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One method to account for parameters errors in the Kalman filter is to
‘consider’ their effect in the so-called Schmidt-Kalman filter. This paper
addresses issues that arise when implementing a consider Kalman filter as
a real-time, recursive algorithm. A favorite implementation of the Kalman
filter as an onboard navigation subsystem is the UDU formulation. A new
way to implement a UDU Schmidt-Kalman filter is proposed. The non-
optimality of the recursive Schmidt-Kalman filter is also analyzed, and a
modified algorithm is proposed to overcome this limitation.

INTRODUCTION

In the mid-1960s, S.F. Schmidt introduced a variant of the Kalman Filter, labeled the
Schmidt-Kalman filter as means to account for – to consider the effect of – errors in both the
dynamic and measurement models due to uncertain parameters [1]. The consider Kalman
filter, also called the Schmidt-Kalman filter resulted from this body of work. The Schmidt-
Kalman filter is especially useful when parameters have low observability or when the extra
computational power to estimate them is not deemed necessary [2].

Schmidt’s approach was based on minimum variance estimation, Jazwinski [3] details
the derivation of the optimal filter when some elements of the state vector are not estimated
(i.e. they are considered). Jazwinski’s conclusion is that the Schmidt-Kalman filter is the
optimal solution. In Section 8.2 of his book, Bierman [4] disputes the optimality of the
Schmidt-Kalman filter, at least in its sequential implementation form. Nevertheless the
Schmidt-Kalman filter has received considerable attention in recent years. Tapley et al. [5]
give an ample description of how to include the contributions of non-estimated states into
the Kalman filter algorithm; they provide a different methodology than Jazwinski and arrive
to a different formulation. Woodbury et al. provide new insight into consider parameters
in the measurement model [6]. Equivalent formulations to the Schmidt-Kalman filter were
also studied [7, 8] and applied to Mars entry navigation [9] and orbit determination [10].

While the Schmidt-Kalman filter is fairly well known and has been used in covariance
analysis, not much attention has been given to actual implementations of it in a real-time re-
cursive estimation algorithm. Onboard estimators commonly utilize the UDU formulation,
which guarantees symmetry and positive definiteness of the covariance matrix. Yet, to date
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there has been no direct way of including a Schmidt-Kalman update into the UDU formu-
lation. This paper provides a simple algorithm to obtain this capability. Another common
real-time practice is to process measurements one at a time (which is inevitable when uti-
lizing the UDU algorithm). In applying this technique in Schmidt-Kalman filter paradigm
and in the presence of nonlinearities, the order in which they are processed does affect the
final result. This work analyzes this phenomenon and proposes a novel globally optimal
recursive Schmidt-Kalman filter, which addresses the objections raised by Bierman.

The paper is organized as follows: in the next section the Kalman filter update equations
are reviewed in order to set the stage for the Schmidt-Kalman filter update in the following
section. The so-called UDU covariance parameterization is then presented followed by
a discussion of it’s implementation in the Schmidt-Kalman filter. Bierman’s objections
to the optimality of the recursive Schmidt-Kalman update are then discussed and a new
globally optimal recursive Schmidt-Kalman filter is proposed. A numerical example is
then introduced before a few concluding remarks.

THE KALMAN FILTER UPDATE

To begin, the assumption of linear measurements and linear dynamics is invoked; the
extension to the nonlinear case can be readily obtained using standard extended Kalman
filter (EKF) techniques. Let y be a set of measurements of a state vector x corrupted by
zero mean noise η with covariance R

y = Hx + η, (1)

where H is the measurement mapping (or sensitivity) matrix. Let x̂− be an unbiased a pri-
ori estimate of x with corresponding estimation error covariance matrix given by P−. The
a priori estimation error is defined as e− = x− x̂−. The unbiased linear update based upon
x̂− and y produces the a posteriori estimate given by

x̂+ = x̂− + K
(
y −Hx̂−

)
, (2)

where K is some deterministic matrix of appropriate dimensions yet to be determined. The
a posteriori estimation error is expressed as

e+ = x− x̂+ = (I−KH)e− −Kη. (3)

Assuming that the measurement error η and the a priori estimation error, e−, are uncorre-
lated and each are zero mean, the a posteriori estimation error covariance is given by the
so-called Joseph formula [11]:

P+ = E
{(

x− x̂+
) (

x− x̂+
)T
}

= (I−KH)P−(I−KH)T + KRKT. (4)

