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The solution of the Wahba problem, a nonlinear least-squares performance index
for attitude determination, does not naturally extend to include initial condi-
tions. A multiplicative way of introducing a priori information into the Wahba
performance index is shown.

INTRODUCTION

The determination of the spacecraft attitude from sensor measurements utilizing
batch and recursive filtering methods is an important practical problem in engineer-
ing and has been extensively studied and continues to be a topic of interest [1] -[22].
The quaternion estimation algorithm (QUEST) is an implementation of Davenport’s
least-squares solution to the attitude determination problem [23] -[25]. In general, the
least-squares batch estimation architecture employs a linearized measurement model
and possesses the ability to process a variety of sensor measurement types. QUEST
is a least-squares solution that avoids the linearization process leading to an opti-
mal attitude estimate. One disadvantage of the QUEST algorithm is that it requires
vector-type measurements. In a spacecraft scenario, measurements are often available
in vector form, such as the magnetometer sensor output. Other sensors, such as a star
tracker, can provide information that can be translated into three-dimensional unit
vectors. In fact, today many star trackers output attitude quaternions as the mea-
surements. Measurements that contain only scalar information cannot be processed
by QUEST. Measurements of this kind might include the cosine of the angle between
a spacecraft-fixed vector and an inertial-fixed vector. Nevertheless, the QUEST algo-
rithm enjoys a popular following and has been employed successfully in a variety of
settings.

The attitude determination problem addressed by the QUEST algorithm is to
find the best overlap of a number of reference and observations vectors [23]. In

this work the attitude is represented with four-element quaternions, q =
[
qT q

]T

where q = [q1 q2 q3]
T is the vector component of the quaternion and q is the scalar

component. Given a set of n reference vectors, denoted by ri ∈ <3, i = 1, . . . , n,
that are in known directions (such as directions to particular stars) in the given
reference coordinate frame and a set of n observation vectors, denoted by yi ∈ <3,
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i = 1, . . . , n, given in a spacecraft body-fixed reference frame (such as the sensor
frame), the quaternion formulation of the Wahba problem is to find the quaternion q
that minimizes

J (q) =
n∑

i=1

wi‖yi −T(q)ri‖2
2 (1)

subject to ‖q‖2 = 1

where T(q) is the 3× 3 direction cosine matrix representing the transformation from
the reference coordinate frame to the body-fixed coordinate frame. In terms of the
quaternion, the transformation matrix T(q) is given by

T(q) = (q2 − qTq)I3×3 + 2qqT − 2q[q×] (2)

where the vector product matrix [w×] is defined such that

[w×]v = w × v

for all vectors v ∈ <3 and w ∈ <3. In Eq. (1), the positive scalars wi for i = 1, . . . , n,
represent the accuracy of the n observations, respectively. The algorithm to solve
this constrained minimization problem is due to Davenport [26]. Examining the
performance index, it is observed that a priori information of the initial orientation of
the body-fixed frame does not factor in. Incorporation of a priori attitude information
into the Wahba performance index without significant modification of Davenport’s
algorithm is the subject of this work.

The remainder of this paper is organized as follows: first, the original solution
to the quaternion Wahba problem is reviewed and two existing methods to incor-
porate a priori attitude information are discussed. The new proposed algorithm to
incorporate a priori attitude information is then presented. It is shown that appro-
priately modifying the performance index in a multiplicative manner leads to a simple
method to incorporate a priori attitude information within the existing structure of
the Davenport’s algorithm. The paper concludes with a numerical example.

DAVENPORT’S ORIGINAL SOLUTION

Davenport’s original solution to the Wahba problem formulated for the quaternion is
given by Keat [26]. Minimization of Wahba performance index in Eq. (1) is equivalent
to maximization of the performance index

J ?(q) =
n∑

i=1

w2
i y

T
i T(q)ri (3)

subject to ‖q‖2 = 1

Defining the 3× 3 matrix B as

B ,
n∑

i=1

w2
i yir

T
i (4)
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and using matrix trace properties, it follows that Eq. (3) can be written as

J ?(q) = trace
[
T(q)BT

]
(5)

The matrix B can be found recursively using

Bk = Bk−1 + wkykr
T
k (6)

where 1 ≤ k ≤ n,
B0 , O and B = Bn

Denote the vector component of the quaternion by q and the scalar element of the
quaternion by q. Substituting Eq. (2) in the performance index in Eq. (5) and using
B in Eq. (4) yields

J ? = σ(q2 − qTq) + 2qTBTq− 2q trace
[
[q×]BT

]

where
σ , trace(B)

