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A new algorithm is proposed that smoothly incorporates the non-linear estimation

of the attitude quaternion using Davenport’s q-method and the estimation of non-

attitude states through an extended Kalman filter. The new algorithm is compared to

an existing one and the various similarities and differences are discussed. The validity

of the proposed approach is confirmed by numerical simulations.

I. Introduction

The well-known Wahba Problem [1] is a non-linear, weighted least-squares performance index

that seeks to obtain the optimal attitude matrix from a set of at least two independent vector

measurements. The most common technique used to solve the Wahba problem is the so-called

q-method, developed by Davenport and documented by Keat [2]. The q-method rearranges the

Wahba performance index into a quadratic performance index of the attitude quaternion, which is

constrained to have unit norm. The extremals of this performance index are the eigenvalues of the

Davenport matrix, and the optimal quaternion is the unit eigenvector corresponding to the largest

eigenvalue.
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A variety of numerical approaches exist for calculating the maximum eigenvalue and the corre-

sponding eigenvector of the Davenport matrix. For example, the QUEST algorithm [3] calculates

the eigenvalue using a Newton-Raphson method and the eigenvector by factoring the quaternion

as a vector of Rodrigues parameters. To avoid the singularity of the Rodrigues parameters, the

method of successive rotations is introduced[3]. Alternatively, ESOQ [4] circumvents the singularity

by computing the quaternion as a vector cross product in four dimensions. In a follow-on algorithm,

ESOQ-2 [5], the Euler axis is computed as the null space of a 3× 3 matrix that is derived from the

Davenport matrix.

QUEST, ESOQ, and ESOQ-2 are numerical implementations of Davenport’s q-method. Other

numerical techniques exist that compute the attitude matrix directly rather than the quaternion.

One such technique by Markley is based on the Singular Value Decomposition (SVD) [6]. Here, it

should be noted that the original Wahba problem objective function is fundamentally just a special

case of the Orthogonal Procrustes Problem, which has received a considerable amount of study since

the 1950s [7].

One of the reasons that the Wahba problem has received significant attention is that it provides

a globally optimal solution and it does not make any linearization or small angle approximations.

Conversely, the workhorse of aerospace estimation, the extended Kalman filter (EKF) [8] relies

on linearization to obtain an estimate. The solution to the Wahba problem provides single point

attitude estimates and requires all the measurements to be synchronized. The EKF and its attitude-

specific extensions (most notably additive EKF [9] and multiplicative EKF [10]) in contrast are

recursive estimators.

With this in mind, a number of algorithms have been developed to reformulate Davenport’s

solution into a recursive algorithm. Two of the first such methods are Filter QUEST [11] and

REQUEST [12], which are filters capable of estimating attitude (but not other states, such as

biases). Later, Filter QUEST and REQUEST were shown to be two different formulations of

mathematically equivalent filters [13]. Subsequently, the Optimal-REQUEST filter [14] addressed

the sub-optimality of these filters, but was still not capable of estimating non-attitude states.

Markley [15] shows how to estimate not only attitude, but also other parameters such sensor
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biases from vector observations. Extended-QUEST also estimates attitude and non-attitude states

[16]. This paper introduces a novel EKF-based estimation algorithm that integrates the q-method

to process attitude vector measurements. The existing algorithm that most closely resembles the

present work is the Sequential Optimal Attitude Recursion (SOAR) filter by Christian and Lightsey

[17]. The key difference is that SOAR uses the information formulation of the Kalman filter for the

measurement update, while the proposed method is a covariance formulation. This difference will

usually require smaller matrix inversions when the size of the state vector is large. Another difference

between the two methods relates to how the initial condition is introduced into the Wahba problem.

This paper uses quaternion averaging [18], while SOAR uses the information matrix approach by

Shuster [19]. Beyond these differences, the proposed q-method EKF (qEKF) and the SOAR filter

are shown to be equivalent to second-order in both the attitude update and the non-attitude state

updates. Hence qEKF and SOAR can be considered as the covariance and information approaches

to the solution of the same problem.

The herein proposed algorithm smoothly incorporates the q-method into the EKF framework.

Similar to the SOAR filter and Extended QUEST, the proposed algorithm processes the vector

measurements first and the remaining quantities last. However, unlike Extended QUEST, both the

SOAR filter and qEKF do not necessitate numerical iterations (other than solving an eigenvalue

problem for a 4×4 matrix; Extended QUEST requires numerically solving a nonlinear equation and

to solve the eigenvalue problem for an 8× 8 matrix). Shuster [20] suggests that numerical solutions

to the q-method such as QUEST could be used as a pre-processor for the EKF. The proposed

algorithm takes this concept one step further by integrating the q-method into the EKF. Finally,

as in the SOAR filter, the present formulation of the qEKF only considers measurements that are

only a function of the attitude portion of the state.