Defining the covariance of the measurement residual, W, as W
∆
= HP−HT + R, the

updated (a posteriori) covariance is equivalently written as

P+ = P− −KHP− −P−HTKT + KWKT. (5)
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Notice that up to this point no assumptions have been made regarding the choice of K; the
Joseph update equation is valid for all K, as is Eq. (5). The standard Kalman gain Kopt

minimizes the trace of the updated covariance matrix, P+, is found to be

Kopt = P−HTW−1. (6)

Substituting this into Eq. (5) it follows that

P+
opt = P− −KoptHP− = P− −KoptWKT

opt = P− −P−HTW−1HP− (7)

These equations are only valid for the optimal gain, Kopt. Thus, the Kalman filter update
equations are Eq. (2), Eq. (6), and Eq. (7). These will serve as a foundation for what
follows. One strategy for Kalman filtering is to implement these update equations directly.
This is a rather brute-force method and makes no distinctions between dynamic states (such
as position, velocity and attitude) and slowly varying states (sensor biases, etc). Hence it
tends to be rather inefficient numerically and computationally.

THE SCHMIDT-KALMAN FILTER UPDATE

Suppose that the system under consideration contains dynamic states and sensor states,
and suppose it is desired to only estimate the dynamic states, yet consider the effect of
the sensor states on the dynamic states. In such a situation, x is now partitioned into ns

“estimated” states, s, and np “consider” parameters, p, as

xT ∆
=
[
sT pT

]
, (8)

Thus,

P =

[
Pss Psp

Pps Ppp

]
, H =

[
Hs Hp

]
(9)

Kopt =

[
Ks,opt

Kp,opt

]
=

[
P−ssH

T
s + P−spHT

p

P−psH
T
s + P−ppHT

p

]
W−1. (10)

As in the previous section

W = HP−HT + R = HsP
−
ssH

T
s + HsP

−
spHT

p + HpP−psH
T
s + HpP−ppHT

p + R

The updated portions of the covariance are

P+
ss = P−ss−KsH

[
P−ss
P−ps

]
−
[
P−ss
P−ps

]T

HTKT
s +KsWKT

s (11)

P+
ps = (P+

sp)T = P−ps−KpH

[
P−ss
P−ps

]
−
[
P−sp
P−pp

]T

HTKT
s +KpWKT

s (12)

P+
pp = P−pp−KpH

[
P−sp
P−pp

]
−
[
P−sp
P−pp

]T

HTKT
p +KpWKT

p (13)
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These equations are directly derived from Eq. (5) and are therefore valid for any choice of
Ks and Kp.

Substituting for the value of Ks,opt for the three components in Eqs. (11)–(12) and
allowing Kp to be (as yet) unspecified, P+ becomes

P+ =


P−ss −Ks,optWKT

s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s,opt P−pp−KpH

[
P−sp
P−pp

]
−
[
P−sp
P−pp

]T

HTKT
p +KpWKT

p

 .
Once again, it is emphasized that this equation is valid for any value of Kp. Notice that
there is no Kp in the cross-covariance between s and p. Therefore, what is remarkable
about this equation is that once the optimal Ks,opt is chosen, the cross-covariance between
s and p is independent of the choice of Kp. We will take advantage of this property in due
course.

The updated (a posteriori) state is given by[
s+

p+

]
=

[
s−

p−

]
+

[
Ks

Kp

] (
y −Hsŝ

− −Hpp̂−
)
. (14)

The Schmidt-Kalman filter is one in which the parameters, p, are not updated. From Eq.
(14) it is observed that this can be achieved by taking Kp = O. From the most general
covariance update given in Eq. (5), setting Kp = O yields

P+
SKF =


P−ss−KsH

[
P−ss
P−ps

]
−
[
P−ss
P−ps

]T

HTKT
s +KsWKT

s P−sp−KsH

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
s P−pp

 (15)

The necessary condition for an optimal Schmidt-Kalman gain, KSSKF
, is given by

∂

∂Ks

(
trace

[
P+
SKF

])
= −

[
P−ss
P−ps

]T

HT −
[
P−ss
P−ps

]T

HT + KsW
T + KsW = O. (16)

The result obtained from this condition is the same as for the globally optimal Kalman
filter:

KsSKF
=
(
P−ssH

T
s + P−spHT

p

)
W−1. (17)

