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The Orion attitude navigation design is presented, together with justification of the choice of states

in the filter and an analysis of the observability of its states while processing star tracker measure-

ments. The analysis shows that when the gyro biases and scale factors drift at different rates and are

modeled as first-order Gauss-Markov processes, the states are observable so long as the time constants

are not the same for both sets of states. In addition, the IMU-to-Star Tracker misalignments are mod-

eled as first-order Gauss-Markov processes and these states are estimated. These results are used to

finalize the design of the attitude estimation algorithm and the attitude calibration maneuvers.

I. Introduction

A variety of attitude estimation designs have been presented in the literature. Ref [1] provides an

overview of nonlinear attitude estimation methods. Two main approaches for Kalman-like estimation al-

gorithms are the additive extended Kalman filter [2] and the multiplicative extended Kalman filter (MEKF)

[3]. Specialized estimators exists for particular classes of problems, for example magnetometer-only atti-

tude determination [4] or angles-only attitude determination [5]. In this work quaternion “measurements”

from the star tracker are processed by the filter; some algorithm derived from the Denvenport’s q-method [6]

is used in the star tracker firmware to produce a quaternion, hence the q-method effectively functions as a

preprocessor feeding the attitude filter [7].

After a successful completion of Exploration Flight Test 1 on December 5, 2014, NASA’s Orion vehicle

next two missions are schedule to take the vehicle back to Moon. Exploration Mission 1 (EM1) is currently
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scheduled for a 2018 launch, it is unmanned and it will encompass a distant retrograde orbit on the other side

of the Moon. Exploration Mission 2 (EM2) is currently schedule for 2021 and will take astronauts in lunar

orbit.

During EM 1 and 2, the primary navigation source of the Orion vehicle in cislunar space is given by

ground updates provided by mission control and based on tracking the vehicle from ground stations. Attitude

determination, on the other hand, is done onboard and relies on star trackers and IMUs. This paper details the

design of the Orion attitude filter, which is an MEKF design. A feature of this design is that propagation of

both the state and the covariance is done analytically, no numerical methods such as Runge-Kutta integrators

or numerical evaluation of matrix exponentials occur. The only assumption made is that the angular velocity

is constant during some small time step ( 1 sec). This assumption is not constraining because the propagation

step can be subdivided into arbitrarily small intervals down to the inertial measurement unit (IMU) output

rate (typically 200 Hertz). Modern strap-down gyros provide integrated angular velocity (∆θ) over a small

interval, therefore assuming the angular velocity is constant over this interval is a very common approach

employed in inertial navigation. Alternatively, several consecutive ∆θ samples can be used to approximate

the angular velocity as a polynomial. This second approach inevitably introduces an additional delay into

the system and it does not produce tangible benefits because of the very high output rate of modern IMUs (>

200 Hz).

A contribution of this work is a detailed analysis of the observability of the star tracker misalignments,

gyro biases and scale factors for the attitude filter. This is particularly important for the Orion vehicle in light

of the fact that the star tracker is located on the Crew Module Adapter (CMA), 4.1 meters from the IMU (lo-

cated on the Crew Module), and subject to flex motion due to thermal and crew module pressurization effects.

The European Space Agency provides Orion’s Service Module which is connected to NASA’s Crew Module

via the CMA; the CMA’s design and performance is not completed yet. Figure 1 shows the components of

the Orion vehicle. Orion does not have a navigation bench on which both the star trackers and the IMUs are

mounted. Hence the Orion design needs to accommodate variable misalignments between IMUs and star

trackers; furthermore the design needs to be robust to CMA misalignments which are not yet quantified and

might not be until after EM1. The observability analysis is done on the linearized system; this approach has

been successfully applied to angles-only navigation [8]. The angles-only navigation example shows how that
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the ignored nonlinearities can make the system observable even when the linear criteria establishes it is not.

It is the experience of the authors that in these situations the observability gained from the nonlinearities is so

weak that effectively the uncertainty does not decrease of any appreciable amount and is typically overcome

by errors due to unmodeled dynamics (process noise). An excellent reference that describes calibration of

biases and misalignments of attitude sensors, as well as maneuvers needed to observe such calibration pa-

rameters, is the survey paper by Pittelkau [9]. Detailed analysis of the observability of gyro errors as well as

persistence of excitation and calibration maneuvers needed to estimate them is found in Ref. [10].