The remainder of this paper is organized as follows. First the Wahba problem and its solution

are introduced in Section II followed by a description of the MEKF in Section III. Section IV

presents the new algorithm followed by a detailed comparison to SOAR. In Section VI numerical

simulations are introduced to validate the proposed approach, finally some conclusions are drawn

in section VII.
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II. The Wahba Problem

Re-written in terms of the inertial-to-body quaternion q̄ = [qT
v q4]T with vector part qv and

scalar part q4, the Wahba problem consists of minimizing the performance index

min
ˆ̄q
J
(
ˆ̄q
)

=
1

2

n∑
i=1

ai
∥∥ỹi −T(ˆ̄q)ñi

∥∥2
, (1)

where ỹi are vector observations, ñi are their known representation in the reference frame, ai are

positive scalar weights, and T(ˆ̄q) is the direction cosine matrix taking vectors in the reference frame

to vectors in the measurement frame.

In the absence of noise, the perfect measurement is simply given by

yi = T(q̄) ni, (2)

where ni is the perfect (i.e. true) value of ñi. Re-introducing the presence of uncertainty (omitting

the dependency on q̄)

ỹi = Tni + δyi ñi = ni + δni. (3)

Since ‖ỹi‖ = ‖yi‖ = 1 and ‖ñi‖ = ‖ni‖ = 1, the following is also true to first order

ỹT
i δyi ≈ yT

i δyi ≈ 0 ñT
i δni ≈ nT

i δni ≈ 0. (4)

This leads directly to the QUEST measurement model [20] for a unit vector observation

Rnn,i = E
{
δniδn

T
i

}
= σ2

ni

(
I3×3 − nin

T
i

)
(5a)

Ryy,i = E
{
δyiδy

T
i

}
= σ2

yi

(
I3×3 − yiy

T
i

)
. (5b)

Substituting this result into Eq. (1) (and assuming that δyi and δni are uncorrelated) shows that

for ˆ̄q to be a maximum likelihood estimate of the attitude (to first order and when the errors are

distributed as in[19]) the weights ai should be

ai ≈ 1/
(
σ2
ni

+ σ2
yi

)
. (6)

Returning to Eq. (1), the goal is next to reformulate the problem in terms of the attitude

quaternion. Begin by recalling that the attitude matrix written as a function of the quaternion is
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given by [21]

T = T (q̄) = I3×3 − 2q4 [qv×] + 2 [qv×]
2 (7)

=
(
q2
4 − qT

v qv
)
I3×3 − 2q4 [qv×] + 2qvq

T
v , (8)

where [v×] is the 3×3 vector cross product skew symmetric matrix. The minimization of the Wahba

performance index in Eq. (1) is thus equivalent to the maximization of [2]

max
ˆ̄q
J ?
(
ˆ̄q
)

= trace
[
T
(
ˆ̄q
)
BT
]

= ˆ̄q
T
Kˆ̄q. (9)

In this equation the 4× 4 Davenport matrix K is obtained as

B =

n∑
i=1

aiỹiñ
T
i z =

n∑
i=1

ai (ỹi × ñi)

S = B + BT σ? = trace (B)

K =

S− σ?I3×3 z

zT σ

 (10)

the optimal quaternion is the unit eigenvector of K associated with the maximum eigenvalue.

In this work K is slightly modified to perform covariance analysis. The performance index is

equivalently rewritten as

J ?
(
ˆ̄q
)

= σ? + ˆ̄q
T

M z

zT 0

 ˆ̄q (11)

M =

n∑
i=1

ai ([ỹi×] [ñi×] + [ñi×] [ỹi×]) = S− 2σ?I3×3 (12)

where the identity abT = [b×][a×] + (aTb)I3×3 is used. Hence the optimal quaternion is the unit

eigenvector of the matrix in Eq. (11) corresponding to its maximum eigenvalue.

Recall that the perfect measurements yi are defined as yi = Tni where T is the true attitude

matrix and ni are error-free reference vectors. By using yi and ni in place of ỹi and ñi in the

q-method and solving for the optimal attitude the true quaternion q̄ is obtained. The matrix Btrue

is computed with the perfect values yi and ni. When the vectors yi and T(q̄)ni are used as the

inputs in the q-method rather than yi and ni, the identity quaternion is obtained as the optimal

solution; with this approach we are estimating the deviation from the true body frame which is
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denoted as δq̄∗, the superscript “∗” indicates the quaternion conjugate. Using yi and T(q̄)ni to

calculate matrix B yields BtrueT (q̄)
T. Hence the performance index Eq. (9) is rewritten as

J ?(δq̄∗) = trace
[
T (δq̄∗) T (q̄) BT

true

]
. (13)

Notice that the combination of having perfect measurements and replacing ni with T(q̄)ni results

in z = 0. This makes the performance index

J ?(δq̄∗) = σ + δq̄∗T

Htrue 0

0T 0

 δq̄∗, (14)

where

Htrue =

n∑
i=1

ai ([yi×] [(Tni)×] + [(Tni)×] [yi×]) = 2

n∑
i=1

ai[yi×]2. (15)

Matrix Htrue has non-positive eigenvalues, therefore the maximum eigenvalue of the modified Dav-

enport matrix is zero and the optimal solution is the identity quaternion.

