed by FiltNav are calculated with a first order Taylor series truncation. FiltNav

receives the gravity gradient G(r∗) and the quantity g(r∗) −G(r∗) r∗ from the EKF, where g is

the gravity vector and r∗ is the vehicle’s inertial position and the center of the Taylor series. These

two quantities are used rather than g(r∗), G(r∗), and r∗ because it reduces overall computations

(g(r∗) −G(r∗) r∗ is calculated only once per second instead of once per 40 Hz call) and because

it reduces the amount of data exchanged between rate groups (r∗ is not passed from the EKF to

FiltNav, only the delta state update is). All these quantities are calculated at the EKF calling time,

hence they are nominally one second old when received by FiltNav and they are used to propagate

position and velocity until they are almost two seconds old. The gravity at any location r is obtained

truncating after the first-order in r as

g(r) ≈ g(r∗) + G(r∗) [r− r∗] = G(r∗)r + [g(r∗)−G(r∗)r∗] (9)

This is the equation associated with the propagation of the state (position and velocity) and the

covariance (of the position and velocity). This above approximation is found to be more than

sufficient and the higher-order terms in the Taylor series are found to be smaller than the errors due

to the truncation of the gravity field.

Define t0 as the beginning of the time propagation step, and a1 as

a1(t0) = G(r∗)r0 + {g(r∗)−G(r∗)r∗ + as(t0)} (10)

where as(t0) is the compensated sensed acceleration from the IMU, i.e. the accelerometer sculled

measurement compensated with the known EKF estimates of the IMU errors and coordinatized in

the inertial frame. Define a2 as

a2 = G(r0)v0 (11)
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FiltNav propagates position and velocity at 200 Hz using the following equations at each step

v ≈ ṙ0 + a1(t0)∆t+
1

2
a2(t0)∆t2 (12)

r ≈ r0 + ṙ0∆t+
1

2
a1(t0)∆t2 +

1

6
a2(t0)∆t3 (13)

Finally, the attitude with respect to the inertial frame is propagated forward in time using

the compensated gyro measurement. The IMU case-to-inertial attitude quaternion at time tk,j is

denoted as qc→i(tk,j), the quaternion is simply propagated with the quaternion multiplication

qc→i(tk,j+1) = ∆qc(tk,j+1) · qc→i(tk,j) (14)

where ∆qc(tk,j+1) is the change in attitude from the current IMU case frame to the prior IMU frame,

which is simply the opposite of the latest gyro measurement expressed as a quaternion. Notice that

the gyro measurement is sample internally by the sensor at a very high rate and compensated for

coning errors, therefore this propagation scheme is very accurate. The propagated Orion body

attitude qi→b(tk,j+1) is simply obtained from the fixed IMU case to Orion body transformation

qi→b(tk,j+1) = qc→i(tk,j+1)∗ · qc→b (15)

where the superscript “∗” indicates the quaternion conjugate. Notice that the mounting error of the

IMU with respect to the Orion body is unknown, therefore qb→i contains that additional error.

B. State Propagation

When FiltNav receives new EKF data, it updates its estimates of the IMU errors used for mea-

surement compensation, resets the 4 Hz buffers, and updates its position, velocity, and quaternion

states with the information from the filter. The EKF provides a state update (or delta state ∆X)

which is one major cycle (nominally one second) in the past. Following standard linearization tech-

niques, the delta state is propagated forward by the state transition matrix that FiltNav needs to

calculate. The change in state X at time tk is obtained from a change in state at time tk−1 as

∆Xk = Φ(tk, tk−1)∆Xk−1 (16)

the nonlinear state dynamics is Ẋ = F(X, t), its Jacobian is

A(tk) =
∂F

∂X

∣∣∣∣
Xk=X̂k

(tk) (17)
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and the State Transition Matrix (STM) evolves as

Φ̇(t, tk−1) = A(t)Φ(t, tk−1) (18)

Since FiltNav operates at a fairly high rate, a first order approximation of the STM was used

since sufficiently accurate to represent the dynamics, hence (the low rate EKF uses a higher order

approximation)

Φ(tk+1, tk−1) ' Φ(tk, tk−1) + A(tk)Φ(tk, tk−1) (tk+1 − tk) (19)

hence the need to multiply the Jacobian matrix A and the state transition matrix Φ, this multipli-

cation is done taking advantage of the known form of the two matrices.

