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Abstract: This article describes an image processing algorithm to identify size and shape of
a spherical reflecting celestial body prominently depicted in images taken from a spacecraft
with an optical camera, with the purpose of estimating the relative distance between target
and observer in magnitude and direction. The approach is based on the fact that in such
images the pixels belonging to the target’s hard edge have the highest values of the image
derivative, therefore they are easily recognizable when the image is processed with a gradient
filter. Eventual extraneous points polluting the data set (outliers) are eliminated by two
methods applied in sequence. The target center and radius are estimated by non-linear least
squares using circular sigmoid functions. The proposed image processing has been applied
to real and synthetic Moon images. An error analysis is also performed to determine the
performance of the proposed method.
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1. Introduction

Autonomous positioning has been a topic of research for many years [1] but its implementation has
proven more complicated than autonomous attitude determination. As missions become more complex,
it is desirable for a spacecraft to be able to estimate its position independently from ground, if not
all the time, at least as a back up in case of loss of communication, either accidental or foreseen. In
particular, spacecraft orbiting or en route to a satellite or a planet other than the Earth are periodically
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out of line-of-sight from any ground station and thus have to rely on their on-board capabilities. Utilizing
pre-existing sensors to obtain a navigation solution is an attractive solution to the backup autonomous
navigation problem. Among those, optical cameras have been a mainstays of spacecraft sensor arrays
since the beginning of space exploration [2]. The availability of onboard cameras, together with the
advancement of the fields of image processing and feature identification, has led to the proposed
approach of an algorithm for autonomous spacecraft positioning via analysis of optical images of a
reflective celestial body in proximity of the spacecraft itself. This work refines a previous study [3,4],
focusing on the analysis of Moon images, both real and synthetic. However the basic idea is applicable
to any spherical reflective celestial body within relative proximity to the spacecraft.

The method is described in detail in the following sections. Further, several application examples are
illustrated, together with an error analysis.

2. Concept

The starting point of the method is the realization that in an image taken by a spacecraft of a reflective
celestial body, if the illumination conditions are right and the pointing appropriate, the target will figure
prominently in the image, against a mostly black background. Therefore, processing the image with a
gradient filter, pixels belonging to the hard edge have the highest magnitudes, which makes them easily
identifiable. These points can then be best fitted to estimate the apparent target radius and center, and
thus the relative distance between observer and target. Several steps need to be taken to ensure the data
points are properly selected and the best fitting is accurate enough. The proposed algorithm can be
summarized as follows:

• The geometrical illumination conditions and the expected size of the observed body are first
computed. These data allow to determine whether the target is sufficiently illuminated and of
sufficient size to perform the estimation process.

• The image differentiation is obtained with a fourth order Richardson extrapolation.

• The pixels of the gradient image are sorted in descending mode. Eventual outliers present in this
set, due to noise or background stars, are then eliminated by two sequential filters.

– The first filter validates an edge pixel based on eigenanalysis of a small gradient box around
the pixel and by investigation of the same box in the original image.

– The second filter is a modified version of the RANSAC algorithm.

• The edge point selected are then used to obtain a first estimate of center and radius. The Taubin
best fitting algorithm [7] is used.

• The first estimate is refined via non-linear least-squares using a circular sigmoid function to
describe the edge transition.

Required inputs to the image processing software are (see Fig. 1):

Camera. This includes: focal length (f ) in mm and imager data (number and size of rows and columns).
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Image. This is the image (made of Nr rows and Nc columns) taken at the specified time.

Time. This is the time instant at which the image is taken. This time is used to compute the Moon and
Sun positions in J2000.

Position. This input consists of a raw estimate of the spacecraft position, E{r}, and its accuracy, σr.
These data are used to estimate the Moon radius on the imager and the expected illumination
condition. This position estimate is very rough, having typical accuracy of less than 10, 000 km.

Attitude. This input consists of the Spacecraft attitude, E{q}, and attitude accuracy, σq. These data are
used to compute the Spacecraft-to-Moon vector in the J2000 reference frame.

Figure 1 illustrates the algorithm.

Figure 1. Image Processing General Flowchart

A first check on the data is done using rough expected value for the parameters, the following section
describes these calculations done for the Moon, however they are applicable to any (almost) spherical
celestial body. The following is based on geometric considerations alone and thus does not involve
processing of the image data. This is why the parameters are described as “expected” values.