Re-introducing the error in the measurements and using ỹi and T (q̄) ñi in the q-method, the

algorithm returns the estimation error since the performance index becomes

J ? (δq̄∗) = trace
[
T (δq̄∗) T(q̄)BT

]
. (16)

Using the same steps as going from Eq. (9) to Eq. (11) (and making use of the definition of the

quaternion conjugate q̄∗ =

[
−qT

v q4

]T

) one obtains

J ? (δq̄) = σ + δq̄T

Hθ δz

δzT 0

 δq̄, (17)

where

Hθ =

n∑
i=1

ai ([ỹi×] [(Tñi)×] + [(Tñi)×] [ỹi×]) (18)

δz = −
n∑
i=1

ai (ỹi ×Tñi) . (19)

In the absence of noise, the optimal eigenvalue is equal to zero. With noise, the optimal

eigenvalue is a small quantity δλ. The eigenvalue problem requires the following equation to be

satisfied

Hθ δqv + δq4 δz = δλ δqv. (20)
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Making a first-order approximation of the quaternion (δq4 ' 1) and neglecting terms of order higher

than one, the estimation error is found to be

δqv = −H−1
θ δz. (21)

Define the attitude estimation error δθ as a rotation vector, as a first order approximation δθ ' 2δqv.

Therefore, the covariance of the estimation error is given by

Pθθ = E
{
δθδθT

}
= 4H−1

θ E
{
δzδzT

}
H−T

θ (22)

which is equivalent to the result obtained by Shuster [3] but using a different approach. Since the true

attitude is unknown, Hθ needs to be evaluated at the estimated attitude; the added approximation

is a second-order effect. Using Eqs. (2) and (3), Eq. (19) becomes to first-order

δz = −
n∑
i=1

ai {yi × (Tδni) + δyi × (Tni)} . (23)

Therefore, assuming that each source of error is uncorrelated from the others

E
{
δzδzT

}
=

n∑
i=1

a2
i

{
[yi×] T E

{
δniδn

T
i

}
TT [yi×] T + [(Tni)×] E

{
δyiδy

T
i

}
[(Tni)×]

T
}
. (24)

To calculate E
{
δzδzT

}
the unknown quantities yi, ni, and T need to be replaced by the known

quantities ỹi, ñi, and T̂ = T
(
ˆ̄q
)
.

Next, for reasons that will become evident in the subsequent section, suppose that one defines

Rzz as

Rzz = 4 E
{
δzδzT

}
= 4

n∑
i=1

a2
i

{
[ỹi×] T̂Rnni

T̂T [ỹi×] T +
[
(T̂ñi)×

]
Ryyi

[
(T̂ñi)×

]T}
(25)

III. The Multiplicative Extended Kalman Filter

The Multiplicative Extended Kalman Filter (MEKF) is presently the industry-standard for

attitude filtering when both attitude and non-attitude states must be considered. As such, a brief

discussion of this approach will be used as a point of departure for our subsequent developments.

The MEKF was developed to account for the fact that attitude errors are multiplicative in

nature. This multiplicative relationship is immediately evident when one looks at the relationship

between the actual attitude, q̄, and the estimated attitude, ˆ̄q,

T(q̄) = T(δq̄)T(ˆ̄q) (26)
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where δq̄ is the attitude estimation error expressed as a quaternion.

In the MEKF, the state update is handled by linearizing the problem about the a priori attitude

estimate and then using a three dimensional attitude parameterization. In the present work, the

rotation vector δθ is used as the attitude state in the filter. It is common to make small angle

approximation, such that δθ ' 2δqv and δq4 ' 1. Furthermore, by construction, the a priori state

attitude error state is δθ̂
−

= 0.

With these factors considered, the state vector for an MEKF will look something like

x =

δθ
ŝ

 (27)

where ŝ is the estimate of the non-attitude states. The state estimate, x̂, and state covariance, P,

may now be computed as in the standard EKF,

x̂+ = x̂− + K(y − h(x̂−))P+ = (I−KH)P−(I−KH)T + KRKT (28)

and if K is chosen to be the optimal Kalman gain, then

K = P−HT(HP−HT + R)−1 (29)

The quaternion may then be updated according to,

ˆ̄q+ = q̄
(
δθ̂

+)
⊗ ˆ̄q− (30)

where q̄
(
θ
)
is the quaternion parameterization of the rotation vector θ and the quaternion product

⊗ is defined such that the quaternions are multiplied in the same order as the attitude matrices.

IV. The Q-Method Extended Kalman Filter

The derivation approach for the qEKF used here was chosen to highlight the connection between

this new method and the MEKF. An alternate derivation was presented in the conference version

of this paper [22].

