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This study introduces novel algorithms and the underlying mathematics to pro-

cess pictures of planetary illuminated bodies and use them for navigation purposes.

The goal is to accurately estimate the observer-to-body relative position in inertial

coordinates. The main motivation is to provide autonomous navigation capabilities to

spacecrafts by observing a planet or a moon. This is needed, for example, in human-

rated vehicles in order to provide navigation capabilities in a loss of communications

scenario. The algorithm is derived for the general case of a triaxial ellipsoid which is

observed bounded by an elliptical cone. The orientation of the elliptical cone reference

frame is obtained by eigenanalysis and the offset between the elliptical cone axis and

the body center direction as well as the equation of the terminator are quantified. The

main contribution of this paper is in the image processing approach adopted to derive

centroid and distance to the body. This is done by selecting a set of pixels around the

body limb and modeling the smooth limb transition using two-dimensional circular and

elliptical sigmoid functions. More accurate estimates of centroid and distance are then

obtained by iterative nonlinear least-squares using these models. Sensitivity analysis

is performed and numerical examples using a real Moon picture taken from Earth is

provided to clarify the image processing steps and to validate the proposed theory.
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Nomenclature

J Ellipsoid diagonal matrix

a′, b′ Observed ellipse semi-axes

p Observer position vector (J2000)

γoff Observed body center offset angle

v̂ Unit vector

ri Row index of the generic pixel

ci Column index of the generic pixel

f Camera focal length (mm)

rm Imager Moon radius (mm)

Rm Moon radius (km)

Dm Observer to Moon distance (km)

k Sigmoid smoothing factor

J Jacobian (sigmoid functions)

v̂ Unit vector

σx Standard deviation of x

I. Introduction

In cislunar space [1] the position of a spacecraft is usually estimated by communicating with

Earth tracking stations while the orientation is obtained onboard using attitude sensors. In order to

have a fault tolerant system, it is often desired to augment the spacecraft with a backup autonomous

navigation system to be used in case of communications loss (permanent or temporarily). The

approach used in this paper is to use a visible camera as a “positioning sensor” by observing the

closest celestial body (e.g, Moon or Earth) [2–4]. From the images the observer-to-body vector is

derived from the apparent size and location of the celestial body on the sensor imager. Subsequently,

a sequence of these vectors can be used to estimate the trajectory by filtering techniques such as

iterative batch least-squares or extended Kalman Filter.
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The Vision-based Navigation (VisNav) is an old problem in aerospace engineering [5]. Reference

[6] contains a detailed literature review on the traditional approaches taken to solve the VisNav

problem. In the 1960s (see Ref. [7]) a solution to this problem (first optical navigation) consisted

of using visible cameras taking pictures of observed illuminated bodies surrounded by a set of

catalogued reference stars. All six Voyager flybys of the outer planets [8, 9] and Cassini’s orbital

operations at Saturn [10] adopted this approach. In particular, Refs. [8, 9] presented the optical

observables for the Voyager II Uranus and Neptune approaches and encounters. Using two distinct

cameras (because of the different magnitude threshold settings for stars and illuminated body) the

angular distances between body (considered as a circle) and stars were measured.

Later various attempts were performed to estimate the navigation measurements by fitting the

observed body by circles and ellipses. To perform this task the problem of selecting the limb pixels

must be first solved. A Canny edge detection algorithm to identify the Moon limb was adopted

in Ref. [11] and then, using Levenberg-Marquardt ellipse least-squares algorithm, the limb pixels

that are considered potential false were removed. The remaining pixels were then used to estimate

the line-of-sight vector to the centroid of the observed object. Different and (sometime) more

accurate limb detection algorithms as well as optimization techniques were proposed. Among these

existing approaches we can mention Laplacian, Sobel, Roberts and Prewitt operators, Gaussian

derivatives and Gabor filters. All these methods are certainly more accurate to discriminate limb

pixels but computationally more intensive. Various curve fitting approaches (using circles and

ellipses) have also been proposed. In Refs. [6, 12] a thorough comparison analysis among various

existing mathematical techniques to best estimate circles and ellipses is presented. In general, these

techniques can be classified in two distinct classes depending if the error is defined as geometrical

or algebraic. It is important to outline that all the ellipse regression techniques are usually more

accurate to estimate center and semi-axes (four parameters) and less accurate to estimate the ellipse

orientation (ellipse fifth parameter), especially if the ellipse eccentricity is small (as for the Earth).

However, to obtain accurate estimation the ellipse orientation is needed to correct the offset between

body center and ellipse center directions.