3. Expected Radius and Illumination Parameter

As the relative positions of observer, target, and light source change, the visible part of the target
varies. These changes can lead to cases in which the target is too thin or completely dark from the
point of view of the observer, and therefore no analysis can take place. The algorithm catches these
degenerate cases before they can cause critical errors further down in the process. Two parameters are
introduced to describe the target’s shape (from now on, for simplicity, the term “target” will refer just
to the illuminated portion rather than the whole object, as this is what the camera is actually able to
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Figure 2. Expected Moon radius (pr) and illumination parameter (pi).

observe): one is the expected radius of the target pr, and the other is the cross-length measured at its
thickest point pi (see Figure 2), which is referred to as the illumination parameter. Both these distances
are measured in pixels, and they are estimated from the camera parameters (focal length f , pixel size
d) and the observation geometry. To this purpose, the observer’s position is needed, however, even a
high uncertainty (σD ≥ 10, 000 km) has very small impact on pr and pi, as long as the spacecraft is
further from the target than a certain threshold. Such a rough position estimate can be considered known
a priori, to start the analysis.

To begin, expected radius and illumination angle are computed as:

pr =
f

d
· Rm√
|ro|2 −R2

m

(pixels) (1)

ϑ = arccos(r̂s · r̂o). (2)

where r̂s is the Sun-to-Moon rays direction, ro the Observer-to-Moon vector, and Rm the Moon radius.
The expected radius is of great importance, not only because the illumination parameter is measured in
relation to it, but also because it predicts the overall size of the target in the image, which is used in
subsequent parts of the algorithm. The value of pi is determined differently depending on the values of
pr and ϑ.

3.1. Full or New Moon With reference to Figure 3, the angle αm can be derived from simple trigonometry

Figure 3. Full/New Moon geometry.
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|ro| sinαm = Rm. (3)

This equation also allows to define a critical distance, rcr, as the distance at which αm = ϑ:

rcr sinϑ = Rm (4)

Whether |ro| is greater or smaller than rcr, together with the value of ϑ, determines the case, according
to the following scheme:

if |ro| < rcr and

{
ϑ < π/2 then pi = 2pr (Full Moon)
ϑ > π/2 then pi = 0 (New Moon)

(5)

3.2. Gibbous Moon Gibbous Moon occurs when

Figure 4. Gibbous Moon geometry.

|ro| > rcr and ϑ <
π

2
. (6)

For this configuration (see Figure 4), pi can be computed by finding the auxiliary variables x and αe:

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (7)

sinαe = Rm
cosϑ

x
→ αe (8)

which allows to find the “excess” factor pe:

pe = pr
tanαe

tanαm

(9)

and, therefore,

pi = pr + pe =

(
1 +

tanαe

tanαm

)
pr. (10)
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Figure 5. Crescent Moon geometry.

3.3. Crescent Moon Crescent Moon occurs when

|ro| > rcr and ϑ >
π

2
. (11)

In this case (see Figure 5) the two variables x and αe can be found according to:

x2 = |ro|2 +R2
m − 2 |ro|Rm sinϑ → x (12)

sinαe =
− cosϑ

x
Rm → αe (13)

and therefore:

pi = pr − pe =

(
1− tanαe

tanαm

)
pr (14)

Differentiating among these cases is important to properly initialize the algorithm. To this purpose,
the analytical relations described above are supplemented with thresholds to ensure the system works
properly; for instance, when pi is lower than a certain value, the crescent is deemed too thin to be a
reliable source of information, and the target is considered invisible.

3.4. Special Case: Cropped Target

It is also possible for the target not to be completely within the field-of-view. The images’ boundaries
are sept with a rectangular mask proportional to the dimensions of the image itself. At each step the
cumulative brightness within the mask is computed and compared with a threshold value, for example
a valued tested to provide good performance is 1/10 of the maximum greytone. From the amount of
threshold crossings, it is possible to determine if and how many times the target has been cropped by the
frame. An example application is depicted in Figure 6.