For the moment, assume one has a linear measurement model given by

ỹ = Hx + v (31)
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Where v is zero mean noise with covariance R. From here, one may arrive at the Kalman Filter by

minimizing the following objective function,

Min J(x) =
1

2
(x− x̂−)TP−(x− x̂−) +

1

2
(ỹ −Hx)TR−1(ỹ −Hx) (32)

which, of course, leads to the well known results

x̂+ = x̂− + K(y −Hx̂−) (33)

P+ = (I−KH)P−(I−KH)T + KRKT (34)

K = P−HT(HP−HT + R)−1 (35)

A. Partitioning of the State Vector

Now, as in the MKEF, suppose that the state is partitioned into two parts,

x =

x1

x2

 (36)

where x1 will eventually become the attitude states and x2 will eventually become the non-attitude

states. Likewise, the covariance matrix is partitioned as

P =

P11 P12

P21 P22

 (37)

As was stated in the introduction, the present work only considered measurements that are only a

function of the attitude state. Thus, the measurement sensitivity matrix may be written as

H =

[
H1 0

]
(38)

Taking advantage of this form of H, it is evident that

HPHT = H1P11H
T
1 (39)

meaning that the partitioned Kalman gain is

K =

K1

K2

 =

P−
11H

T
1 (H1P11H

T
1 + R)−1

P−
21H

T
1 (H1P11H

T
1 + R)−1

 (40)
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Now, substituting the partitioned matrix results into Eqs. (33) and (34), the update for x̂1 and P11

becomes

x̂+
1 = x̂−

1 + K1(y −H1x̂
−
1 ) (41)

P+
11 = (I−K1H1)P−

11(I−K1H1)T + K1RKT
1 (42)

What is important about this is that the computation of K1, x̂+
1 , and P+

11 is completely independent

of the terms related to the second part of the partitioned state: x̂2, P12, P21, or P22. Thus, the

update to x̂1 and P11 (which will soon become the attitude state) may be performed independently

of the second part of the state.

To compute the update of x̂2, expand out the Kalman gain for the update of both x̂1 and x̂2.

x̂+
1 = x̂−

1 + P−
11H

T
1 (H1P11H

T
1 + R)−1(y −H1x̂

−
1 ) (43)

x̂+
2 = x̂−

2 + P−
21H

T
1 (H1P11H

T
1 + R)−1(y −H1x̂

−
1 ) (44)

Rearranging Eq. (43) produces

(P−
11)−1(x̂+

1 − x̂−
1 ) = HT

1 (H1P11H
T
1 + R)−1(y −H1x̂

−
1 ) (45)

which, when substituted into Eq. (44) yields the desired update for x̂2,

x̂+
2 = x̂−

2 + P−
21(P−

11)−1(x̂+
1 − x̂−

1 ) (46)

Computing the remaining covariance terms P12, P21, and P22 is a straightforward exercise in

applying the definition of the covariance matrix. Define the error in the state estimate as e+ = x−x̂+

and e− = x− x̂−. Thus, Eq. (46) may be rewritten as

e+
2 = e−

2 + P−
21(P−

11)−1(e+
1 − e−

1 ) (47)

Begin by noting that P+
11 is already known from Eq. (42). Now, the covariance for the cross term

P+
21 is defined as

P+
21 = E

{
e+

2 (e+
1 )T

}
(48)

where E { } is the expected value operator. Substituting the results from Eq. (47) into this and
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distributing the expected value operator,

P+
21 = E

{
e−

2 (e+
1 )T

}
+ P−

21(P−
11)−1

(
E
{
e+

1 (e+
1 )T

}
− E

{
e−

1 (e+
1 )T

})
= P−

21(P−
11)−1 E

{
e+

1 (e+
1 )T

}
= P−

21(P−
11)−1P+

11 (49)

The other cross term may be found as

P+
12 = E

{
e+

1 (e+
2 )T

}
= (P+

21)T (50)

Finally, the remaining covariance term P+
22 may be computed as,

P+
22 = E

{
e+

2 (e+
2 )T

}
(51)

Substituting Eq. (47), distributing the expected value operator, and combining terms will yield

P+
22 = P−

22 + P−
21

[
(P−

11)−1P+
11(P−

11)−1 − (P−
11)−1

]
P−

12 (52)

B. Application to the Attitude Filtering Problem

This subsection will adapt the above results to the specific problem of attitude estimation.

Begin by assuming the same form of the state vector as in the MEKF,

x =

x1

x2

 =

δθ
s

 (53)

and the corresponding covariance matrix,

P =

Pθθ Pθs

Psθ Pss

 (54)

With this selection in mind, recall that it was observed in the previous subsection that the updates

to x̂1 and P11 may be performed independently of the remaining states. Further, note that the

solution for x̂+
1 and P+

11 from Eqs. (41) and (42) is of the same form as the solution to Eq. (32).