The IMU error states are modeled as first-order Gauss Markov states, which are denoted as B,

so that the state-space is

X =

[
xT φiT

iref
BT

]T
(20)

where x is the 6 × 1 vector containing inertial position and velocity, the three dimensional multi-

plicative attitude error [15] φi
iref

is coordinated in the inertial frame rather than the Orion body

frame for reasons that will be soon clear. Matrix A(tk) is partitioned as follows

A(tk) =


Axx(tk) Axφ(tk) AxB(tk)

0 Aφφ(tk) AφB(tk)

0 0 ABB(tk)

 (21)

Since the elements of B are modeled as independent first-order Gauss-Markov processes, ABB(tk)

is diagonal. Dropping all time dependencies for simplicity, the state transition matrix, Φ, can be

partitioned, likewise, as

Φ(tk, tk−1) =


Φxx Φxφ ΦxB

0 Φφφ ΦφB

0 0 ΦBB

 =


ΦxX

ΦφX

ΦBX

 (22)

and it follows that

A(tk)Φ(tk, tk−1) =


AxxΦxx (AxxΦxφ + AxφΦφφ) (AxxΦxB + AxφΦφB + AxBΦBB)

0 AφφΦφφ (AφφΦφB + AφBΦBB)

0 0 ABBΦBB

 (23)
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The reason to choose the attitude deviation φi
iref

expressed in the inertial frame is that produces

Aφφ = 0, which results in a state transition matrix with the following form

Φ(tk, tk−1) =


Φxx Φxφ ΦxB

0 0 ΦφB

0 0 ΦBB

 (24)

The gyro errors are updated directly and assumed constant during the one second FiltNav propaga-

tion in between major cycles, hence computation of ΦBB and the entire rows of the state transition

matrix associated with it are not needed, since only position, velocity and attitude are updated.

The attitude update in FiltNav is given by

φi
iref

(tk) = φi
iref

(tk−1) + ΦφB(tk, tk−1)∆Bk−1 (25)

It is noticed that the attitude update at time tk is dominated by φi
iref

(tk−1) and therefore the second

component of Eq. (25) is dropped to save the computations of calculating the state transition matrix.

In summary, FiltNav receives an inertial attitude update already parameterized as a delta quaternion

∆qi(tk−1) and it updates its current estimate of attitude using the quaternion composition rule

q̂+
i→b(tk) = ∆qi(tk−1) · q̂−i→b(tk) (26)

while position and velocity are simply updated as

x̂+
k = x̂−k + ΦxX(tk, tk−1)∆Xk−1 (27)

where ΦxX(tk, tk−1) is defined in Eq. (22).

IV. Extended Kalman Filter Design

The Extended Kalman Filter is a 1 Hz CSU responsible for incorporating the measurements

into the filtered navigator solution.

The state vector components are divided in dynamic-states, X and parameter-states, B

X =

[
X T BT

]T
(28)

Table 1 show the 35 states of the EFT-1 EKF. The 24 IMU states are included in the EKF as

parameter-states and they differ from the other 11 states in that they are modeled as independent
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first-order Markov processes, therefore their time evolution is known analytically and does not

necessitate numerical integration. In addition, their state transition matrix is also known analytically

and it is very sparse, making their covariance matrix propagation extremely numerically efficient.

Table 1 EKF States

State # of Comments/Description

elements

Position 3 3-vector of inertial frame components of position

Velocity 3 3-vector of inertial frame components of velocity

Attitude 3 Multiplicative Attitude deviation state

Clock Bias and Drift 2 GPS receiver clock states

accel bias 6 3 states each for low-g and high-g accelerometer modes

accel scale factor 3

accel misalignment 6 includes both internal misalignment and non-orthogonality

gyro bias 3

gyro scale factor 3

gyro non-orthogonality 3 the gyro is taken as the aligned sensor

The EKF’s covariance is factorized using the UDU formulation, which has been successfully

used in aerospace engineering applications for several decades. Orion utilizes the UDU factorization

since it is very numerically stable. The UDU formulation factors the covariance matrix (which is

symmetric) as

P = UDUT (29)

where U is a 35 × 35 Upper triangular matrix which has 1’s on the diagonal and D is an 35 × 35

Diagonal matrix.