The values of pr and pi are used to initialize the following parameters:

• Number of pixels in the gradient image to be analyzed (N ). This number has to be proportional
to the length of the visible Moon arc. However, at this stage it is impossible to know the angular
width of the target; moreover, the presence of the terminator introduces a number of high contrast
pixels that are not that are not part of the Moon edge. Ultimately N is chosen to be proportional
to pr and pi, according to the following:

N = k πpr
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Figure 6. Processing of cropped image. Left: cropped image of the Moon. Right: results of
the cropped detection.

where k is a factor that varies linearly with pi, from a minimum value (2) when pi ≤ 10 to a
maximum equal to twice the minimum, when pi ≈ 2pr.

k = 2

(
1 +

pi − 10

2 pr − 10

)
• Size of the box for box based outliers removal (s). Because of the way the code works, the box has

to be chosen small enough that the segment of Moon edge within the box appears almost straight.
Extensive testing has shown that the best choice is to take s = d0.8pre, with a lower limit of s = 3

and an upper limit of s = 21.

• RANSAC maximum distance. Chosen equal to dmax = 5 pr/100.

• Number of tests for RANSAC (NT ). RANSAC randomly selects for testing a subset of all the
possible triplets of pixels remaining after the box based outliers removal. Testing has shown that
the best choice is to have

NT =
1

5

(
N1

3

)
=
N1 (N1 − 1)(N1 − 2)

30

where N1 is the number of selected pixels remained after the box-based outliers filter rejection.
The value of 500 is enforced as an upper limit.

• Convergence tolerance for Circular Sigmoid Function (CSF) Least Squares [3]. At k-th iteration,
the convergence check is performed on the solution variation ∆Xk =

√
|∆r2

k + ∆c2
k −∆R2

k|.
Assuming the requirement accuracy is 0.3 pixel (in center and radius estimation), the CSF-LS
converge criteria is assumed to be 1/50 smaller than that, ∆Xmin = 0.3/50.
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• Number of iterations for CSF Least Squares is Niter = 50.

As indicated in Figure 1, several checks are implemented throughout the code. Failure to pass any of
the tests cause the process to abort.

• Check #1 (after Internal Parameters computation).

1. Moon is too small (apparent diameter less than a set number of pixel) or too big (Moon
completely or almost completely filling the image).

2. Moon is new (or otherwise its illuminated fraction is negligible) or out of frame altogether.

• Check #2 (after box based outliers removal, see Section 4.2).

– Too many outliers have been identified, leaving the pool of valid data below a set limit.

• Check #3 (after RANSAC based outliers removal, see Section 4.3).

– Too many outliers have been identified, leaving the pool of valid data below a set limit.

– The estimated radii found by RANSAC are not consistent with the expected apparent radius
previously found.

• Check #4 (after Taubin, see Section 5.1).

– The radius found is not consistent with the expected value.

– Computed center position of the Moon is out of the imager and too far away form the optical
axis.

• Check #5 (inside and after CSF-LS).

– Exceeded maximum number of iterations.

– Estimates of radius and center are too different from the results of Taubin.

4. Gradient-based image processing algorithm

The gradient-based image processing approach is based on the expectation that the part of the image
with strongest variation of gray-tones is the Moon observable hard edge. Pixels with highest derivatives
are the most likely to belong to the hard edge. However, the presence of bright stars, Moon surface
roughness and other unexpected objects within the field-of-view, creates several bright gradient pixels
which are not in fact part of the Moon hard edge. These points, called outliers, must therefore be
eliminated from the data set prior to using a best fitting algorithm to determine the sought geometrical
properties. In this work, two separate outliers removal method are implemented in sequence.
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4.1. Image differentiation

The gradient of the discrete greytone function is computed by numerical differentiation, in particular
the gradient is computed using four point central difference with a single Richardson extrapolation.

The row and column four point central partial differences computed at pixel [r, c] are
g′r(r, c) =

8[I(r + 1, c)− I(r − 1, c)]− [I(r + 2, c)− I(r − 2, c)]

12h

g′c(r, c) =
8[I(r, c+ 1)− I(r, c− 1)]− [I(r, c+ 2)− I(r, c− 2)]

12h

(15)

These derivatives are accurate with order h4, where h is the pixel dimension. The image gradient is then
computed as

g′(r, c) =
√
g′2r (r, c) + g′2c (r, c) (16)

A single Richardson extrapolation requires computing Eq. (16) one time with step 2h (getting g′2h)
and one time with step h (getting g′h). Therefore, the true derivative can be written as{

g′|true = g′2h + c (2h)4

g′|true = g′h + c h4
(17)