This problem constitutes a quadratic program, i.e. the performance index can be
rewritten as

J ?(q) = qTKq (7)

where the 4× 4 matrix K is now obtained. Define the symmetric matrix S as

S , B + BT

Then it follows that
2qTBTq = qTSq

Notice that

−2 trace
[
[q×]BT

]
= −2 trace

[
n∑

i=1

wi[q×]riy
T
i

]
= 2

n∑
i=1

wi (yi × ri)
T q

Therefore, matrix K in Eq. (7) is given by

K =

[
S− σI3×3 z

zT σ

]
(8)

where

z ,
n∑

i=1

wi (yi × ri)

Adjoining the constraint q Tq = 1 to Eq. (7) with a Lagrange multiplier, denoted by
λ, the first-order optimal condition is given by the eigenvalue problem

Kq = λq (9)

Also using Eq. (7) and Eq. (9), the performance index can be shown to be

J ? = λ
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where λ is any of the eigenvalues of K. Since the performance index is to be max-
imized, the optimal Lagrange multiplier is given by the maximum eigenvalue of K
given in Eq. (8), and the optimal quaternion is given by the corresponding unit
eigenvector. There is no need to calculate the eigenvector. The vector of Rodrigues
parameters is given by

g = q/q

The first three rows of Eq. (9) can be expanded to be

(S− σI3×3)q + zq = λq

from which the optimal Gibbs vector is found to be

g = [(σ + λ)I3×3 − S]−1z (10)

The optimal quaternion is given by

q =
1√

1 + gTg

[
g
1

]

Shuster and Oh [23] show how to handle Eq. (10) when matrix (σ + λ)I3×3 − S is
singular, and a computationally efficient method to determine the eigenvalue, known
as QUEST.

EXISTING METHODS OF INCORPORATING A PRIORI INFORMA-
TION

As originally posed, the Wahba problem does not include initial conditions. At least
two different approaches have been proposed to add initial conditions to QUEST[27,
28]. Both solutions are given in the context of reformulating QUEST from a batch
estimation algorithm to a filter formulation with state updates followed by state
propagation. The recursive algorithm can be obtained from the above references or
using REQUEST [29]. A brief summary of filter QUEST and extended QUEST are
now presented.

Filter QUEST [27] introduces initial conditions using key properties of the Fisher
information matrix. Under certain assumptions on the distribution of the measure-
ments, the Fisher information matrix F for the three-dimensional representation of
the estimation error is [2]

F = trace
[
T(q TRUE)

(
BTRUE

)T
]
I3×3 −T(q TRUE)

(
BTRUE

)T
(11)

where BTRUE is calculated using T(qTRUE)ri instead of the measured vector yi. The
Fisher information matrix is asymptotically equal to the inverse of the estimation
error covariance. Solving for B in Eq. (11), the a priori information q − with the
associated a priori three-dimensional covariance P0 can be incorporated into the
attitude estimate employing

B0 =

[
1

2
trace(P−1

0 )I3×3 −P−1
0

]
T(q−) (12)
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as the initial condition in the recursion given in Eq. (6). It can be shown that

[z×] = BT −B

Therefore, z in Eq. (8) can be readily initialized since it can be calculated directly
using B. In short, the filter QUEST algorithm consists of initializing B with Eq. (12),
then updating with Eq. (6) and propagating with

B−
k+1 = αΦkB

+
k

where α ∈ [0, 1] is a heuristic parameter that approximates the degradation due
to process noise as fading memory. The state transition matrix Φk is found by
integrating from tk to tk+1 the following matrix differential equation

d

dt
Φk = [ω×]Φk, Φk(tk) = I3×3

where ω is the body angular velocity. The attitude estimate can be extracted at any
time from B using the QUEST algorithm.

Filter QUEST makes two assumptions:

1. The relationship between the Fisher information matrix and the covariance holds
true only asymptotically, while it is assumed to be true at the initial time.

2. The relationship in Eq. (11) should contain the true rotation matrix T(q TRUE),
while its initial estimate is used.

Extended QUEST [28] combines an extended Kalman filter with a recursive QUEST
algorithm to estimate the attitude quaternion as well as other states, such as position,
velocity, and biases. The state propagation is accomplished using standard propaga-
tion methods associated with Kalman filtering. However, in extended QUEST, the
state update is performed in two steps. First, the filter states are determined as a
function of the attitude quaternion, then the attitude quaternion is computed by em-
ploying a generalized quadratic programming strategy. A full derivation of extended
QUEST is beyond the scope of this section, however it is relevant to this work to see
how extended QUEST handles initial conditions. For ease of discussion, we assume
that there is no auxiliary state vector, that is, only the attitude quaternion is being
estimated. Under this assumption, the extended QUEST cost function reduces to