Therefore, the optimal solution for x̂+
1 and P+

11 for the full problem is equivalent to the solution to

Min J(x1) =
1

2
(x1 − x̂−

1 )T(P−
11)−1(x1 − x̂−

1 ) +
1

2
(ỹ −H1x1)TR−1(ỹ −H1x1) (55)

or, equivalently,

Min J(δθ) =
1

2
δθT(P−

θθ)
−1δθ +

1

2
(ỹ −H1δθ)TR−1(ỹ −H1δθ) (56)
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Note that H1 is left in this notation to avoid confusion with Hθ from Eq. (18).

Two observation about Eq. (56) are now made in regards of the attitude specific problem. First

it is noticed that the a priori portion of the performance index is nothing more than a first-order

approximation to the quaternion averaging performance index [18]

1

2
δθT(P−

θθ)
−1δθ ' ˆ̄q

T
Ξ(ˆ̄q

−
)A0Ξ(ˆ̄q

−
)Tˆ̄q (57)

where A0 = 2(P−
θθ)−1 is a 3× 3 symmetric positive definite matrix weight and where

Ξ (q̄) =

q4I3×3 + [qv×]

−qT
v

 .
The second observation is that rather than utilizing the linear (or linearized) measurement model,

a nonlinear least-squares performance index can be used

J ?(ˆ̄q) = −ˆ̄q
T
Ξ(ˆ̄q

−
)A0Ξ(ˆ̄q

−
)Tˆ̄q− 1

2

n∑
i=1

ai
∥∥ỹi −T

(
ˆ̄q
)
ñi
∥∥2
. (58)

The right-hand term in Eq. (58) is the standard Wahba Problem and, therefore, the performance

index may be again rewritten as

J ?(ˆ̄q) = −ˆ̄q
T
Ξ(ˆ̄q

−
)A0Ξ(ˆ̄q

−
)Tˆ̄q + ˆ̄q

T
Kˆ̄q (59)

where the K in this equation is the Davenport matrix and not the Kalman gain. Thus, the opti-

mization problem is equivalent to

MaxJ ?(ˆ̄q) = ˆ̄q
T
K+ˆ̄q (60)

where

K+ = K−Ξ(ˆ̄q
−

)A0Ξ(ˆ̄q
−

)T (61)

Therefore, from the solution to the Wahba Problem, the optimal attitude estimate ˆ̄q
+ may be found

by finding the unit eigenvector associated with the maximum eigenvalue of K+.

The discussion now moves to the computation of the a-posteriori attitude covariance, P+
θθ.

Define the attitude error quaternion δq̄− according to

q̄ = δq̄− ⊗ ˆ̄q
− (62)

12



To perform covariance analysis the same procedure as the previous section is used but instead

of estimating the quaternion q̄, the deviation from it is sought. The performance index for the

equivalent maximization problem then becomes

J ?(δq̄) = δq̄T

 H0 δz0

δz0
T s0

 δq̄ + σ + δq̄T

Hθ δz

δzT 0

 δq̄ (63a)

H0 = −A0 −
[
δq−

v ×
]
A0 + A0

[
δq−

v ×
]

+
[
δq−

v ×
]
A0

[
δq−

v ×
]

(63b)

δz0 = A0δq
−
v +

[
δq−

v ×
]
A0δq

−
v (63c)

s0 = −(δq−
v )TA0δq

−
v0 (63d)

wherere δq−
v is the vector part of quaternion δq̄−, while the scalar part is approximated the be

equal to one (first order approximation). Making first-order approximation in Eqs. (63b)–(63d), the

performance index in Eq. (10) becomes

J ?(δq̄) = σ + δq̄T

−A0 − [δq−
v ×] A0 + A0 [δq−

v ×] + Hθ A0δq
−
v + δz

(δq−
v )TA0 + δzT 0

 δq̄. (64)

This performance index is maximized when (assuming δq4 ' 1)

δqv = −(−A0 −
[
δq−

v ×
]
A0 + A0

[
δq−

v ×
]

+ Hθ)−1(A0δq
−
v + δz) (65a)

' −(−A0 + Hθ)−1(A0δq
−
v + δz), (65b)

where the approximation holds to first-order. Using the definition of Rzz in Eq. (25) and assuming

q−
v and δz are uncorrelated it follows that

Pθθ = (−A0 + Hθ)−1(A0P
−
θθA0 + Rzz)(−A0 + Hθ)T (66a)

= Kθ (A0P
−
θθA0 + Rzz) KT

θ , (66b)

where

Kθ = (−A0 + Hθ)
−1
. (67)

Notice that A0 is symmetric positive definite by definition while Hθ is symmetric negative semi-

definite when only one measurement is present and negative definate when multiple independent
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measurements exist. Therefore Kθ can always be computed. This covariance update equation

is next rewritten in the familiar Joseph form [23] by first noting that the following term can be

expressed as

(−A0 + Hθ)
−1

(−A0) = (−A0 + Hθ)
−1

(−A0 + Hθ −Hθ) = I−KθHθ.