A. The Propagation Phase

The time propagation of position, velocity, and attitude was previously discussed and occurs in

FiltNav. Accelerometer editing (or thresholding [9]) is included in the EKF design but it was dis-

abled. Accelerometer editing consists in using the accelerometer measurement to propagate the state
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only when it exceeds a predetermined threshold. The threshold is determined from the accelerome-

ter’s specification, the idea is not to include the measurement when most of what is measured is just

sensor error. When the measurement is below the threshold, the EKF is capable of performing its

own propagation independent of FiltNav. As a cost-saving measure, the inclusion of the low-g mode

was eliminated from the EFT-1 IMU design, therefore the IMU provided a coarse measurement dur-

ing the orbital phase originally intended only for the highly dynamic atmospheric phases. During

EFT-1, Orion was attached to the upper stage for most of the orbital flight, venting from the large

upper stage engine was significant and below the threshold, producing large accumulated position

and velocity errors. Therefore the accelerometer threshold was set to zero and all accelerometer

measurements were included in the state propagation.

The efficiency and robustness of the UDU formulation have been harnessed in the time-update

of the covariance matrix. To propagate the covariance the State Transition Matrix is calculated. In-

tegrating the STM and computing the propagated covariance with the discrete propagation formula

is usually more computationally efficient than integrating the covariance Riccati equation directly,

since the STM usually has a known sparse structure and can be often approximated with a truncated

matrix exponential. This offers particular advantages in the case of the Orion Absolute Navigation

Filters since the majority of the states are independent first-order Gauss-Markov states and their

state transition matrix is expressed analytically. Additionally, the STM for the GPS clock states

is also known analytically. The UDU covariance propagation relies on a very efficient “rank one

update” algorithm derived by Agee and Turner [6].

Process noise is used to tune the filter. For the Orion Absolute Navigation Filter, the process

noise enters the covariance update via the dynamic states and the parameter states. For the po-

sition and velocity, the process noise enters via the velocity state; the process noise represents the

uncertainty in the dynamics, chiefly caused by mis-modeled (or unmodeled) accelerations. Since

the accelerometers only measure non-inertial forces, gravity is modeled via a high-order gravity

model. For the Orion Absolute Navigation filter, Earth’s gravity is modeled by an 8 × 8 gravity

field; higher-order spherical harmonics are neglected and hence are captured by the velocity process

noise. Additionally, since the attitude rate states are not part of the filter, the attitude process noise
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enters via the gyro angle random walk. The velocity and attitude process noises are obtained from

the IMU Velocity Random Walk and Angular Random Walk performance, respectively. Conserva-

tive values of 0.96741 ft2/s and 0.0096741ft2/s3 are used for the clock bias and drift process noise,

respectively. These values are looser than the receiver’s clock specifications.

The IMU states are modeled as first-order Gauss-Markov processes and carry with them corre-

sponding process noise parameters which are used in the tuning of the filter. Since the IMU errors

were expected to be quite constant during the 4.5 hour flight, the time constant of these parameters

was chosen as 4 hours, and the process noise was chosen such that the steady-state value of the

Markov processes was equal to the vendor’s specification.

B. The Measurement Update

As is routinely done, measurements are processed one-at-a-time. The performance of an EKF is

dependent on the order in which one processes measurements [16]. The Orion EKF design obviates

this fact by calculating all the measurement Jacobians at once with the a priori estimate and simply

calculating a delta state update and only applying it to update the state once all the measurements

at a given time are processed. The state update is accumulated in the quantity ∆X and it can be

shown that this approach is mathematically equivalent to an extended Kalman Filter that employs

a vector update to process all new measurements at once.