Fig. 1 Orion Components Including Crew Module and Crew Module Adapter, Credit: NASA

II. The Analysis Model

A three-dimensional parameterization of attitude is the so-called rotation vector φ [11] that has kine-

matics (usually attributed to Bortz [12]) given by

φ̇ = ω − 1

2
ω × φ+

[
1− φ sinφ

2(1− cosφ)

]
φ× φ× ω

φ2
, φ = ‖φ‖ (1)
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The cross product matrix is defined as

[v×]
∆
=


0 −v3 v2

v3 0 −v1

−v2 v1 0


The gyro measurement is given by

ωm = (I3 + [sg\])ω + b + ν (2)

where b is the gyro bias, sg is the gyro scale factor expressed in terms of a diagonal matrix operator, I3 is the

3× 3 identity matrix, and ν represents the angle random walk. Like the cross product operator, the diagonal

operator on a vector, v, is defined as

[v\] ∆
=


v1 0 0

0 v2 0

0 0 v3


and

[v\]w = [w\]v

[v\] [w\] = [w\] [v\]

for any vectors v and w.

A star tracker (ST) measurement is available and modeled with an angle bias, µ, which includes both

internal measurement biases and, more importantly, misalignments with respect to the gyro. Given the

following state vector

X =


a

b

µ

 (3)

where a is an MEKF attitude error parameterization [13] and the star tracker measurement residual is also

expressed with a three dimensional attitude parameterization and is given by (assuming small angles)

ε = a + µ+ η (4)
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where µ is a misalignment (or, equivalently, a bias) and η is white noise. The measurement mapping matrix

is

H =

[
I3 O3 I3

]
, (5)

where I3 is the 3× 3 identity matrix and O3 is the 3× 3 matrix of all zeros.

Given the system dynamics

ẋ = Fx with x(t0) = x0 (6)

the state transition matrix can be expressed as

Φ̇(t, t0) = F Φ(t, t0) with Φ(t0, t0) = I (7)

where for constant dynamics matrix F , the state transition matrix Φ is expressed as a matrix exponential

Φ(t, t0) = eF (t−t0) = I + F (t− t0) +
1

2!
F 2(t− t0)2 +

1

3!
F 2(t− t0)3 + ... (8)

Given a system of the form

Φ̇∗(t, t0) = F Φ∗(t, t0) with Φ∗(t0, t0) = C (9)

the solution is

Φ∗(t, t0) = Φ(t, t0)C = eF (t−t0) C (10)

which can be easily verified by substituting Φ∗(t, t0) (found in Eq. (10)) into Eq. (9).

A. Observability Analysis

Consider the n-dimensional state x and the m-dimensional linear measurement y affected by additive

noise η.

y = Hx+ η

H is the m×n measurement sensitivity matrix. For the scope of this section the weights in the least-squares

solution are omitted; the results are identical in the weighted least-squares case (as long as the weighting

matrices are chosen non-singular). The optimal estimate of x based on y is given by

x̂ = HT (HHT )−1y
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This system is observable when the inverse of the matrix in parenthesis exists; this condition is satisfied when

m ≥ n and H is of full column rank (i.e. rankH = n, this second condition implies the first). Naturally if

a column of H is comprised of all zeros, the system is not observable and the component of the state vector

corresponding to the zero column is not determinable from the measurement information. For example if

n = 3 so that

x =


x1

x2

x3

 (11)

and m = 4 with

H =

[
h1 0 h3

]
(12)

where hi are 4-vectors; it follows that

y = x1h1 + x3h3 + η (13)

clearly x2 is not observable, it does not affect the measurement therefore cannot be inferred from it.

Assume the state vector x is partitioned in three vector components

x =


x1

x2

x3

 (14)

assume also H is rank deficient and all vectors v in the null space of H (i.e. Hv = 0) are of the form

v = κ


w

−Aw

0

 (15)

where κ is some scalar, w is a unit vector with the same dimension as x1, and A is a matrix of appropriate

dimensions. Under these assumptions it follows that x1 and x2 are not individually observable butAx1 +x2

is. More precisely, the components of Ax1 and x2 that are not observable are those in the direction of w.

Demonstrating this proposition is quite simple. Define the following invertible matrix V

x′ =


x′1

x′2

x′3

 = V x =


R O O

A I O

O O I

x =


Rx1

Ax1 + x2

x3

 (16)
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matrix R is a rotation matrix such that Rw = e1, where e1 is the first element of the canonical base. The

inverse of V is given by

V −1 =


RT O O

−ART I O

O O I

 (17)

hence

0 = Hv = HV −1V v = H ′


e1

0

0

 . (18)

This last equation informs us that x′2 = Ax1 + x2 is observable, while the first component of x′ is not, that

is to say the component of x1 parallel to w is not observable. Repeating the same analysis with

x′′ =


RA†x2

Ax1 + x2

x3

 (19)

where "†" represents the pseudo inverse such that A†Az = z, ∀z, shows that x2 is non-observable along

the direction of Aw.