The approach proposed in this study attacks the problem in a different way (See Ref. [13]).
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First, it takes into consideration a practical aspect (sophisticated and/or computationally intensive

approaches to identify limb pixels or to perform optimization cannot be used in limited onboard

computers) and second –more importantly– the following pragmatic fact. The limb of an illuminated

body consists of a smooth (and not discontinuous) transition between the bright illuminated part

of the body and the dark of the background sky. This smooth transition is more evident for a

planet with atmosphere. However, even if the observed body has no atmosphere and a perfect

geometric limb, the limb transition would still appear smooth because cameras focusing is never

perfect and because of pixelation of photometric cameras. For this reason, instead of adopting a one-

dimensional model (ellipse), a two-dimensional model (surface) to describe the body limb transition

is here proposed and analyzed. This two-dimensional model (circular or elliptical sigmoid functions)

and the nonlinear least-squares to estimate centroid and distance are the main contribution of this

study.

The main overall characteristics of the proposed methods are:

1. it uses just one visible camera and does not use observed stars as the attitude information is

assumed known and provided by the onboard star tracker;

2. it is suitable for small on-board computers as it does not require computationally intensive

pixel selection or optimization techniques, and

3. it uses a two-dimensional model to describe the smooth limb transition (to increase the esti-

mation accuracy) and a standard nonlinear least-squares to estimate centroid and distance.

The next section summarizes the algorithm presented in this work, followed by a section in-

troducing the mathematical background for the limb and terminator identification. Subsequently,

the two-dimensional sigmoid functions, which are used for high precision body center and radius

estimation, are introduced. Lastly, a test performed using a real Moon image (as taken from Earth)

is discussed in detail to show the algorithm performance.

Even though the Moon is modeled as a sphere and the Earth as a spheroid, the theory of body

observation and terminator equations are developed for the general case of a triaxial ellipsoid. The

proposed approach is applied to real pictures of the Moon taken from Earth. The noise presence is
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mainly due to the atmosphere.

II. Image processing summary

Fig. 1 Moon Image Processing Flowchart

The various steps of the proposed Moon image processing are shown in Fig. 1. The rationale

of each step is summarized in the following:

1. Input data are: the image taken by the camera, the time stamp, the camera parameters, and

the camera attitude (for example deduced from a star tracker). Using the time stamp, the

position vector of the Moon in J2000 (rm) is computed using SPICE [14]. In addition, a

rough position estimation (propagated by the EKF at the time stamp) is used to estimate

an illumination parameter: the expected fraction of the illuminated area with respect to the

total body area. This parameter allows to discriminate the four cases of: a) full, b) gibbous

c) crescent, and d) new Moon.

2. The image is converted in binary format (black and white). A sub-window is identified where

most of the illuminated Moon is. Then, the centroid of the illuminated area is computed (it

belongs to the axis of symmetry of the illuminated area) and the eigenanalysis of the “inertia

tensor” of the sub-window is performed to estimate the axis of symmetry of the illuminated

area. This is the axis associated with the maximum eigenvalue.

3. Several parallel lines, including the axis of symmetry, are plotted in the binary images (see

Fig. 7). These lines intersect the illuminated area in two sets of points. One set of points

5



belongs to the Moon limb, the other to the terminator. Two least-squares estimates of circle

are performed using these two sets of points. This allows to discriminate the set of points

belonging to the bright limb because of smaller residuals and radius estimate closer to the

expected one provided by propagation (EKF). The circle least-squares approach adopted is

the Taubin’s SVD-based approach [15], consisting of Moon centroid and radius, R̂m.

4. Using this initial estimate a selection of pixels around the illuminated body limb is obtained.

These pixels are those between two radii, R̂m − δRm and R̂m + δRm, where δRm is a few

pixels.

5. The initial estimate and these selected pixels around the illuminated Moon limb are then used

to perform a more accurate nonlinear least-squares estimation using circular sigmoid function.

The accurate estimated Moon radius allows the estimation of the observer-to-Moon distance.

This distance multiplied by the centroid direction is the observer-to-Moon vector in the camera

reference frame, rom. The Earth image processing uses the elliptical sigmoid function and the

Earth center offset as well as the distance estimation is performed by iterative process. This

is described in the Earth image processing section.

6. Using the attitude provided by a star tracker, this vector is transformed in the inertial (J2000)

reference frame.

7. Finally, the observer position estimate is ro = rm − rom.

The process summarized above is discussed in further details in the following sections.