Evaluating the performance of GPSR was one of the EFT-1 objectives, and the EKF was

purposefully tuned to be conservative in processing PR and DR measurements. The measurement

standard deviations for PR and DR used in the filter are 60 ft and 3 ft, respectively, which are

large enough numbers that the inclusion of satellite specific bias states was not necessary. The

PR 60 ft value is actually a lower limit, a GPSR outputted value is used instead when this value

exceeds 60 ft. The GPSR estimate of the measurement uncertainty contains the estimate of all

errors (including atmospheric delays) except receiver clock errors. However, since atmospheric

delays become significant for low-elevation satellites making the measurement error very strongly

autocorrelated, these low-elevation satellites’ measurements were not included in the filter. Because

of the large range of altitudes at which GPSR operates during this flight, it is not possible to use a
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constant masking angle to exclude low-elevation satellites. Fig. 3 shows the approach used to mask

low-elevation satellites. The elevation angle θ is calculated from the Orion position vector R1 and

the line-of-sight vector from Orion to the GPS Satellite R2 as

cos θ = −(R1 ·R2)/(‖R1‖ ‖R2‖) (30)

sin θ = ‖R1 ×R2‖/(‖R1‖ ‖R2‖) (31)

The point of closest approach (PCA) is given by

PCA = ‖R1‖ sin θ (32)

the satellite is masked when PCA is below a user-defined threshold and cos θ is positive, this second

condition protects against masking good signals when the Orion position is the point of closest

approach (θ > π/2), (see right-hand side of Fig. 3 ).

Fig. 3 GPS Satellites low-elevation Masking

a. Dealing with Measurement Latency In general, the measurement time tags are not going

to be equal to the current filter epoch time, tk. To state it another way, the measurements do not

come in at the current time. Thus, a situations arises where the filter has propagated its state and

covariance to time t = tk from time t = tk−1, and is subsequently given a measurement to be filtered

(denoted by subscript m) that corresponds to the time t = tm, where

tm ≤ tk (33)
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If ∆t = tm − tk is not insignificant, the time difference between the measurement and the filter

state and covariance will need to be accounted for during filtering in order to accurately process the

measurement. This can be done in much the same way a batch filter operates (see pages 196-197

of Tapley [10]). If the measurement at time t = tm is denoted as ym, the filter state at that time is

given by x̂m ≡ x̂(tm), and the measurement model is denoted as h (xm, tm), then one can expand

the measurement model to first-order about the nominal filter state to get

h (xm, tm) = h (x̂m, tm) + H̃mδxm (34)

where δxm = xm − x̂m and H̃m is defined as

H̃m =

(
∂h (X, tm)

∂X

)
x=x̂m

(35)

The perturbed state at time tm, xm can be written in terms of the state at time tk via state

propagation as follows

δxm = Φ(tm, tk)δxk + Γmνm (36)

where νm is process noise, so the measurement is computed as

h (xm, tm) = h (x̂m, tm) + H̃mΦ(tm, tk)δxk + H̃mΓmνm (37)

the state process noise from t = tm to t = tk has the characteristics E[νm] = 0 and E[νmν
T
m] = Qm.

Additive measurement noise is added with characteristics E[ηm] = 0 and E[η2m] = Rm.

Upon taking the conditional expectation of the measurement equation and rearranging, the

scalar residual εm of the measurement is given by

εm = ym − h(x̂m, tm) = H̃mδxm + ηm = H̃mΦ(tm, tk)δxk + H̃mΓmνm + ηm (38)

The measurement partials that are used in the update, which map the measurement at time tm to

the state at time t = tk, are given by

Hm = H̃mΦ(tm, tk) (39)

From the above discussion, it is evident that the quantities needed to update the state at

time t = tk with a measurement from time t = tm are the nominal state back-propagated to the
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measurement time, x̂m, and the state transition matrix relating the two times, Φ(tm, tk). Given

these values, h (x̂m, tm) and Hm can be calculated and used to update state and covariance.

The nominal state at the measurement time is calculated by back-propagating the filter state

from time tk to time tm at 4 Hz using buffered IMU data from FiltNav. The same 4Hz buffers are

used to back propagate the transition matrix. The same propagation algorithms used in forward

propagation are utilized for the back-propagation, with the exception that the smaller time step

allows for a first-order approximation of the matrix exponential used to update the state transition

matrix. Notice that the first order approximation did break under the parachutes due to very high

rotational dynamics, to mitigate this fact, measurement processing was inhibited in EFT-1 during

high dynamics phases.

Measurement Underweighting Measurement underweighting has long been standard prac-

tice in human-rated on-board navigation since Apollo [11]. This is used in lieu of a second-order

measurement update which is used in the so-called second-order EKF, which is more computationally

expensive. Underweighting is needed when accurate measurements (such as GPS) are introduced at

a time when the a priori covariance (particularly of the position and velocity states) matrix is large.