Therefore the Schmidt-Kalman filter gain can be conveniently calculated from the optimal
Kalman filter gain by zeroing out the rows corresponding to the ’consider’ parameters p.
With this in hand, the Schmidt-Kalman filter gain is

KSKF =

[
P−ssH

T
s + P−spHT

p

O

]
W−1 =

[
KsSKF

O

]
(18)
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The resulting estimated state update and ‘consider’ parameters update is

s+ = s− + KsSKF

(
y −Hsŝ

− −Hpp̂−
)

p+ = p−. (19)

It must be stated emphatically that the full updated covariance matrix (the a posteriori
matrix) must be calculated by means of the Joseph update. Eq. (7) is not applicable,
because that equation is valid only for the optimal Kalman gain; recall that the Schmidt-
Kalman gain is a not the globally optimal gain because it sets Kp = O. Substituting KsSKF

into Eq. (15) yields

P+
SKF =


P−ss −KsSKF

WKT
sSKF

P−sp−KsSKF
H

[
P−sp
P−pp

]
P−ps −

[
P−sp
P−pp

]T

HTKT
sSKF

P−pp

 . (20)

In the Schmidt-Kalman filter, the a priori and a posteriori covariance of the parameters
(Ppp) are the same. At the same time, the a posteriori covariance matrix of the states
and the cross-covariance between the states and the parameters are the same regardless of
whether the Schmidt-Kalman filter or the optimal Kalman filter equations are used.

Therefore, it follows that the a posteriori Schmidt-Kalman covariance can be easily ob-
tained from the a posteriori optimal covariance by simply replacing P+

pp with P−pp. No-
tice that applying these equations recursively Pss from the optimal Kalman filter and the
Schmidt-Kalman filter are not the same for all time. Only when given the same a priori
covariance the two algorithms will produce the same a posteriori covariance for Pss and
Psp. But since Ppp is different between the two algorithms, after the very first update, the
subsequent a priori and a posteriori covariances will be different from that time forward,
thereby producing different results.

THE UDU UPDATE

When the dimension of the state-space is small, nothing is lost by implementing the
Kalman filter as described above (both the ‘classic’ Kalman filter and the Schmidt-Kalman
filter). As the number of states increases, computational throughput and stability consider-
ations become a cause of concern. Much work has gone into reducing the computational
throughput and increasing computational stability of Kalman filter implementations. Two
such methods are the so-called Square Root formulations and matrix factorization formu-
lations. Real-time flight software covariance matrices are usually stored/represented using
the UDU matrix factorization paradigm[12] decomposed as P = UDUT, where U is an
upper triangular matrix with ones on the main diagonal, and D is a diagonal matrix. This
section describes one such instantiation of an efficient UDU implementation.

In order to efficiently update U and D with measurements, the so-called ‘rank-one’
update proposed by Agee and Turner is sometimes used [13]. The rank-one (covariance)
update requires that measurements be processed one at a time and has the form

P+ = P− + caaT (21)
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where c is a scalar and a is a vector. With P+ = U+D+(U+)T and P− = U−D−(U−)T

the algorithm for the rank-one update is backwards-recursive for U+ and D+, starting with
the (n, n) element (Dnn) and ending with the (1, 1) element (D11) and it is seen in Table 1.

For j = n, n− 1, . . . , 3, 2 set cn = c and recursively calculate:
D+
jj = D−jj + cja

2
j

ak := ak − ajU−kj k = 1, 2, . . . j − 1

U+
kj = U−kj + ckajak/D

+
jj k = 1, 2, . . . j − 1

cj−1 = cjD
+
jj/D

−
jj

and finally compute
D+

11 = D−11 + c1a
2
1

Table 1. Backwards-Recursive Rank-One Update

For scalar measurements H and K become vectors and W is a scalar. From Eq. (7) the
optimal update of the covariance matrix is

U+D+(U+)T = U−
[
D− − 1

W
D−(U−)THTHU−D−

]
(U−)T.

Defining a = D−(U−)THT, c = −1/W , U+D+(U+)T becomes

U+D+(U+)T = U−
[
ID−I + caaT

]
(U−)T,

where I is the identity matrix (which is upper triangular with ones on the diagonal). A rank-
one update of the term in the square bracket is first performed, defining an intermediate step
to the solution as

ŨD̃ŨT = D− + c aaT

The updated matrices are given by U+ = U−Ũ and D+ = D̃. Since c is negative, this
measurement update involves the potential loss of precision due to subtraction of two pos-
itive numbers which are close to one another. A modified rank-one update due to Carlson
[14] results in a numerically stable, forward-recursive algorithm. The caveat is that this
modified algorithm is only valid for the optimal Kalman update, Kopt. The updated U and
D (U+ and D+, respectively) and the optimal Kalman gain matrix, Kopt, are produced by
this algorithm, which is detailed in Table 2.