Equating these two equation we obtain

g′h − g′2h = c h4(24 − 1) → c h4 =
1

24 − 1
(g′h − g′2h) (18)

and therefore

g′|true = g′h +
1

24 − 1
(g′h − g′2h) (19)

An example of application of a single Richardson extrapolation is done using the six-hump Camel
back function

f(x, y) =
x2

4

(
4− 21

40
x2 +

x4

8

)
+
xy

4
+ y2

(
y2

4
− 1

)
(20)

Fig. 7 shows the accuracy of a single Richardson extrapolation
In this figure the errors with respect to the true analytic values are show for the four cases:

• Top-left: 2-point central differentiation and no Richardson extrapolation;

• Top-right: 4-point central differentiation and no Richardson extrapolation;

• Bottom-left: 2-point central differentiation and one Richardson extrapolation;

• Bottom-right: 4-point central differentiation and one Richardson extrapolation;

These results show that: 1) the accuracy provided by 4-point central differentiation and no Richardson
extrapolation is equivalent to that provided by 2-point central differentiation and one Richardson
extrapolation and 2) the 4-point central differentiation and one Richardson extrapolation provides almost
the machine error accuracy. For this reason the 4-point central differentiation and one Richardson
extrapolation is selected to evaluate which are the pixels with greatest gradient.

The image gradient pixels are sorted by gradient value in descending mode, the outliers are then
eliminated with two methods discussed below.
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Figure 7. Accuracy results for the six-hump Camel back function example

4.2. Box-based outliers Identification The first approach is based on a local analysis around the pixel

being considered as potentially belonging to the target’s edge. A mask like the one in Figure 8, whose
size depends on the parameter pr, is centered on a candidate pixel. If the pixel does indeed belong to
the target’s edge, then it is likely to be part of a sequence of pixels of comparable brightness distributed
along a preferred direction. Moreover, the pixel should sit on the border between two areas where the
graytone “flattens” (the inside and outside of the target) and which therefore should appear as dark in the
gradient image. If the pixel does not satisfy all of these conditions, it is rejected. To perform this analysis,
first the tensor of inertia of the gradient image within the mask is computed and then the eigenvectors
and eigenvalues are found. The eigenvector associated to the minimum eigenvalue (red line direction in
Figure 8) is inclined by an angle γ with respect to the row axis direction and represents the direction of
the supposed edge. If γ mod π < π/2 then the farthest pixels from the edge line are those identified
in green while if γ mod π > π/2 the farthest pixels are the red ones. Several conditions have to be
satisfied for the pixel to be accepted:

• The ratio between the eigenvalues must be lower than a certain threshold, chosen experimentally
at 0.3. This indicates the distribution of bright pixels has a preferential direction.
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Figure 8. Mask for the box-based outlier identification technique (mask size: 7× 7).

• The values of the gradient in the pixels furthest from the edge line should be small, as both should
be far from areas of variable brightness. Moreover, their graytones should differ noticeably, as one
belongs to the target and the other to the night sky.

• For the pixels highlighted in green in Figure 8, the ratio of their gradient values should be close to
1 (gmin/gmax > 0.6) as they both supposedly belong to the edge.

• For the pixels highlighted in red in the same figure, the ratio of their graytone values should be
close to 0 (gmin/gmax < 0.3) as one belongs to the nught sky and the other to the target.

4.3. RANSAC for circle and ellipse The second technique is the standard RANSAC algorithm which is

an abbreviation for “RANdom SAmple Consensus” [5]. It was developed for robust fitting of models
in the presence of many data outliers. The algorithm is very simple and can be applied in the fitting of
many geometric entities, such as lines, circles, ellipses, etc. It is a non-deterministic iterative algorithm,
in the sense that it produces a reasonable result only with a given probability, which increases as more
iterations are allowed. It works by selecting random subsets of size equal to the number of unknown
parameters, and then checks whether the remaining datapoints lie further than a certain threshold from
the curve determined by the initial subset. Repeating this process for many randomly chosen subsets
is likely to find and remove the outliers. More formally, given a fitting problem with n data points and
unknown m parameters, starting with Nmin = n, the classic RANSAC algorithm perform Ntest times the
following steps:

1. selects m data points at random.

2. finds the curve passing through these m points, thus estimating the m parameters associated.

3. counts how many data items are located at a distance greater than a minimum value dmin from the
curve. They are Nk.