In the case of GPS measurements, the update to the position and velocity states would result in

the covariance matrix associated with these states ‘clamping’ down too fast, resulting in an unreal-

istically small uncertainty compared to the actual covariance matrix. This undesired behavior can

result in rejection of subsequent valid measurements. The underweighting factor decreases the rate

at which the covariance decreases, essentially approximating the second-order terms of the Taylor

series which are not explicitly included in the EKF. Underweighting is typically implemented during

the Kalman Gain calculation by

Kk = PkHT
k

(
(α+ 1)HkPkHT

k +Rk

)−1
However, the implementation is complicated when using the UDU formulation described earlier in

this paper. The Orion team has implemented a simple new formulation to allow this. It is observed

that the effect of underweighting can also be described as simply an additional measurement noise.

In the Orion EKF, the underweighting correction is simply added to the measurement noise prior
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to the UDU update.

RUWk
= Rk + αHkPkHT

k

Thus, the result of applying underweighting adds robustness to cases where relatively accurate

measurement updates are processed in the presence of large navigation errors and large uncertainties.

EFT-1 employed a coefficient of 0.2 on both PR and DR, and underweighting was applied when

HkPkHT
k > 10, 000 ft2 for any given measurement.

Measurement Editing The Kalman filter state update is the linear combination of two

components, the prior estimate X̂−k and the measurement residual
(
yk − h(x̂−k )

)
x̂+
k = x̂−k + Kk

(
yk − h(x̂−k )

)
(40)

The measurement residual is the difference between the actual measurement y and the value of the

measurement as predicted by the filter, h(x̂−). The larger the residual, the larger the discrepancy

between the actual measurement and the filter’s prediction of it, and as a consequence the larger the

measurement update. The residual is scaled by the Kalman gain K, which for a scalar measurement

is given by

Kk =
PkHT

k

HkPkHT
k +Rk

=
PkHT

k

Wk
(41)

where W is the residual variance. When the measurements are linear W corresponds exactly to the

variance of the residual. From Eq. (41), it follows that the larger the uncertainty of the prior state

(P), the larger the update, conversely, the larger the uncertainty of the residual W , the smaller the

update.

Knowledge of the residual and its expected variance by the filter allows monitoring of their con-

sistency. In Orion, a measurement is rejected if the residual does not lie within 5 times its predicted

standard deviation (square root of the variance), where 5 is a tunable, user-defined parameter. Few

failures indicate an occasional bad measurement, while repeated rejections indicate a sensor failure

or filter divergence.

Consider Covariance and It’s Implementation in the UDU Filter The Consider

Kalman Filter, also called the Schmidt-Kalman Filter is especially useful when parameters have
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low observability.

Any state except position, velocity, and clock errors can be considered rather than estimated

in the Orion EKF. In order to describe how consider states are incorporated the state-vector Xk is

partitioned into the ns“estimated states”, s, and the np “consider” parameters, p. It is important to

distinguish the “consider parameters” in this section from the “parameter state” in the filter design.

A consider parameter is simply an element of the EKF state that is propagated only. It is not

updated with the measurement; its effect is only considered. As previously explained, a parameter

state is simply a state modeled as a first-order Markov process. Every dynamic state or parameter

state is allowed to be considered with the exception of position and velocity. Hence for the purpose of

this discussion, the state vector (including both dynamic states and parameter states) is partitioned

as:

XT
k =

[
sTk pT

k

]
(42)

subscripts k indicating the time step are omitted for the rest of this section for ease of notation, the

estimation error covariance matrix can be similarly partitioned

P =

 Pss Psp

Pps Ppp

 , H =

[
Hs Hp

]
, Kopt =

 Ks,opt

Kp,opt

 =

 P−ssH
T
s + P−spHT

p

P−psH
T
s + P−ppHT

p

W−1

where Kopt is the optimal Kalman gain computed for the full state, X. Therefore, choosing Ks such

that Ks = Ks,opt and Kp arbitrary, the a posteriori covariance matrix is [8]

P+ =



P−ss −KsWKT
s P−sp−KsH

P−sp
P−pp


P−ps −

P−sp
P−pp


T

HTKT
s P−pp −KpWKT

p


(43)

This equation is valid for any value of Kp. Notice that there is no Kp in the off-diagonal blocks

(correlation terms) of the covariance matrix. Therefore, what is remarkable about this equation is

that once the optimal Ks is chosen, the correlation between s and p is independent of the choice of

Kp.