III. Observed triaxial ellipsoid

The canonical equation of a triaxial ellipsoid in the body-centered body-fixed coordinates is

xT J x = 1, (1)

where x is a vector belonging to the ellipsoid surface, J = diag{ a−2, b−2, c−2 }, and a, b, and c, are

the three semi-principal axes of the ellipsoid. Indicating by p the position vector of the observer the

equation of the observed ellipsoid limb is obtained as described in Ref. [13], as a quadratic equation

6



in the direction (v̂) tangent to the ellipsoid,

v̂TM v̂ = 0, (2)

where M is a symmetric matrix whose expression is

M = JppTJ − (pTJp− 1)J.

Since M is symmetric (M = MT) its eigenvector matrix is orthogonal. This means, M = Cie ΛC T
ie,

where Λ is the diagonal eigenvalue matrix and Cie is an orthogonal transformation matrix. Replacing

M in Eq. (2) by Cie ΛC T
ie we obtain,

(v̂T Cie) Λ (C T
ie v̂) = ŵT Λ ŵ = 0, (3)

where ŵ = C T
ie v̂ is a rotated unit vector and Cie is the matrix moving from an elliptical cone

reference to inertial. Equation (3) can be written is a scalar way,

λ1 w
2
1 + λ2 w

2
2 + λ3 w

2
3 = 0, (4)

where λ1, λ2, and λ3, are the eigenvalues of M , and w1, w2, and w3 are the three components of

the unit vector ŵ.

In order for Eq. (4) to admit solutions, the three eigenvalues cannot have the same sign. Two

cases are possible

1. one eigenvalue is positive (λp) and two are negative (λn1 and λn2) or

2. two eigenvalues are positive (λp1 and λp2) and one is negative (λn)

The first case implies det(M) = det(Λ) > 0 while the second case det(M) < 0. Next subsection

proves det(M) > 0 is true.

A. Eigenvalues proof

Let’s apply Sylvester’s determinant theorem,

det(X Y + Z) = det(Z) det(In×n + Y Z−1X),

to matrix M , where

X ≡ J ppT, Y ≡ J, and Z ≡ (1− pTJp)J.
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This means,

det(M) = (1− pTJ p)3 det(J) det(I3×3 + J(1− pTJ p)−1J−1J ppT),

that can be written as,

det(M) = (1− pTJ p)3 det(J) det(I3×3 + (1− pTJ p)−1J ppT). (5)

Now, let’s apply again Sylvester’s determinant theorem with

X ≡ I3×3, Y ≡ (1− pTJ p)−1J p, and Z ≡ pT.

Then, Eq. (5) becomes

det(M) = (1− pTJ p)3 det(J)
[
1 + (1− pTJ p)−1pTJ p

]
. (6)

By setting γ = pTJ p > 1, Eq. (6) becomes

det(M) = (1− γ)3 det(J)

(
1 +

γ

1− γ

)
= (1− γ)3 det(J)

1− γ + γ

1− γ
= (1− γ)2 det(J) > 0,

proving that det(M) > 0. Hence, matrix M has one eigenvalue positive (λp) and two negative (λn1

and λn2).

B. Observed semi-axes and ratio

Let us consider λp = λ3 > 0 and λ1, λ2 < 0. By setting |λi| = ξ−2
i , Eq. (4) becomes

w2
1

ξ2
1

+
w2

2

ξ2
2

=
w2

3

ξ2
3

, (7)

which is the equation of an elliptic cone with axis along ŵ3 = {0, 0, 1}T (axis associated with the

positive eigenvalue). Since ŵ is a unit vector then the elliptic cone, given in Eq. (7), intersects the

unit radius sphere

w2
1 + w2

2 + w2
3 = 1.

Substituting, w2
3 = 1− w2

1 − w2
2, in Eq. (7) we obtain the equation of the observed ellipse,

w2
1 (1 + ξ2

3/ξ
2
1) + w2

2 (1 + ξ2
3/ξ

2
2) = 1,
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The semi-axes of this ellipse are

a′ =

√
ξ2
1

ξ2
1 + ξ2

3

< 1 and b′ =

√
ξ2
2

ξ2
2 + ξ2

3

< 1, (8)

and the ratio of the semi-axes is

ρ =
b′

a′
=

√
ξ2
2(ξ2

1 + ξ2
3)

ξ2
1(ξ2

2 + ξ2
3)
. (9)

In conclusion, a triaxial ellipsoid is observed as an ellipse. However, the direction to the center of

the observed ellipse for a generic ellipsoid does not coincide with the direction to the center of the

ellipsoid. This deviation and how to apply the associated correction (which is important when the

observed body is the Earth) is explained and quantified in the following subsection.