4. if Nk < Nmin then set Nmin = Nk.

The basic cycle is depicted in Figure 9.
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Figure 9. RANSAC flowchart.

Crucial to a successful implementation of RANSAC is the method used for the random selection
of subsets. A purely random selection approach may persist choosing outliers, with great waste of
computational time. On the other hand, a procedure based on deterministic inner loops can also be
inefficient, if by chance one outlier is selected by the outmost loop. Therefore, as an improvement on the
basic method, a technique originally developed for Pyramid Star-Identification [6], has been adopted,
which always selects different subsets by continuously rotating the dataset indexes.

5. Circle Best Fitting

Once the pixels in the image have been selected, the algorithm determines the geometric
characteristics of the observed body, that is, apparent radius and center position within the image. The
problem of recognizing geometrical entities and reduce them to a minimal set of parameters, sometimes
called feature extraction, is very important in image processing for a number of applications in computer
graphics and computer vision. Consequently a great amount of research exists into developing methods
to efficiently and unequivocally recognize geometrical shapes within an image; in particular, much
literature is available regarding circle identification. Identifying geometrical figures within a discrete
representation of the physical world reduces essentially to a best fitting problem. Currently, feature
recognition techniques for conic curves fall within one of the following categories:

Geometric Fit: given a set of n data points, iteratively converge to the minimum of

Lg =
n∑

i=1

d2
i (x) (21)

where di are geometric distances from the data points to the conic, and x is the vector of the
parameters to be found.

Algebraic Fit: di are replaced with some other function of the parameters fi, and thus a new cost
function is defined:

La =
n∑

i=1

f 2
i (x) (22)
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These functions typically are algebraic expression of the conic in question, which are usually
simpler than the expression for geometric distances.

Historically, geometric fit has been regarded as being the more accurate of the two. However, this
accuracy comes at the price of added computational cost, and possibility of divergence. Algebraic fit
is typically reliable, simple and fast. A common practice is to use an algebraic fit to generate an initial
guess for a subsequent iterative geometric fit, but in recent years, new algebraic fitting routines have
shown such a degree of accuracy that geometric fits cannot improve it noticeably [8].

5.1. Taubin best fitting The following is a description of the Taubin best fitting method, first described in

[7], but using a formalism found in [8]. This algorithm is used to obtain an initial estimate of the sigmoid
best fitting algorithm. Given the circle implicit equation as

a (x2 + y2) + b x+ c y + d = a z + b x+ c y + d = 0 (23)

the Taubin Best Fit minimizes the function:

FT (a, b, c, d) =
n
∑

i(a zi + b xi + c yi + d)2∑
i(4a

2 zi + 4ab xi + 4ac yi + b2 + c2)
(24)

which is equivalent to minimize

FT (a, b, c, d) =
∑
i

(a zi + b xi + c yi + d)2 (25)

subject to the constraint
4a2 z̄ + 4ab x̄+ 4ac ȳ + b2 + c2 = 1 (26)

where the bar sign indicates simple average of the variables.

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi, and z̄ =
1

n

n∑
i=1

(x2
i + y2

i ) =
1

n

n∑
i=1

zi. (27)

One important property of this method is that the results are independent of the reference frame. By
reformulating this problem in matrix form, it becomes apparent how it is equivalent to a generalized
eigenvalue problem. Indeed, define

A =


a

b

c

d

 , Z =

z1 x1 y1 1
...

...
...

...
zn xn yn 1

 , and M =
1

n
ZTZ =


z̄z̄ z̄x̄ z̄ȳ z̄

z̄x̄ x̄x̄ x̄ȳ x̄

z̄ȳ x̄ȳ ȳȳ ȳ

z̄ x̄ ȳ 1

 , (28)

then the best fitting problem can be rewritten as

AT M A = 0 subject to AT N A = 1, (29)

where

N =


4z̄ 2x̄ 2ȳ 0

2z̄ 1 0 0

2ȳ 0 1 0

0 0 0 0

 . (30)
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Therefore, the optimization problem is equivalent to the following generalized eigenvalue problem:

M A = η N A. (31)

Since for each solution, [A, η]

AT M A = η AT N A = η (32)

then to minimize AT M A the smallest positive eigenvalue is chosen. Because matrix N has rank three,
such eigenvalue is found by explicitly solving the cubic characteristic equation without the necessity to
implement SVD or other computationally intensive algorithms.