In its essence, the consider parameters are not updated; therefore, the Kalman gain associated

with the consider parameters, p, is zero, i.e. Kp = 0
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1. When using the Schmidt-Kalman filter, the a priori and a posteriori covariance of the param-

eters (Ppp) are the same.

2. The a posteriori covariance matrix of the states and the correlation between the states and

the parameters are the same regardless of whether one uses the Schmidt-Kalman filter or the

optimal Kalman update

Therefore, the consider covariance, P+
con is

P+
con =



P−ss −KsWKT
s P−sp−KsH

P−sp
P−pp


P−ps −

P−sp
P−pp


T

HTKT
s P−pp


(44)

Of course, the “full” optimal covariance matrix update is

P+
opt =



P−ss −Ks,optWKT
s,opt P−sp−Ks,optH

P−sp
P−pp


P−ps −

P−sp
P−pp


T

HTKT
s,opt P−pp −Kp,optWKT

p,opt


(45)

The UDU formulation, while numerically stable and tight, is quite inflexible to making any changes

in the framework. The measurement update, expressed in terms of the consider covariance [8], is

P+
opt = P+

con −W (SKopt) (SKopt)
T (46)

where S is an nx × nx matrix (defining nx = ns + np, where nx is the total number of states, np is

the number of consider states, and ns is the number of “non-consider” states) defined as

S =

 0ns×ns 0ns×np

0np×ns Inp×np

 (47)

Since scalar measurements are processed,W = 1/α is a scalar and Kopt is an nx×1 vector. Therefore

SKopt is an nx × 1 vector. Therefore, solving for the consider covariance,

P+
con = P+

opt +W (SKopt) (SKopt)
T (48)
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Eq. (46) has the same form as the original rank-one update i.e. P+ = P− + caaT hence the

Agee-Turner rank one update is used.

Therefore, the procedure is as follows: first perform a complete rank-one measurement update

with the optimal Kalman Gain (Kopt) with the Carlson rank-one update on the full covariance

matrix. Second, perform another rank-one update with a = SKopt and c = W , according to the

Agee-Turner rank-one update. While this capability exists in the Orion navigation flight software,

it was not used in EFT-1.

V. Absolute Navigation Performance

This section shows the onboard navigation telemetry data from the EFT-1 flight. At various

points during the flight Orion was tracked from ground stations, and the solution was evaluated

by mission control to verify the performance of the onboard navigation system. All these checks

compared very favorably to the onboard solution, demonstrating good performance. The ground

navigation measurements were combined with all the GPS measurements into a Kalman smoother to

obtain a Best Estimated Trajectory (BET) of EFT-1 [12]. The overall performance of the onboard

navigation solution compared to the BET is shown in Ref. [13]. Through comparison with the

ground tracking solutions during flight, with the navigation performance obtained in many Monte

Carlo simulations, and through monitoring of the GPSR residuals, it can be inferred with a high

degree of confidence that the EKF’s predicted performance (i.e. estimation error covariance) during

low-elevation is a good indicator of the actual (unknowable) estimation error experienced during

flight. All plots show the performance of channel one (CH1) and channel two (CH2) produced very

similar results.

Figure 4 shows the EKF position covariance throughout the flight. The estimates are typically

within 50 ft (3σ) during coasting flight, and exhibit nominal growth and re-convergence during the

brief measurement outage caused by Orion’s reorientation to its upper stage separation (CMsep)

attitude (around 12,000 seconds of mission time). Nominal convergence occurred at GPSR acqui-

sition during ascent (around 400 sec) and the position uncertainty grew very fast during the high

dynamic entry when GPSR measurements were inhibited because of high rates under the chutes
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(past 15,000 sec).