IV. Earth image processing

The Earth image processing follows the flowchart provided in Fig. 1, where the elliptical sigmoid

function is adopted. In addition, the center offset (γoff), semi-axis ratio (ρ), and the Earth distance

are all computed by the iterative procedure shown in Fig. 2. This iterative procedure does not

require more than 2 iterations to converge and starts from a position estimate, p0 = E{p} =

{xp, yp, zp}T (dashed box).

Fig. 2 Flowchart of position estimation for Earth image processing

The Earth center offset correction, γoff , and the observed semi-axis ratio, ρ, are function of the

observer distance and latitude, only. Figure 3 shows the values of γoff (in arcsec) for the whole

positive latitudes (for negative latitudes values - from south pole to equator - the γoff values are

negative) and from GEO to Earth-Moon for distances.

The γoff corrections are small with small variations with respect to the initial position estimate

accuracy (even with error of 1,000 km). Usually, the predicted position p0 = E{p}, is obtained
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Fig. 3 Offset center correction (γoff) surface

using EKF propagation to the current time and the expected EKF propagation precision (for Orion

is about 10 km at 3σ). The observed semi-axis ratio, ρ, has also small variations with respect to

the initial position estimate accuracy. In particular, ρ is computed from the eigenanalysis of matrix

M(p) using Eq. (9). The Earth center offset correction is just a rigid rotation of the direction

v̂T
c = Cie {0, 0, 1}T by the angle γoff about an axis orthogonal to v̂c and to the Earth spin axis

direction, {0, 0, 1}T.

Fig. 4 Observed semi-minor angle geometry

With reference to Fig. 4, consider the equation of the Earth ellipse in the meridian plane of the
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observer position,

ρ2

R2
e

+
z2

R2
p

= 1 where ρ2 = x2 + y2,

where Rp and Re are the Earth’s polar and equatorial radii (plus atmosphere altitude), respectively.

The line passing through the observer position (coordinates [ρp, zp]) is

z = m(ρ− ρp) + zp.

With simple derivations, the two slope values of the lines tangent to the ellipse are

m1,2 =
ρpzp ±

√
ρ2
pR

2
p + z2

pR
2
e −R2

eR
2
p

ρ2
p −R2

e

= tanϑ1,2.

The angle between these two slopes, δϑ̂ (see Fig. 4), must be the same as the angle between the two

directions pointing to the limb of the minor axis of the observed ellipse in camera reference frame.

This angle satisfies

sin

(
δϑ̃

2

)
= b′.

If δϑ̂ > δϑ̃, then the estimated distance, |p0|, is too short; if δϑ̂ < δϑ̃, too long. The value of p0 is

then modified by ∆p until the convergence,

|δϑ̂ > δϑ̃| < ε,

where ε is a prescribed tolerance, is obtained. The variation ∆p, which can be derived from simple

geometric consideration from Fig. 4, has the expression

∆p = −R cos(δϑ/2)

2 sin2(δϑ/2)
(δϑ̂− δϑ̃),

until convergence is achieved, where δϑ can be δϑ̂ or δϑ̃ and R can be Re or Rp. If convergence is

not achieved, the position vector is updated by

pk+1 = (pk + ∆pk) p̂k,

where p̂k is the unit vector pointing to the Earth center, corrected by rotating the direction pointing

to the observed ellipse center by the offset angle, γoff . The process is then iterated. This procedure

is summarized in the flowchart of Fig. 2.
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A. Principal axes of illuminated area

The image is converted into binary by choosing a threshold greytone value Gt, dependent upon

the maximum and minimum values contained in the image. A reasonable estimation for Gt is

Gt = Gmin +
Gmax − Gmin

4
. (10)

Then, the coordinates of the centroid of all pixels brighter than Gt can be estimated as the “center

of mass” of a lumped-mass model,

rb =

∑
i Ii ri∑
i Ii

and cb =

∑
i Ii ci∑
i Ii

,

where [ri, ci] are the coordinates of a generic pixel, Ii is the lumped-mass binary value, and the

index i spans all pixels of the selection box. Similarly, the selected box inertia tensor is

T =


∑
i Ii (ri − rb)2 −

∑
i Ii (ri − rb)(ci − cb)

−
∑
i Ii (ri − rb)(ci − cb)

∑
i Ii (ci − cb)2

 . (11)

The greatest positive eigenvalue of T , λmax, allows to compute the inclination (ϑsym) of the axis

of symmetry of the illuminated area,

ϑsym = atan2(ŵmax(1), ŵmax(2)),

where ŵmax is the eigenvector associated with λmax.