The state update is computed as before, i.e. x+ = x− + Kopt (y −Hx−) .

THE SCHMIDT-KALMAN FILTER UDU UPDATE

The major goals of real-time filter implementation are efficiency and computational sta-
bility; as well, the formulation ought to flexible enough to handle (slight) modifications to
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Given H, U−, D−, R = R
f = (U−)THT, v = D− f

K̄1 = [ v1 0 · · · 0 ]T

α1 = R + v1f1, d1 = d11 = (R/α1) d̄11

For j = 2, 3, . . . , n, recursively calculate:
αj = αj−1 + vjfj, λj = −(fj/αj−1)

dj = djj = (αj−1/αj) d̄jj
Uj = U−j + λjK̄j−1, K̄j = K̄j−1 + vjU

−
j

Kopt = K̄n/αn

Table 2. The Forward-Recursive Modified Rank-One Update

the structure of the problem. Despite the efficiencies of the UDU formulation, it is rather
brittle and does not readily meet the desire of flexibility. In point of fact, the structure of
the updated consider covariance matrix in Eq. (15) does not allow for a rank-one update as
developed earlier. However, a method has been developed to do exactly what we desire – a
Schmidt-Kalman UDU Update – at the expense of a modest increase in computation.

Begin with the optimal covariance matrix update (from the original Kalman update, par-
titioned into ‘states’ and ’parameters’) which is given by

P+
opt =

 P−ss −Ks,optWKT
s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−ps P−pp

]
HTKT

s,opt P−pp −Kp,optWKT
p,opt

 (22)

which can be rearranged to be expressed as

P+
opt =

 P−ss −Ks,optWKT
s,opt P−sp−Ks,optH

[
P−sp
P−pp

]
P−ps −

[
P−ps P−pp

]
HTKT

s,opt P−pp

− [Ons×ns Ons×np

Onp×ns Kp,optWKT
p,opt

]

or equivalently

P+
opt = P+

SKF − (SKopt) W (SKopt)
T , S =

[
Ons×ns Ons×np

Onp×ns Inp×np

]
. (23)

Kopt is an nx × 1 vector, because measurements are processed as scalars. For the same
reason, W = W , which results in

P+
SKF = P+

opt +W (SKopt) (SKopt)
T = P+

opt + c aaT (24)

This has the same form as the rank-one update as found in Eq. (21). As was noted in
the previous section, the optimal measurement update using the rank-one algorithm had a
negative scalar involved in the product, thereby creating potential numerical issues. This
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drawback is not present in Eq. (24). With this in mind, the original backward-recursive
(‘un-modified’) rank-one update is now used to obtain P+

con from P+
opt. If, for example, all

the ‘consider’ parameters are in the top part of the state-space (i.e. the ‘estimated states’),
we can effectively reduce the computations because the second update will not modify the
columns of U and D corresponding to the estimated states.

Finally, the states (and the consider parameters) are updated as

ŝ+ =ŝ− + Ks

(
y −Hsŝ

− −Hpp̂−
)

p̂+ =p̂− (25)

Therefore, the procedure to incorporate a consider update into the UDU factorization is
as follows: first perform a complete rank-one measurement update with the optimal Kalman
Gain (Kopt) according to the modified rank-one update (as in Table 2) on the full covariance
matrix. Second, perform another rank-one update with a = SKopt and c = W , according to
the (un-modified) rank-one update (as in Table 1). While this involves a modest amount of
additional computations, it still fits within the framework of the UDU matrix factorization,
retaining its numerical stability. Additionally, if the consider parameters are always the
same across flight they can be placed conveniently to reduce computations.

THE GLOBALLY OPTIMAL SCHMIDT-KALMAN RECURSIVE FILTER

The Schmidt-Kalman filter has been derived as the optimal update under the condition
that the rows of the gain corresponding to the ‘consider’ parameters are zero. However, as
pointed out by Bierman, this optimality holds only for a single update. When the Schmidt-
Kalman filter is made into a recursive algorithm the optimality is lost after the very first
measurement update. The burning question is this: is there a globally optimal recursive
Schmidt-Kalman filter formulation in which the ‘consider’ parameters are not updated but
the ‘estimated’ states are?