J1(q
+) =

(
q + − q−)T

R
(
q + − q−)

+
n∑

i=1

wi‖yi −T(q +)ri‖2
2

where R is a symmetric positive definite weight of the a priori estimate. Extended
QUEST introduces the a priori information in the standard batch estimation way
[30], by adding the weighted Euclidean distance between the a priori and a posteriori
estimates to the least-squares performance index. The cost function J1 constitutes a
generalized quadratic performance index, that is, it can be rewritten in the form

JGEN(q) = qTKq + kTq

subject to ‖q‖2 = 1
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where

k = −2RTq−, K =

[
S− σI3×3 z

zT σ

]
+ R

with S, z, and σ defined as in the original QUEST algorithm.
Readers interested in filter QUEST and extended QUEST should refer to the

original literature for more detailed explanations. Both methods provide a clear path
to incorporating a priori attitude information using reformulations of QUEST. Our
objective is to be able to incorporate initial attitude estimates into QUEST without
employing limiting assumptions or changing the fundamental character of the batch
QUEST algorithm.

PROBLEM FORMULATION

To facilitate introducing initial conditions in QUEST, it is necessary to include in
the performance index the distance between the a priori information (given by the
initial conditions) and the estimated quaternion to be determined. In this work, the
distance between the a priori and a posteriori attitude estimates is expressed using a
quaternion-of-rotation instead of using the Euclidean distance as in extended QUEST.
Benefits and drawbacks of the multiplicative and additive representations have been
extensively studied, for example Pittelkau [31] shows that the additive approach can
contain a bias in the estimate.

Define p as the quaternion representing the rotation from the a priori to the
a posteriori attitude estimation so that

p =
[
pT p

]T
= q + ⊗ (q−)−1 (13)

where the quaternion product ⊗ is defined such that the quaternions are multiplied
in the same order as the attitude matrices.

The norm of the vector component of the quaternion is the sine of half the angle
between the a priori and a posteriori attitude representations, and therefore is a good
candidate as a measure of distance. The new performance index to minimize is given
by

J2(q
+) = w0‖p‖2

2 +
n∑

i=1

wi‖yi −T(q +)ri‖2
2 (14)

The performance index J2 in Eq. (14) can be expressed in a more convenient form
by noticing that

‖p‖2
2 =

1

8

3∑
i=1

‖ei −T(p)ei‖2
2

where ei are the three vectors forming the canonical base. The proof of the identity
follows. Let v ∈ <3 be an arbitrary vector. Expressing the rotation matrix in
quaternion form, it follows that

v −T(p)v = 2
(
pI3×3 − [p×]

)
[p×]v (15)
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The square of the norm of Eq. (15) is

‖v −T(p)v‖2
2 = 4vT[p×]T

{
(1− pTp)I3×3 − [p×]2

}
[p×]v (16)

Using the identity
pTpI3×3 + [p×]2 = ppT

Eq. (16) reduces to

‖v −T(p)v‖2
2 = 4vT[p×]T[p×]v = 4‖p× v‖2

2

Choosing v = e1 = [1 0 0 ]T, it follows that

‖e1 −T(p)e1‖2
2 = 4p2

2 + 4p2
3

Following a similar process with v = e2 = [0 1 0 ]T and v = e3 = [0 0 1 ]T yields

3∑
i=1

‖ei −T(p)ei‖2
2 = 8‖p‖2

2

From Eq. (13) it follows that

T(p) = T(q +)
(
T(q−)

)T

Suppose we append the “observations” e1, e2, and e3 to the n given observations.
Then, for i = 1, 2, and 3, we have

yn+i = ei

rn+i =
(
T(q−)

)T
ei

wn+i = w0/8

Therefore, J2 can be conveniently rewritten as

J2(q
+) =

n+3∑
i=1

wi‖yi −T(q +)ri‖2
2

which can be solved using the original QUEST solution. If this scheme is used in
the absence of measurements, it will return as the a posteriori estimate the a priori
value.