Finally, the axis of symmetry is the line passing through [rb, cb] with slope m = tanϑsym.

Moreover, the ratio between the eigenvalues provides a measure, albeit approximated, of how much

of the target’s surface is illuminated: a ratio close to 0 indicates a body barely illuminated while a

ratio close to 1 indicates an almost full illuminated body. This ratio provides the admissible range

of illumination for the proposed image processing approach. Using the estimated axis of symmetry,

a set of parallel axes can be drawn (see Fig. 7) and two set of points are selected; one belongs to the

body limb and the other to the terminator. Using Taubin’s approach [15] these two sets of points

give two circle estimates. The solution with smaller residuals is taken as first estimate of the body

center and radius.

To obtain more accurate estimates of the body center and radius, nonlinear least-squares with

two-dimensional circular (Moon) and elliptical (Earth) sigmoid functions are adopted. These two

sigmoid functions belong to the class of functions described in the following section.
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V. Sigmoid functions

Sigmoid functions (SFs) are a class of mathematical functions, which are here used to model

the smooth illumination transition around the body limb. To this purpose, one-dimensional linear

and two dimensional circular and elliptical SFs are introduced. Each of these functions is defined by

a set of parameters, determining the sharpness of the transition (k), the two levels to be connected

(ymax, ymin), and the location where the transition occurs. These parameters are then estimated by

a nonlinear least-squares approach.

A. Linear sigmoid function

A linear sigmoid function (LSF), also called the sigmoidal curve or logistic function, is described

by

f = ymax +
ymin − ymax

1 + ek(xt−x)
, (12)

where xt indicates where the transition occurs and k how rapid the transition is. The higher the

value of k the shorter the step transition is. Sample sigmoid functions are plotted in Fig. 5 for

k = [0.1, 0.9], ymin = 20, ymax = 150, and xt = 50.

Fig. 5 Examples of Linear Sigmoid Functions

Least-squares with a LSF requires building a Jacobian, an n× 4 matrix, where n is the number

of data points, associated with the four unknowns, xt, ymax, ymin, and k. By setting

αi = ek(xt−xi), (13)
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the Jacobian has the form

J =


∂f1

∂xt

∂f1

∂ymax

∂f1

∂ymin

∂f1

∂k
...

...
...

...

∂fn
∂xt

∂fn
∂ymax

∂fn
∂ymin

∂fn
∂k

 (14)

where

∂fi
∂ymin

=
1

1 + αi
,

∂fi
∂ymax

=
αi

1 + αi
= αi

∂fi
∂ymin

,

∂fi
∂xt

= − (ymin − ymax)αi k

(1 + αi)2
= − ∂fi

∂ymin

∂fi
∂ymax

(ymin − ymax) k, and

∂fi
∂k

= − (ymin − ymax)αi
(1 + αi)2

(xt − xi) =
(xt − xi)

k

∂fi
∂xt

.

The iterative least-squares approach allows the update

∆xt

∆ymax

∆ymin

∆k


= (J TJ )−1 J T


f1 − f(x1)

...

fn − f(xn)


. (15)

The initial values for ymax and ymin are obtained by averaging a set of first and last data because

they depend on the camera exposure time while the initial values for k and xt are obtained by

correlating their values obtained on test images (real, synthetic) with the body type and estimated

radius.

B. Circular sigmoid function

Equation (12) can be extended to two-dimensional space with radial distribution

f = ymax +
ymin − ymax

1 + ek(re−d)
, (16)

where d =
√

(c0 − c)2 + (r0 − r)2 is the distance (in pixel) from the generic pixel, [r, c], to the

estimated center [r0, c0], and re is the estimated radius. By setting,

βi =
√

(c0 − ci)2 + (r0 − ri)2 and αi = ek(re−βi),
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the Jacobian requires the computation of the following derivatives

∂fi
∂r0

=
(ymin − ymax)αi

(1 + αi)2
k
r0 − ri
βi

∂fi
∂c0

=
(ymin − ymax)αi

(1 + αi)2
k
c0 − ci
βi

∂fi
∂re

= − (ymin − ymax)αi
(1 + αi)2

k

∂fi
∂k

= − (ymin − ymax)αi
(1 + αi)2

(re − βi)

∂fi
∂ymax

=
αi

1 + αi
∂fi
∂ymin

=
1

1 + αi
.