The answer is: yes, there is. But to get at this, one needs to expend a bit of effort to find
it.

First, a bit of background is in order. Through a logic construction, Bierman [12] stated
that the recursive Schmidt-Kalman filter is non-optimal because processing data in multiple
batches provides a less accurate estimate than processing it all at once. In this section a new
algorithm is proposed to overcome the non-optimality of the recursive Schmidt-Kalman
filter.

Begin as follows: suppose the measurement vector is divided into two batches y =[
yT
a yT

b

]T
=
[
Ha Hb

]
x +

[
ηT
a ηT

b

]T, the measurement noises ηa and ηb are zero
mean, uncorrelated from each other, and have covariance matrices given by Ra and Rb,
respectively. It is well-known that processing the two batches together or sequentially
using the standard Kalman filter equations produces the same result [15], i.e. defining

P+
opt = (I−KoptH) P−, Kopt = P−HT

(
HP−HT + R

)−1
(26)

Pa
opt =

(
I−Ka

optHa

)
P−, Ka

opt = P−HT
a

(
HaP

−HT
a + Ra

)−1
(27)

Pb
opt =

(
I−Kb

optHb

)
Pa
opt, Kb

opt = Pa
optH

T
b

(
HbP

a
optH

T
b + Rb

)−1
(28)
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then P+
opt = Pb

opt. Processing all the measurements together (i.e. in one batch) using the
Schmidt-Kalman gain given by

KSKF =

[
P−ssH

T
s + P−spHT

p

O

] (
HsP

−
ssH

T
s + HsP

−
spHT

p + HpP−psH
T
s + HpP−ppHT

p + R
)−1

it is easy to observe that ŝ+, P+
ss, P+

ps have the same values for both the Schmidt-Kalman
filter and the classical Kalman filter.

Processing the first batch of measurements with the Schmidt-Kalman gain results in
Pa

ss,opt = Pa
ss,SKF , Pa

ps,opt = Pa
ps,SKF ; however, Pa

pp,opt 6= Pa
pp,SKF = P−pp. The covari-

ance of the ‘consider’ parameters remains unchanged across a Schmidt-Kalman update,
therefore we have that Pa

pp,SKF ≥ Pa
pp,opt. It follows that

HsP
a
ss,SKFHT

s + HsP
a
sp,SKFHT

p + HpPa
ps,SKFHT

s + HpPa
pp,SKFHT

p + Rb ≥
HsP

a
ss,optH

T
s + HsP

a
sp,optH

T
p + HpPa

ps,optH
T
s + HpPa

pp,optH
T
p + Rb

Since

Kb
SKF =

[
Pa

ss,SKF (Hb
s)

T + Pa
sp,SKF (Hb

p)T

O

]
(
HsP

a
ss,SKFHT

s + HsP
a
sp,SKFHT

p + HpPa
ps,SKFHT

s + HpPa
pp,SKFHT

p + Rb

)−1

(29)

it follows that the rows of Kb
SKF corresponding to the estimated states will be “smaller”

than the corresponding rows of Kb
opt, resulting in a smaller update, hence Pb

ss,SKF ≥
Pa

ss,opt. This is why Bierman came to the conclusion he did.

However it is still possible to recover the Schmidt-Kalman covariance of the single up-
date even using a recursive algorithm. Recall that the “optimal” Schmidt-Kalman filter was
derived by minimizing the trace of the posterior covariance. The optimality holds only
when all the measurements at a given time are processed together, given a prior covariance.
Processing all the measurements together (in one batch) is more accurate than processing
them in two batches, which is more accurate than processing them in three batches, and
so on. Whereas this may not seem of great consequence (because usually only a few mea-
surements are available at any given time), it does have a significant implication: while
processing measurements together or in batches yields the same result in the Kalman filter
and is a key to its optimality, this is not the case for the recursive Schmidt-Kalman filter. In
the ‘classic’ Kalman filter only current measurements are incorporated and this is followed
by a propagation cycle to the next measurement epoch, this process continuing so long as
measurements are available. Of course, this is equivalent to processing all measurements
(past and present) in one batch because of the property previously discussed.