6. Numerical tests

To support the capability of the developed image processing code, three numerical examples of
partially observed Moon are here presented. All these tests have been performed with no information
about time, camera data, and observer, Moon, and Sun positions. The image derivative is obtained using
the 4-point central approach with no Richardson extrapolation. These information clearly help to define
the best values of the internal parameters. Since this help is missing, the internal parameters have been
adopted with same values in all three tests. These values are:

1. Maximum number of highest derivatives selected: N = 1, 500;

2. Box-based outliers elimination: box size = 21× 21;

3. Box-based outliers elimination: derivative ratio > 0.6;

4. Box-based outliers elimination: corner ratio < 0.3;

5. Box-based outliers elimination: eigenvalue ratio < 0.3;

6. RANSAC: minimum distance dmin = 4 pixels;

7. RANSAC: number of tests = 100.

6.1. Example #1: Real image, four-times cropped

The original image of example #1, shown in Fig. 10, was intentionally cropped from a real image
(taken from Earth) to validate the capability of the software to face a multiple cropped Moon images.
Four times cropped is the also the maximum number of cropped segments possible. The four figures of
Fig. 10 show the four main phases of the image processing. Once the image differentiation has been
computed, the first 1,490 points with highest derivatives have been selected. This number differs from
N = 1, 500 because the image is small and the number of points selected is also a function of the total
number of pixels (N = 1, 500 is also the maximum number).

The box-based outliers elimination approach discarded 375 points while RANSAC eliminated an
additional 5 points. The resulting points are shown in the bottom right figure of Fig. 11 using blue
markers.



Aerospace 2015, xx 15

Figure 11. Example #1: Image
processing phases

The bottom right figure of Fig. 11 shows the results obtained by Taubin fitting approach to estimate
the circle parameters (Moon center and radius). The maximum distance from the estimated circle (worst
residual) of the selected points was 2.9 pixels. The Taubin estimation gives a Moon center located at row
185.56 and column 187.34 and radius 218.03. Using this estimate, the set of points shown by red and
blue markers in Fig. 12 over of Moon edge have been selected. These points are then used by CSF-LS to
perform the nonlinear least-square estimation of Moon center and radius using circular sigmoid function.
The new estimate implies a variation of−0.7,−0.5, and 0.4 pixels for row and column center coordinates
and for radius, respectively.
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Figure 12. Example #1: CSF-LS final
estimation
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6.2. Example #2: Synthetic image cropped

In the second example the test image is a synthetically generated image. All the relevant data and
results are shown in Figs. 13, 14, and 15.

Figure 14. Example #2: Image
processing phases
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Figure 15. Example #2: CSF-LS final estimation
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6.3. Example #3: Real image with center far outside the imager

Figure 17. Example #3: Image processing
phases

7. Error analysis

This section is dedicated to the error analysis associated to the following sources:

1. Estimated position error. This analysis quantifies how the error in the measured Moon radius (in
pixel) affects the Spacecraft-to-Moon distance computation (in km).

2. Estimated attitude error. This analysis quantifies how the error in the camera attitude knowledge
affects the Spacecraft-to-Moon direction (unit-vector).

3. Image processing errors. This Montecarlo analysis shows the distribution of the Moon radius
and center estimated by the image processing software when the image is perturbed by Gaussian
noise. This is done in the three cases of crescent, gibbous, and full Moon illumination.

7.1. Position and attitude uncertainty propagation

This section investigates the sensitivity of the Moon estimated radius to the position estimation error.
It also investigates the error in the Moon center direction because of the attitude estimation error.
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Figure 18. Example #3: CSF-LS final estimation

The Moon radius (in pixel) is directly related to the Spacecraft-to-Moon distance. The
Spacecraft-to-Moon vector is rom = rm − r where rm and r are the Moon and Spacecraft position
vectors in J2000, respectively. Vector rm is simply derived from time while the Spacecraft position
vector, r, it can be considered a random vector variable with mean r̄ and standard deviation σr, that
is, r ∼ N (r̄, σrû), where û is a random unit-vector variable uniformly distributed in the unit-radius
sphere. Neglecting the ephemeris errors, the uncertainty in the Spacecraft vector position coincides with
the uncertainty in the Spacecraft-to-Moon distance, σD = σr.