(17)

Circular SFs are used for high accurate estimation of Moon center and radius.

C. Elliptical sigmoid function

An elliptical SF is associated with an ellipse with semi-axes a and b. These observed semi-axes

are actually the a′ and b′ axes computed using Eq. (8). The equation of an ellipse with respect to

its own [x, y] axes is

b2 x2 + a2 y2 = a2 b2. (18)

By setting ρ = b/a, Eq. (18) is now a function of a, only, as ρ can be well estimated using the

estimated position and Eq. (9),

ρ2 x2 + y2 = ρ2 a2.

An elliptical SF is therefore described by

f = ymax +
ymin − ymax

1 + ek(ρ a−d)
,

where d =
√
ρ2 x2 + y2, and the direct and inverse coordinate transformations between [x, y] and

[r, c] are provided in Appendix A by Eq. (19) and by Eq. (20), respectively. The ellipse has cen-

ter [r0, c0] and the ellipse is rotated by the angle ϑ (see Fig. 10). These variables, can be es-

timated using the transformation matrix CciCie, where Cie moves from elliptical cone to inertial

and Cci moves from inertial to camera. In camera coordinate frame, the ellipse center is pro-

vided by bc = CciCie{0, 0, ±1}T, and the semi-axes orientation are provided by the directions

b̂a = CciCie{±a′, 0,
√

1− a′2}T and b̂b = CciCie{0, ±b′,
√

1− b′2}T, respectively.
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By setting

βi =
√
ρ2x2

i + y2
i and αi = ek(ρa−βi),

the Jacobian requires the computation of the following derivatives

∂fi
∂r0

=
(ymin − ymax)αi

(1 + αi)2
k
ρ2xi sinϑ+ yi cosϑ

βi
∂fi
∂c0

=
(ymin − ymax)αi

(1 + αi)2
k
yi sinϑ− ρ2xi cosϑ

βi
∂fi
∂a

= − (ymin − ymax)αi
(1 + αi)2

k ρ

∂fi
∂ϑ

=
(ymin − ymax)αi

(1 + αi)2
k
xiyi(ρ

2 − 1)

βi
∂fi
∂ymax

=
αi

1 + αi
∂fi
∂ymin

=
1

1 + αi
∂fi
∂k

= − (ymin − ymax)αi
(1 + αi)2

(ρa− βi).

.

VI. Example by numerical test

This section provides the numerical results for a real Moon image taken from ground (Houston

area) on March 6, 2013 at 06:08:10 CDT. The original image is shown in the top left of Fig. 6.

The Moon distance is known with very low precision (some Earth radii). A simple median filter is

applied to smooth the image, mainly to identify a single pixel belonging to the Moon. The filter is

first applied to remove isolated stars or reflecting S/C or dead or saturated pixels. The brightest

pixel is shown in the top-right of Fig. 6 as black dot. Around that pixel a box whose dimension

is the observed diameter of the Moon (computed using the approximated Moon distance and the

camera parameters) is also shown. This box allows to restrict the image processing to a rectangular

subset of the original image, the sub image shown in the bottom-left of Fig. 6. Using the value of

the brightest pixel in the filtered image a threshold value, as given in Eq. (10) is computed and used

to convert the graytone image to a binary image, as shown in the bottom-right of Fig. 6. Then

the eigenanalysis of the binary images, as provided by Eqs. (11) and subsequent, gives a ratio of

eigenvalues,
λmin

λmax
= 0.107, a value indicating the illuminated area.

The axis of symmetry (eigenvector associated with the maximum eigenvalue) of the illuminated

part is shown in the bottom-right of Fig. 6, together with its orthogonal direction (eigenvector
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Fig. 6 First steps of image processing

associated with the minimum eigenvalue). This axis of symmetry is an approximation of the real

symmetric axis of the illuminated area. As shown in Fig. 7, this approximation is useful to identify

the set of pixels belonging to the bright limb as well as those pixels belonging to the terminator. The

Fig. 7 Selection of bright limb and terminator points
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direction of the approximated axis of symmetry is then used to draw a set of lines parallel to the

axis of symmetry with constant step size (1/11 of the estimated Moon radius). Along these lines a

mask of 8 pixels ([0, 0, 0, 0, 1, 1, 1, 1]) is used to identify the maximum correlation with the two

transitions (one associated with the terminator and one with the bright limb) in the binary images.