Recall, as well, that in a earlier section, the Schmidt-Kalman filter gain was obtained
from the ‘classic’ (optimal) Kalman filter measurement update equations, zeroing out the
rows of the Kalman gain corresponding to the parameters

KSKF =

[
Ins×ns Ons×np

Onp×ns Onp×np

]
Kopt =

[
Ksopt

Onp×1

]
(30)
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Likewise, the updated covariance can be computed by first using the (optimal) Kalman gain
and then by replacing P+

pp by P−pp which is equivalent to

P+
SKF = P+

opt +W (SKopt) (SKopt)
T = P+

opt + c aaT (31)

This strategy yields the same result as the Schmidt-Kalman filter and this is the key to
the optimal, recursive Schmidt-Kalman filter. Significantly, the state and covariance can
be updated in many batches (at the same epoch) with the optimal Kalman gain and the
replacement for Ppp is performed only after the last batch has been processed.

The optimal recursive Schmidt-Kalman filter which gives identical results to a batch
Schmidt-Kalman estimator is obtained by implementing an optimal Kalman filter in which
the entire covariance is updated and propagated through all the measurements but only
the estimated states are updated while the consider parameters are not. As was discussed
earlier, given the same a priori covariance and state, the optimal Kalman filter and the
Schmidt-Kalman filter yield the same values of the states, the covariance of the states,
and the cross-covariance of the states and the consider parameters. This optimal recursive
Schmidt-Kalman filter produces exactly the same estimate for the states s as the glob-
ally optimal Kalman filter, hence it produces the best possible estimate of s. Because the
parameters are not updated but their covariance Ppp is, the covariance of the ‘consider’
parameters in the proposed optimal recursive Schmidt-Kalman filter does not reflect the
actual uncertainty; rather, it represents the uncertainty the parameters would have had they
been optimally estimated.

The propagation phase of the proposed optimal recursive Schmidt-Kalman filter is iden-
tical to that of the standard Schmidt-Kalman filter which in turn is identical to that of the
classic Kalman filter. The recursive formulation of the classic Kalman filter provides an
estimate at any time tk that is identical to processing all measurements (past and present)
together in a single batch. The proposed optimal recursive Schmidt-Kalman filter pro-
vides an estimate identical to processing all measurements (past and present) together in
a single batch using the standard Schmidt-Kalman filter algorithm. Processing all mea-
surements together in a single batch using the two algorithms produces identical values for
the estimate of s, and the covariance matrices Pss and Psp. The “true” covariance of the
parameters Ppp is not needed in the proposed algorithm nor it is computed. If desired, the
“true” covariance Ppp can be computed as an additional quantity outside of the main filter
equations. Without these not needed computations the optimal recursive Schmidt-Kalman
filter is slightly less computationally intensive than the classic Kalman filter. While the
covariance computations are identical, the proposed algorithm does not need to calculate
the parameters’ gain Kp nor to update the parameters’ estimate.

Across several measurement cycles, the proposed optimal recursive Schmidt-Kalman
filter will have a smaller covariance than the traditional Schmidt-Kalman filter. Hence the
uncertainty of the classic Schmidt-Kalman filter is always larger than that of the optimal
recursive Schmidt-Kalman filter proposed here. This is seen in the example in the following
section.
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NUMERICAL RESULTS

This section introduces a simple numerical example to demonstrate the theory developed
in this paper. A single state s and parameter p form the state vector xT =

[
s p

]
. The state

is measured directly, while the parameter is a systematic measurement error

yk = sk + pk + ηk =
[
1 1

]
xk + ηk = Hxk + ηk (32)

where ηk is a zero mean, white sequence with variance Rk = 1 and uncorrelated from any
other error source. The true state is a random walk while the parameter is a first order
Markov process

xk+1 = Φkxk + νk =

[
1 0

0 e−∆tk/τ

]
xk +

[
νk
µk

]
(33)

where νk and µk are zero mean, uncorrelated white sequences with variances given by
Qk = 1 and (1−e−2∆tk/τ )Ppp,ss, respectively. The steady-state value of the Markov process
variance is chosen as Ppp,ss = 1 and the time constant τ is such that e−200/τ = 0.5. An
initial unbiased estimate is given by x̂T

0 =
[
0 0

]
. A first measurement y0 is assumed to be

available at time t0 = 0 and a second measurement y1 becomes available at time t1 = 100.
The initial estimation error covariance and its updated value once the first measurement is
incorporated with a standard Kalman filter are given by