The Moon radius in pixels in the imager is provided by

r =
f

d

Rm√
D2 −R2

m

(33)

where d is the pixel dimension (in the same unit of the focal length, f ), Rm = 1, 737.5 km is the Moon
radius, and D is the Spacecraft-to-Moon distance. This equation allows us to derive the uncertainty in
the Moon radius in the imager

σr =

∣∣∣∣ ∂r∂D
∣∣∣∣
r̄

σD =
f DRm

d (D2 −R2
m)3/2

σr (34)
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The inverse of Eq. (34)

σD =
d (D2 −R2

m)3/2

f DRm

σr (35)

provides an important information about the accuracy required by the radius estimation. This equation
tells you how the radius estimate accuracy is affecting the Spacecraft-to-Moon vector length, and,
consequently, how this estimate is affecting the estimation of the Spacecraft position.

Figure 19. Moon distance error vs distance

Equation (35) has been plotted in Fig. 19 as a function of the Moon radius error and for four values
of the Moon distance, D = 50,000 km, D = 150,000 km, D = 250,000 km, and D = 350,00 km.

The Moon direction uncertainty (in pixel) is caused by the uncertainty in the attitude knowledge.
Consider the attitude q ∼ N (q̄, 2σqû) with mean q̄ and standard deviation 2σq. The displacement with

respect to the camera optical axis is c =
f

d
tanϑ, where ϑ is the angle between estimated Moon center

and camer optical axis. Therefore, the radial uncertainty in the Moon center direction is provided by

σc =
f

d

∣∣∣∣ 1

cos2 ϑ

∣∣∣∣
q̄

σq (36)
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7.2. Image processing error

Image processing error quantification requires performing statistics using a substantial set of images
with known true data. Since no such ideal database is currently available, the analysis of the resulting
estimated parameters (Moon radius and center) dispersion is performed by adding Gaussian noise to
the same image. The Moon illumination scenario plays here a key role since when the Moon is fully
illuminated the number of data (pixels) used to perform the estimation will be twice as much as in the
partial illumination case (under the same other conditions: distance to the Moon and selected camera).
For this reason two scenarios have been considered:

1. Partially illuminated Moon (results provided in Fig. 20)

2. Full illuminated Moon (results provided in Fig. 21)

Figure 20. Image processing error results: partial illumination case

The results of the tests done using partial illumination Moon are shown in Fig. 20. The image selected
is real and it was taken on March 6, 2013 at 05:24:30 using a focal length f = 100 mm. The statistics of
the results obtained in 1,000 tests by adding Gaussian noise with zero-mean value and standard deviation
σ = 10 gray tone are given. The code estimates the Moon radius and center (row and column) by
least-squares using circular sigmoid function (CSF-LS). The results show the three parameters estimated
as unbiased and with a maximum error of the order of 0.2 pixels (with respect to the original picture).
The histogram of the number of iterations required by the least-squares to converge shows an average of
8 iterations. The central-upper plot in Fig. 20 shows the ellipsoid distribution of the Moon center error
due to the fact that the estimation uses just data on one side of the Moon, on the illuminated part.
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Figure 21. Image processing error results: full illumination case

The results of the tests done using full illuminated Moon are shown in Fig. 21. Also in this case the
image is real and was taken in Houston on February 25, 2013 at 22:33:00 CDT using a focal length f =

105 mm. The statistics of the results obtained in 1,000 tests by adding Gaussian noise with zero-mean
value and standard deviation σ = 10 gray tone are given. The code estimates the Moon radius and
center (row and column) by least-squares using circular sigmoid function (CSF-LS). The results show
the three parameters estimated as unbiased and with a maximum error of the order of 0.01 pixels, one
order magnitude more accurate than what obtained in the partial illuminated case. The histogram of the
number of iterations required by the least-squares to converge shows an average of 3 iterations. The
central-upper plot in Fig. 20 shows the unbiased Gaussian distribution of the Moon center error. These
more accurate results are due to the fact that the estimation uses data all around the Moon edge.

8. Conclusions

This paper presents an image processing algorithm capable of determining the apparent location of
the Earth or moon and its apparent diameter. This information can then be used for autonomous onboard
trajectory determination in cislunar space. Two methods of removing potential outliers are introduced
in order to increase the algorithm robustness. Preliminary analysis of the algorithm’s performance is
studied via processing both real and synthetic lunar images.
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