Using these two sets of transition points (19 points each set) two distinct estimations of Moon center

and radius are obtained using Taubin’s method [15]. The set associated with minimum standard

deviation of residuals is identified as the bright limb and the associated estimation of Moon center

and radius is used as initial guess for a nonlinear least-squares estimation of these parameters using

circular sigmoid function using Eqs. (16) and (17).

Fig. 8 Results form Least-squares using circular SF

The pixels used in the circular SF least-squares estimate are those between two radii, r̂ ±∆r,

where the values of ∆r is a function of the initial Moon radius estimate (r̂), and between the two

directions from the estimated Moon center to the farthest two pixels (on the Moon bright limb)
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from the axis of symmetry (marked by white stars in Fig. 7). All the selected pixels are marked in

white in Fig. 8. In this example, the values of ymax and ymin have been set equal to the mean values

of the pixels selected using the two extreme radii while the sigmoid transition constant, k, has been

set to 3. Note that, by prescribing the values for ymax, ymin, and k the size of the Jacobian used

in the least-squares is reduced from n× 6 to n× 3, where n is the total number of pixels selected.

Table 1 shows the convergence step values for this example.

Table 1 Circular SF with ymax = 132.59266, ymin = 26.746643, and k = 3

Iteration Radius Row Column

0 633.51611 1098.0115 1475.7666

1 632.13850 1099.0309 1474.4326

2 631.42484 1099.5501 1473.7903

3 631.04593 1099.8232 1473.4667

4 630.83481 1099.9744 1473.2924

5 630.71164 1100.0622 1473.1927

6 630.63784 1100.1147 1473.1336

7 630.59301 1100.1466 1473.0978

8 630.56560 1100.1660 1473.0760

9 630.54879 1100.1780 1473.0627

10 630.53846 1100.1853 1473.0544

11 630.53211 1100.1898 1473.0494

12 630.52821 1100.1925 1473.0463

13 630.52581 1100.1942 1473.0444

14 630.52434 1100.1953 1473.0432

15 630.52343 1100.1959 1473.0425

16 630.52287 1100.1963 1473.0420

Using the attitude provided by star tracker, the Observer-to-Moon vector is then estimated in

J2000 and, by subtracting the Moon vector position, the observer position is finally estimated.

As a final side note, a rough estimate of the camera attitude can be obtained. In fact, the

estimated direction to the Moon center and the axis of symmetry are two directions identifying the
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plane where the Moon, the Sun, and the observer are. This means that, by looking at the Moon

(or Earth), two directions can be estimated in body and inertial reference frames. Therefore, it is

possible to estimate the camera attitude using a single-point attitude estimation technique (See Refs.

[16, 17]). These two directions are observed with different accuracy and, consequently, the attitude

can be estimated using any single-point weighted attitude determination algorithm. In general, the

direction to the Moon center is more accurate than the axis of symmetry which is affected by the

variations of the surface topology (Moon) or by the distribution of high-altitude clouds (Earth).

For the image under consideration the direction cosine matrix of the camera attitude (moving from

inertial to Camera frames) is

Cci =


−0.88135 −0.25746 0.39615

−0.45769 0.25723 −0.85109

0.11722 −0.93142 −0.34455

 .

VII. Conclusions

This paper introduces a novel algorithm and the associated mathematical theory developed to

process images of the Earth of Moon for autonomous, onboard navigation in cislunar space. While

a multitude of image processing and limb detection algorithms exist, this work focuses on a simple

and robust algorithm able to produce good navigation results onboard a spacecraft subject to the

computational limitation of a flight computer. The processed images can be taken by a visible CCD

or CMOS camera and the data extracted by the algorithm are the direction to the body center and

either the body radius, for the Moon, or greatest semi-major axis, for the Earth. The provided data

can be used by an estimation algorithm, such as an extended Kalman filter, to provide a navigation

solution.

Novelties of the algorithm include the use of Circular and Elliptical Sigmoid functions in a

least-squares algorithm. The equation of an observed triaxial ellipsoid is shown to be described by

an ellipse as a projection of the curve obtained by intersecting an elliptic cone with a sphere, and

the equation of the terminator is provided for the generic triaxial ellipsoid. These features of the

proposed method allow the algorithm to produce highly accurate measurements of the direction and

apparent size of the Earth and Moon. It is shown that the direction to the center of the observed
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ellipse and the direction of the body center are displaced by an offset. The procedure showing how to

take into account this offset is provided in order to improve the estimate of the spacecraft position.