Fig. 4 CH1 ECI Position Covariance 3σ

Figure 5 shows similar trends for the EKF velocity covariance. The estimates are typically

bounded within 0.3 ft/s (3σ) during coasting flight, and exhibit nominal growth and re-convergence

during the second stage burn (∼7,000 sec) and the brief outage caused by the CMsep attitude. The

velocity covariance also grows fast during GPSR outages during entry.

In order to confirm that the filter re-converged properly after measurement outages, the best

indicator are the residuals shown in Figure 6 for both pseudorange and delta range, the residuals

of all measurements processed are shown together, the bottom sub-plot shows the total number of

pseudorange measurements available. After each outage, the residuals start significantly larger and

then re-converge to the smaller values. GPSR performed very well during the flight [14], and proved

to be very reliable tracking satellites all the way through apogee. After the outage due to CMsep,

the residuals jump to 400 ft, almost entirely a combination of the receiver clock bias error and the

position estimation error. Figure 7 shows the covariance of the clock bias and drift states.

Figure 8 shows the pseudorange and delta range measurement residuals scaled by the filter’s

predicted standard deviation. It can be seen that the predictions are conservative compared to the

actual residuals, as the PR residuals go outside 1 σ predictions only once after blackout and they
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Fig. 5 CH1 ECI Velocity Covariance 3σ

Fig. 6 CH1 Pseudorange Residuals

almost always are below 0.5 σ, and the rejection threshold is 5 σ. The DR residuals are tuned

even more conservatively, as they always stay below 0.3 σ. This feature was expected and the

performance was as intended. This design choice is due to the desire to test the new GPS receiver

with the mission. The GPSR estimate of the pseudorange uncertainty was used unless a value below

60 ft was output. The receiver produced conservative estimates of the errors that included errors
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Fig. 7 CH1 Clock Bias and Drift Covariance 3σ

due to atmospheric delay.

Fig. 8 CH1 PR and DR Residuals Scaled by Predicted Standard Deviation

Figure 9 shows very good attitude performance throughout the flight even in the absence of a

dedicated attitude sensor. Attitude is observable via the dynamics measured by the accelerometer

in the body frame and the GPSR antennas lever arm with respect to the navigation center. The

attitude estimates are typically within 0.04 deg (3σ) during coasting flight, and converge to lower
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values during very observable periods such as the second stage burn (around 7,000 sec) and entry

(after 15,000 sec). The vehicle’s rolling motion after SECO2 and the transition to CMsep attitude

around 12,000 sec are clearly visible in this plot, as is the encounter with the atmosphere that makes

the attitude much more observable.

Fig. 9 CH1 Orion Body Attitude Covariance 3σ

Figures 10 and 11 shows pseudorange and delta range accept/reject counters, they show no

rejected measurements for the entire flight. This fact is due to the excellent performance of the GPSR

and because the filter was tuned conservatively with its measurement noise. Each line represents

the number of accepted measurement for each of the 32 GPS satellites. No delta range measurement

was processed after parachute deployment, the reason is the filter was tuned to process delta range

only after 30 successful pseudorange measurements from the same satellite were processed. During

this high dynamic phase of flight, the consecutive number of processed pseudorange measurements

never reached 30.

VI. Conclusions

This paper documents the design of the Orion Exploration Flight Test 1 absolute navigation

system and presents its performance during the flight. One of the flight objectives was to test
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Fig. 10 CH1 Pseudorange Counters (No Rejections Occurred)

Fig. 11 CH1 DeltaRange Counters (No Rejections Occurred)

the entry system, which includes the onboard navigation using global positioning system (GPS)

and inertial measurement units (IMUs). Characteristics of the design were introduced, including
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the concept of navigation channel that allows for transient-less recovery from an IMU failure, a

low-elevation GPS satellite masking scheme, inclusion of underweighting and consider states in

the upper triangular-diagonal covariance factorization framework, and the interactions between two

navigation rate groups. Data from the flight are shown to validate the design choices, and these data

illustrate a flight in which the absolute navigation system performed as expected and produced a

good state to guidance and control. One of the flight objectives was to test a new GPS receiver, the

GPS measurement were therefore purposefully de-weighted in the filtered solution. No issues were

detected in the GPS receiver performance, which in fact tracked more than three satellites all the

way through apogee, beyond what was expected. No measurement rejections occurred in the filter

due to a combination of good receiver performance and conservative tuning of this measurement.
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