Notice that each component of p could be weighted differently by selecting appro-
priate values for wn+1, wn+2, and wn+3. Also a symmetric positive definite weight
W0 could enter the performance index as pTW0p by simply appending three more
observations e4, e5, and e6 with appropriate weights.

e4 = [0
√

2
√

2]T, e5 = [
√

2 0
√

2 ]T, e6 = [
√

2
√

2 0 ]
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NUMERICAL EXAMPLE

Consider the situation depicted in Figure 1. The reference coordinate frame is rep-
resented by the vectors xI ,yI , and zI . Using a roll, pitch, and yaw attitude rotation
sequence, the body reference frame is oriented at ϕ = 10 deg, θ = −45 deg, and
ψ = 60 deg, where the angles are body-fixed frame to reference frame. The body-fixed
coordinate frame is represented by the vectors xB,yB, and zB. The transformation
from the reference coordinate frame to the body-fixed frame is represented by the
quaternion

q TRUE =
[−0.2603 0.2899 −0.4891 0.7804

]T

There are five target points available for measurement, as depicted in Figure 1. The
vectors to the five targets (in the reference coordinate frame) are:

r1 = r1




0.9962
0

0.0872


 r2 = r2




0.4924
0.8529
0.1736


 r3 = r3



−0.9962

0
0.0872




r4 = r4




0.4532
−0.7849
0.4226


 r5 = r5



−0.4330
−0.7500
0.5000




The targets are located at ranges r1 = 100m, r2 = 10m, r3 = 150m, r4 = 75m, and
r5 = 50m. The observations are not unit vectors like in the QUEST measurement
model. Relative positions to the targets are measured. To generate the observations,
the reference vectors were transformed into the body-fixed reference frame (using the
true quaternion) and additive (normally-distributed N(0,σ2

i ), σi = ‖ri‖2/50) noise
was applied to each element of the resulting vector. Since the weights represent the
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Figure 1: Reference frame and body-fixed frame showing five targets.
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accuracy of the measurements, they are chosen in the standard way

wi =
1

σ2
i

i = 1 : 5

The weight w0 represent the accuracy of the a priori information. To test the
incorporation of initial conditions into QUEST, we generate estimated initial attitude
errors that are zero-mean, normally-distributed with σ0 = 5 degrees. The performance
index contains sines of half angles, which are approximated by half angles. Following
the standard procedure to select w0 it would be expected that a good choice for the
weight would be

w0 =
1

(σ0/2)2
=

1

(0.0873/2 rad)2
= 525.28

w5+i = w0/8 i = 1 : 3

A Monte Carlo analysis was conducted using 500 runs, each with a different initial
attitude error and measurement error, to verify the performance of the QUEST algo-
rithm with a priori information. For each set of measurements and initial conditions,
the algorithm was run using different values of w0. The results are shown in Figure 2.
It can be seen that even a poor initial estimate will reduce the error, and that the
best performance is indeed obtain for w0 ' 525. In fact the numerical optimum was
found for 1/

√
w0 = 2.588 deg, very close to the predicted 2.5 deg. Notice however

that the result is due to the distribution used. By using normal distributions and
choosing the weights as the inverses of the variances, the estimate is the maximum
likelihood estimate. For other distributions, choosing the weights as the inverses of
the variances is a good rule of thumbs but generally leads to no optimal solution, nei-
ther in a maximum likelihood sense nor in a minimum mean square error sense, which
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Figure 2: Mean square errors for QUEST and QUEST with initial condition as a function of σ0.
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in general produce different estimators. Therefore, the weights are design parameters
that need to be tuned according to the specific problem.

If the a priori estimate is over-weighted, i.e. w0 increases, the estimate degrades.
As w0 decreases, the a priori information is de-weighted to the extent that the results
approach the QUEST algorithm without initial information. Also, it can be seen that
in general the QUEST algorithm with a priori information performs better under the
conditions in this numerical experiment.

CONCLUSION

A simple way of introducing a priori information in QUEST was presented. The ad-
vantage of this new method is that no approximations are needed and that the a priori
information is included in a multiplicative fashion which leads to a simple physical
interpretation, and allows for easy determination on the weight for the a priori es-
timate. Like in the linear least-squares approach used for batch estimation, weights
are introduced and they represent the accuracy of the measurements and a priori es-
timate. In linear least-squares, choosing the weights as the inverses of the covariances
results in the minimum variance estimate. The non-linearities of the Wahba problem
however, prevent such result. Assuming very specific error distributions, the solutions
to both the the linear least-squares and the Wahba problem can be interpreted as
maximum likelihood estimates.

Assuming the measurements are distributed as in Shuster[2], making a small angle
approximation for the a priori distribution, and making other assumptions on the
Fisher information matrix, filter QUEST shows how to introduce initial conditions,
under those circumstances the proposed approach reduces to filter QUEST when the
initial weight is chosen in the same way. However, this work does not make any
limiting assumptions in its derivation, and is therefore valid for all measurement
distributions, and for arbitrarily large initial estimation errors.
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