A numerical example of the image processing algorithm using an actual photograph of the Moon

is shown, and demonstrates that the algorithm is a good option for autonomous cislunar navigation

under the conditions of this analysis.
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Appendix I: Reference frames and coordinates transformations

The proposed image processing requires the use of several reference frames. These are:

• [ı̂1, ı̂2, ı̂3] Earth-centered Inertial (J2000 or ICRF) reference frame.

• [ô1, ô2, ô3] Spacecraft principal axes reference frame.

• [b̂1, b̂2, b̂3] Observed body-centered body-fixed reference frame (Earth or Moon).

• [ĉ1, ĉ2, ĉ3] Camera reference frame. ĉ1 and ĉ2 axes lie on the camera imager while ĉ3-axis is

pointing from imager center to the lens.

• [ŵ1, ŵ2, ŵ3] Elliptical cone reference frame, as provided by Eq. (7).

To move from/to five different reference frames four coordinates transformations are needed.

The direction cosine matrices of these transformations are defined in Table 2.
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Table 2 Coordinates transformation

Inertial → Spacecraft ô = Coi ı̂

Inertial → Observed Body b̂ = Cbi ı̂

Spacecraft → Camera ĉ = Cco ô

Observed Body → Elliptical cone ŵ = Cwb b̂

In addition to the previous reference frames, the transformations between imager coordinates

([r, c] or [x, y]) and unit vectors (c) are given (see Fig. 9). These transformations are those of

pin-hole camera model.

Fig. 9 [r, c] and [x, y] reference frames Fig. 10 [r, c] and [α, β] reference frames

In the case the optical axis coincides with the center of the detector (no optical axis offset), the

direct transformations from c to [x, y] are,

x = −f ĉ(1)

ĉ(3)
and y = −f ĉ(2)

ĉ(3)
,

where coordinates, x and y, and focal length, f , are provided in mm. The inverse transformation is

ĉ =
1√

x2 + y2 + f2
{−x, −y, f}T.

The transformations from [x, y] to [r, c] coordinates are,

r =
nr + 1

2
− y

dr
and c =

nc + 1

2
+
x

dc
, (19)

where dr and dc are row and column pixel pitch [mm]. The inverse transformations are

x = dc

(
c− nc + 1

2

)
and y = dr

(
nr + 1

2
− r
)
. (20)
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APPENDIX II: Terminator equation

This appendix provides the equation of the terminator in the camera reference frame. The

canonical equation of an ellipsoid (in the observed body reference frame) is provided by Eq. (1). Let

v̂s be the Sun rays direction (unit vector) in the body reference frame. This vector can be computed

from the known epoch and attitude. The vector,

p = x + t v̂s,

intersects the ellipsoid if p satisfies Eq. (1), pT J p = 1, or equivalently,

2t v̂T
s Jx + t2 v̂T

s J v̂s = 0.

This equation has a trivial solution, t1 = 0, and the solution t2 = −2
v̂T
s Jx

v̂T
s J v̂s

. Enforcing t2 = 0,

once again the two solutions coincide and hence the locations where the Sun rays are tangent to the

ellipsoid are obtained. This implies, v̂T
s Jx = 0. Therefore, the terminator equation is described by

v̂T
s J x = 0 subject to xT J x = 1. (21)

By setting,

ws =
√
J v̂s =

{
vs1
a
,
vs2
b
,
vs3
c

}T

and y =
√
J x =

{
x1

a
,
x2

b
,
x3

c

}T

,

Eq. (21) becomes

wT
s y = 0 subject to yT y = 1.

This implies that the solution, y, is a unit vector (y = ŷ) orthogonal to ws. By setting,

ŷ = {cosϕ cosϑ, sinϕ cosϑ, sinϑ}T,

the equation

vs1
a

cosϕ cosϑ+
vs2
b

sinϕ cosϑ+
vs3
c

sinϑ = 0

that can be re-arranged as,

tanϑ = − c vs1
a vs3

cosϕ− c vs2
b vs3

sinϕ. (22)
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By varying ϕ between 0 and 2π, Eq. (22) allows to compute to corresponding value for ϑ. Therefore,

the x vector in the body-fixed reference frame is given by

x =
(√

J
)−1

ŷ = {a cosϕ cosϑ, b sinϕ cosϑ, c sinϑ}T.

Finally, the terminator in the camera reference frame, tc, is provided by,

tc = Cci Cib (x− P0),

where P0 is the camera position vector in the body-fixed reference frame and the product Cci Cib is

the transformation matrix moving from body to camera reference frames.
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