Applying this result into Eq. (66a), together with Eq. (67), gives

P+
θθ = (I−KθHθ) P−

θθ (I−KθHθ)
T

+ KθRzzK
T
θ , (68)

which is the Joseph formula. Again, the initial weight is chosen as A0 = 2P−1
θθ0 because the first

term of Eq. (58) does not contain the factor 1/2 and δθ̂ ' 2Ξ
(
ˆ̄q0

)T ˆ̄q.

With δθ̂
+
and P+ found using the methods describe here, the update of the non-attitude states

may be performed using the relations derived in the previous subsection:

ŝ+ = ŝ− + P−
sθ(P

−
θθ)

−1δ̂θ
+

= ŝ− + 2P−
sθ(P

−
θθ)

−1Ξ
(
ˆ̄q0

)T ˆ̄q
+ (69)

P+
sθ = P−

sθ(P
−
θθ)

−1P+
θθ (70)

P+
ss = P−

ss + P−
sθ

[
(P−

θθ)
−1P+

θθ(P
−
θθ)

−1 − (P−
θθ)

−1
]
P−
θs (71)

In summary, for linear measurements it is equivalent to first update the attitude and subse-

quently use this updated portion of the state to update the remainder of the state as it is to update

the entire state at once. For the attitude estimation case of this work the measurement model is

nonlinear. A nonlinear update for the attitude is obtained using the q-method and subsequently

used to update the non-attitude states using the optimal gain for the linear measurement case.

Therefore, the proposed q-method extended Kalman filter updates the attitude using the q-method

and all remaining non-attitude states using the standard extended Kalman filter method. In sum-

mary the qEKF filter has a propagation phase exactly the same as in the MEKF and an update

phase as follows

1. Calculate the Davenport matrix K from Eq. (10) associated with all attitude vector measure-

ments
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2. Calculate A0 = 2
(
P−
θθ

)−1

3. Calculate the updated attitude quaternion as the unit eigenvector associated with the maxi-

mum eigenvalue of

K+ = K−Ξ
(
ˆ̄q−)A0Ξ

(
ˆ̄q−)T

4. Calculate the updated attitude covariance partition P+
θθ from Eqs. (18), (25), and (68)

5. Update the non-attitude states using

ŝ+ = ŝ− + 2P−
sθ

(
P−

θθ

)−1
Ξ
(
ˆ̄q−)T ˆ̄q+

6. Calculate the total covariance update using Eqs. (68), (70), and (71)

V. Comparison with the SOAR Filter

This section establishes the equivalence of the qEKF and the SOAR filter. It begins by making

a key observation about the attitude profile matrix, and then proceeds to compare the attitude

update and the non-attitude update.

A. Observations on Computation of the Attitude Profile Matrix

Begin by recalling that the Wahba Problem objective function given in Eq. (9) is the negative

log-likelihood function when ai are chosen as shown in Eq. (6). The attitude may be expressed

about the estimate using a Taylor Series expansion truncated to second-order

J (δθ) = −trace
[(

I3×3 + [−δθ×] +
1

2
[−δθ×]

2

)
TBT

]
. (72)

Under mild conditions, the Fisher information matrix, Fθθ is the expected value of the second-

order derivative of the negative log-likelihood function. Recall from the Cramèr-Rao inequality that

the attitude covariance, Pθθ, is related to the Fisher information matrix by [24]

P−1
θθ ≤ Fθθ = E

[
∂2J(δθ)

∂δθ ∂δθ

]
, (73)

and that Fθθ approaches P−1
θθ as the number of measurements become large.
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Because Eq. (73) requires the second derivative of J (δθ) with respect to δθ, terms in J (δθ)

that are independent of δθ or linear in δθ vanish in the computation of Fθθ. Therefore,

Fθθ = E

[
∂2J(δθ)

∂δθ ∂δθ

]
= E

[
∂2

∂δθ ∂δθ

(
−trace

[
1

2
[−δθ×]

2 TBT

])]
(74)

To compact notation, define the matrix V = TBT,

Fθθ =
1

2
E

[
∂2

∂δθ ∂δθ

(
−trace

[
[−δθ×]

2 V
])]

(75)

Now, making the observation that,

[−δθ×]
2

= δθ δθT − (δθTδθ)I3×3 (76)

Eq. (75) can be rewritten as

Fθθ = −1

2
E

[
∂2

∂δθ∂δθ

(
trace

[
δθ δθTV

]
− δθTδθ trace [V]

)]
. (77)

Taking advantage of the cyclic properties of the trace operator, this equation can be recast

Fθθ = −1

2
E

[
∂2

∂δθ∂δθ

(
δθTVδθ − trace [V] δθTδθ

)]
. (78)

Straightforward differentiation yields,

Fθθ = trace [V] I3×3 −
1

2

(
V + VT

)
. (79)

In the presence of perfect measurements one may note that V = VT. It is only under these

conditions that one arrives at the result presented by Shuster in Ref. [19].