P0 =

[
10 3
3 1

]
, P+

KF (t0) =

[
0.6111 0.1111
0.1111 0.1111

]
. (34)

After the time propagation and the second update:

P−KF (t1) =

[
1.6111 0.0786
0.0786 0.5556

]
, P+

KF (t1) =

[
0.7522 −0.2438
−0.2438 0.4346

]
. (35)

From the discussion above and since the parameter is a Markov process at its steady-state
value, it follows that an optimal recursive Schmidt-Kalman filter provides an estimate with
error covariance

P+
OSKF (t1) =

[
0.7522 −0.2438
−0.2438 1

]
, (36)

however applying the usual Schmidt-Kalman filter equations recursively the first update is
given by

P+
SKF (t0) =

[
0.6111 0.1111
0.1111 1

]
, (37)

and the propagation and second update produce

P−SKF (t1) =

[
1.6111 0.0786
0.0786 1

]
, P+

SKF (t1) =

[
0.8535 −0.4051
−0.4051 1

]
. (38)

It is apparent that the classic Schmidt-Kalman filter does not extract all the possible infor-
mation because it produces an estimate of the state s with variance 0.8535 which is greater
than the optimal estimate with variance 0.7522.
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The optimal recursive Schmidt-Kalman filter algorithm proposed in this paper carries
the covariance of the Kalman filter with the understanding the the portion corresponding
to the covariance of the consider parameters is fictitious. At any time it is desired to know
the actual covariance it can be built from the Kalman filter covariance and an externally
carried covariance of the parameters. For the simple example in this section the parame-
ter’s covariance stays constant at its steady state value. To demonstrate the validity of this
method a Monte Carlo simulation is performed. True initial states are obtained sampling
from a Gaussian distribution with mean x̂0 and covariance P0. Each Monte Carlo run also
samples different values for the process noise and measurement noise, with zero mean and
covariance as specified above. The propagation phase is given by

x̂k+1 = Φkx̂k (39)

Pk+1 = ΦkPkΦ
T
k +

[
Qk 0

0 (1− e−2∆tk/τ )Ppp,ss

]
(40)

Figures 1(a) to 1(c) show the results of 100 Monte Carlo runs for each algorithm. The fig-
ures convey that all the algorithms perform correctly since their predicted estimation error
is consistent with its actual value. Figure 1(d) shows a comparison of the three algorithms.
All the covariances shown in the plots are 3σ values.

CONCLUSIONS

This paper analyzes recursive implementations of the Schmidt-Kalman filter. A recur-
sive implementation is essential for onboard estimation systems. A common strategy for
aerospace navigation is to carry the filter’s estimation error covariance utilizing the UDU
formulation. This paper introduces a recursive formulation of the UDU Schmidt-Kalman
filter. A second algorithm is proposed in this paper that addresses the non-optimality of
the recursive Schmidt-Kalman filter. A numerical example is shown to demonstrate the
validity of the proposed approach.
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(a) Kalman Filter Monte Carlo Results
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Figure 1. Algorithms performance and comparison

13



[9] R. Zanetti and R. H. Bishop, “Entry Navigation Dead-Reckoning Error Analysis: Theoretical Founda-
tions of the Discrete-Time Case,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference
held August 19–23, 2007, Mackinac Island, Michigan, Vol. 129 of Advances in the Astronautical Sci-
ences, 2007, pp. 979–994. AAS 07-311.

[10] M. E. Hough, “Orbit Determination with Improved Covariance Fidelity, Including Sensor Measurement
Biases,” Journal of Guidance, Control, and Dynamics, Vol. 34, May–June 2011, pp. 903–911.

[11] R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processing with Applications to Guidance. Provi-
dence, RI: AMS Chelsea Publishing, 2nd ed., 2005.

[12] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation. New York: Dover Publica-
tions, 2006.

[13] W. Agee and R. Turner, “Triangular Decomposition of a Positive Definite Matrix Plus a Symmetric
Dyad with Application to Kalman Filtering,” White Sands Missile Range Tech. Rep. No. 38, 1972.

[14] N. Carlson, “Fast Triangular Factorization of the Square Root Filter,” AIAA Journal, Vol. 11, No. 9,
1973, pp. 1259–1265.

[15] R. G. Brown and P. Y. Hwang, Introduction To Random Signals And Applied Kalman Filtering. John
Wiley and Sons, third ed., 1997.

14