Fθθ = trace [V] I3×3 −V. (80)

In general, however, this is not the case and using Shuster’s formulation will result in non-

symmetric (and hence incorrect) information and covariance matrices. However one may correctly

compute the Fisher information matrix in the presence of noise as

P−1
θθ ≈ Fθθ = trace

[
TBT

]
I3×3 −

1

2

(
TBT + BTT

)
. (81)

which enforces a symmetric covariance matrix even in the presence of noisy measurements.
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The solution provided by Shuster in Ref. [19] to compute B from Fθθ and T is still valid. By

taking the trace of Eq. (81), note that

trace [Fθθ] = 3trace
[
TBT

]
− trace

[
TBT

]
= 2trace

[
TBT

]
. (82)

Substituting this back into Eq. (81) gives

TBT + BTT = trace [Fθθ] I3×3 − 2Fθθ. (83)

Next, it is straightforward to verify that the following solution originally given by Shuster in Ref. [19]

is also a solution to this equation

B =

[
1

2
trace [Fθθ] I3×3 −Fθθ

]
T. (84)

B. Equivalence of the Attitude Update

Recall from Ref. [17] that the SOAR filter includes the a-priori attitude information through

the following term

−ˆ̄qTK− ˆ̄q = −trace
[
T
(
B−)T] (85)

in the objective function. In Ref. [17] it is also shown that, after a second-order expansion of the

matrix exponential of [−δθ×] about the a priori attitude, this objective function may be rewritten

as

−ˆ̄qTK− ˆ̄q = −
(
ˆ̄q−)T K− ˆ̄q− +

1

2
δθTFθθδθ. (86)

The first term is a constant (not dependent on the a posteriori attitude) and disappears when the

first differentials are taken to compute the optimal attitude.

It is next straightforward to show that the a priori attitude term introduced in Eq. (58) is

equivalent to 1/2δθTFθθδθ to second-order. Thus, both the qEKF and the SOAR filters can be

shown to include the a priori attitude information in an equivalent manner to second-order.

To show this, begin by noting that

δqv = Ξ
(
ˆ̄q
−
)T

ˆ̄q = sin

(
δθ

2

)
. (87)
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Taking the Taylor Series expansion of sin (δθ/2), one may show that, to second-order,

δqv = sin

(
δθ

2

)
=
δθ

2
− 1

3

(
δθ

2

)3

+
1

5

(
δθ

2

)5

. . . ≈ δθ
2
. (88)

Therefore, the first term in Eq. (58) may be rewritten as

ˆ̄q
T
Ξ
(
ˆ̄q0

)
A0Ξ

(
ˆ̄q0

)T ˆ̄q ≈ 1

4
δθTA0δθ. (89)

Noting from before that A0 was chosen as A0 = 2
(
P−
θθ

)−1 ≈ 2Fθθ, this leads to

ˆ̄q
T
Ξ
(
ˆ̄q0

)
A0Ξ

(
ˆ̄q0

)T ˆ̄q ≈ 1

2
δθTFθθδθ. (90)

Therefore, the a priori attitude additions to the objective function for both SOAR and the qEKF

are equivalent to second-order.

C. Equivalence of the Non-Attitude Update

The non-attitude state update in the SOAR filer is also equivalent to second-order to the qEKF

non-attitude update. Partition the Fisher information matrix of the full covariance as

P−1 =

 Pss Psθ

Pθs Pθθ


−1

= Fxx =

 Fss Fsθ

Fθs Fθθ

 . (91)

Given this definition, recall from Ref. [17] that the optimal update of the non-attitude states in the

SOAR filter is given by the equation

s+ = s− − 2
(
F−
ss

)−1
F−
sθ Ξ

(
ˆ̄q
−
)T

ˆ̄q+ (92a)

s+ ≈ s− −
(
F−
ss

)−1
F−
sθ δθ (92b)

From the definition of the partitioned matrix inverse

F−
sθ = −F−

ssP
−
sθ

(
P−
θθ

)−1 (93a)

(
F−

ss

)−1
F−

sθ = −P−
sθ

(
P−
θθ

)−1 (93b)

and, substituting this into Eq. (92) leads to

s+ = s− + 2P−
sθ

(
P−

θθ

)−1
Ξ
(
ˆ̄q−)T ˆ̄q+ (94a)

≈ s− + P−
sθ

(
P−

θθ

)−1
δθ (94b)

18



which is equivalent to the qEKF non-attitude state update from Eq. (69) and the approximation is

to second-order.

VI. Numerical Example

In this numerical example the spacecraft is placed in a circular orbit with an altitude of 622 km

and an inclination of 45 degrees. At the beginning of the simulation the Earth is at vernal equinox

20 March 2012 and the spacecraft is at the ascending node which is located at the inertial X axis.

Throughout its orbit the spacecraft is oriented such that its body-fixed X axis is directed in track

and the Z axis is Earth-pointing with the Y axis following a right handed coordinate system. As a

result the spacecraft has a constant angular velocity equal in magnitude to the orbital mean motion.

The sun vector is assumed constant for the duration of the simulation. The magnetic field vector is

obtained from the World Magnetic Model in the MATLAB Aerospace toolbox.

A gyro is used to measure the angular velocity of the spacecraft and is defined by the following

sensor model [25]

ω̃ = ω + β + ηv (95a)

β̇ = ηu, (95b)

where ω is the true angular velocity, ω̃ is the measured angular velocity, β is the gyro bias vector,

and ηv and ηu are zero-mean Gaussian white-noise processes. Simulated vectors measurements are

created by adding noise to the true direction in the spacecraft body frame. The reference vectors

remain noise free as the model is assumed perfect for this test case. The scalar weights ai of the

Wahba problem follow the QUEST measurement model and are given by 1/σ2
sun and 1/σ2

mag for

the sun sensor and magnetometer measurements respectively.

The state vector consists of the three component gyro bias vector and the three component

attitude angle representation xT =

[
βT θT

]
. The initial gyro bias covariance is 0.22 (deg/hr)2 in

each axis and the initial attitude covariance is 0.12 deg2 in each axis. The initial estimated quaternion

is obtained by perturbing the true quaternion according to the initial attitude covariance while the

initial estimated gyro bias is always zero. The simulation spans 6000 seconds which is slightly more

than one full orbit and uses a step size between observations of 1 second.
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Error Source Symbol Value

Sun-sensor noise (ηsun) σsun 0.1 deg

Magnetometer noise (ηmag) σmag 0.5 deg

Angular Random Walk (ηv) σv

√
10× 10−7 rad/sec1/2

Gyro Bias Random Walk (ηu) σu

√
10× 10−10 rad/sec3/2

Table 1 Sensors Errors

Figures 1 and 2 show the performance of 100 Monte Carlo runs. The figures show the 100

instances of the estimation error, the thicker line is the 3-sigma value of the sample standard

deviation. Underneath the thick lines there are the 100 instances of the 3-sigma filter’s prediction of

its own uncertainty. Since the predicted uncertainty matches the actual uncertainty it follows that

the filter is consistent. Figure 3 shows the performance of SOAR under the same circumstances. It

can be seen that there is no visible difference between the two algorithms.

Another case of interest is when only one set of measurements is available. While the standard

q-method requires at least two independent vector measurements in order to determine the attitude,

the method proposed in the qEKF includes an initial condition which replaces the requirement for

the second measurement. Furthermore, an advantage of the nonlinear attitude update used in

the qEKF over the standard MEKF is the ability to converge to an accurate estimate for highly

nonlinear systems and poor initial estimates. Figures 4 and 5 show the attitude performance of 100

Monte Carlo runs for the proposed qEKF and the standard MEKF respectively. Figures 6 and 7

show the corresponding gyro bias performance. The same inputs except that only magnetometer

measurements are included and the errors have been increased. The noise values from Table 1 have

been increased by one order of magnitude, the initial gyro bias covariance is now 202 (deg/hr)2 in

each axis and the initial attitude covariance is 2002 deg2 in each axis. In this case the qEKF quickly

converges to an accurate estimate of both the attitude and the gyro bias. In the presence of such

large initial errors the MEKF does converge, however, many of the runs remain outside the 3-sigma

value of the filter’s predicted covariance. As a result, the MEKF predicts a more accurate estimate

than is actually achieved in the Monte Carlo simulation. Therefore, the nonlinear attitude update

of the qEKF is advantageous over the linearized method of MEKF for very poor initial estimates.
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Fig. 1 Attitude estimation error of qEKF expressed in body frame

Fig. 2 Gyro bias estimation error of qEKF

VII. Conclusions

The q-method for quaternion estimation has been integrated into an extended Kalman filter

(EKF) to produce the novel qEKF filter for attitude estimation which is capable of treating both

attitude and non-attitude states without additional numerical iterations. Within the filter, attitude

vector measurements are first processed using the q-method which solves the non-linear Wahba

problem directly without any linearizing assumptions. Remaining measurements are processed to
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Fig. 3 Attitude estimation error of SOAR expressed in body frame

Fig. 4 Attitude estimation error of qEKF expressed in body frame with only magnetometer

measurements and large initial errors

update the non-attitude states using the standard multiplicative extended Kalman filter algorithm.

The proposed algorithm is shown to be equivalent to the Sequential Optimal Attitude Recursion

(SOAR) filter to second-order in both the attitude and non-attitude updates where each method
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Fig. 5 Attitude estimation error of MEKF expressed in body frame with only magnetometer

measurements and large initial errors

Fig. 6 Gyro bias estimation error of qEKF with only magnetometer measurements and large

initial errors
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Fig. 7 Gyro bias estimation error of qEKF with only magnetometer measurements and large

initial errors

represents the covariance and information matrix formulation respectively. In qEKF the initial

condition is introduced into the Wahba problem through quaternion averaging where the SOAR

filter relies on the information matrix approach. The equivalence of qEKF and SOAR was also

validated by simulation results in which the filter estimated the attitude and gyro bias.
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