When measurements y1, y2, etc. are available at different times t1, t2, ..., and the state is estimated at

time t0, the procedure is the same as above butH is replaced by an augmented measurement mapping matrix

constructed as [14]

Λ =



H1Φ(t1, t0)

H2Φ(t2, t0)

...

HMΦ(tM , t0)


(20)

For a linear time invariant system, Λ being full rank in Eq. (20) is the usual condition to guarantee observ-

ability.

III. Observability During Coasts

This section analyzes the observability of the states in the absence of attitude maneuvers. While it

is shown that modeling the non-attitude states as first order Gauss-Markov processes makes the systems
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theoretically observable, the observability is weak for large Gauss-Markov time constants. During coasts,

where ω ≈ 0, given the state vector Eq. (3) the dynamics partial matrix, F is

F =


O3 −I3 O3

O3 O3 O3

O3 O3 O3

 (21)

and the resulting state transition matrix is

Φ(t+ ∆t, t) = I3 + F∆t+
1

2
F 2∆t2 + · · · =


I3 −I3∆t O3

O3 I3 O3

O3 O3 I3

 (22)

Therefore, H(t)Φ(t, t0) is

H(t)Φ(t, t0) =

[
I3 −I3 (t− t0) I3

]
(23)

Analyzing the observability of the system by processing a batch of measurements provides useful in-

sights. The batch of measurements produce a solution for the estimated state x̂(0) if and only if

rank(Λ) = rank



H

HΦ(t1, t0)

...

HΦ(tn−1, t0)


= n (24)

Appling this to the ST/gyro full-state observability during coast conundrum, it follows that

rank(Λ) = rank


I3 O3 I3

I3 −I (t1 − t0) I3

I3 −I (t2 − t0) I3

 = 6 (25)

which is rank deficient. This confirms the lack of observability of the gyro bias, star tracker misalignments

and the attitude during coasts, adding more measurements will not make the system observable. For any

3-dimensional vectors w

Λ


w

0

−w

 = 0 (26)
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which means the attitude error is not distinguishable from the star tracker misalignment in any direction, their

sum is observable but their individual values are not. This insight, while previously known, is important for

the design of the Orion attitude filter. Since the star tracker is mounted on the CMA, its misalignment with

respect to the IMU is going to vary during flight due to flexible motion, thermal expansion, thruster firings,

etc. At this point in time it is not clear the amount of flex the system will experience, nor the time constants

that will govern the motion of the CMA with respect to the crew module. During long coast periods, as

the alignment between IMU and star tracker changes, the estimation algorithm is not able to distinguish

between them, as a consequence the attitude estimate degrades and becomes biased by the same amount of

the misalignment change. A well-tuned filter will recognize such a behavior and produce an estimation error

covariance consistent with the greater uncertainty. To tune the filter it is necessary to correctly model the

dynamics of the relative alignment; however, due to the complexity and uncertainty of the system, producing

a fully representative model is challenging and will be achieved only after flight data is collected during

the first exploration mission. Since the filter cannot distinguish between the two quantities it applies the

measurement correction based on its knowledge of the relative uncertainty between the two. Hence, mis-

modeling the alignment uncertainty could result in the filter erroneously applying the measurement update.

To avoid this potential issue, the Orion attitude filter will not process star tracker measurements during long

coast periods. This decision will be re-evaluated after alignment data is collected from EM1 which will allow

for better knowledge of the dynamics of the alignment between the IMU and star tracker.

Notice that process noise is not included into this analysis. Process noise causes past measurements

to be de-weighted with respect to more current measurements. This fact does not change the theoretical

observability of the linear systems.

Consider a linear system with H =

[
1 1

]
and measurement error variance R = 1, in the absence of

dynamics, the two states cannot be distinguished from each other since their sum is measured. Assume the

initial state estimate has estimation error covariance given by P0 = I2. Processing the measurement the

updated covariance becomes

P1 =

 2/3 −1/3

−1/3 2/3


therefore the correlation coefficient between the two elements of the state vectors jumps from 0 to -0.5. If
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another independent, identically distributed (iid) measurement becomes available, the covariance after the

second update is

P2 =

 3/5 −2/5

−2/5 3/5


and the correlation coefficients becomes -2/3. Another update and the diagonals of the covariance become

4/7 and correlation coefficient becomes -3/4. Another update and the diagonals are 5/9 and the coefficient

-4/5. Then 6/11 and -5/6, followed by 7/13 and -6/7, and so on. After enough measurements the correlation

coefficient approaches -1 and the covariance approaches

Pn =

 1/2 −1/2

−1/2 1/2


from this point on, further measurements will not produce any improvement since

K = HPT /(HPHT +R) =

0

0


the effects of the non-observable system are now clear, in the absence of process noise, an infinite number

of measurements does not result in zero uncertainty, rather results in the states being completely correlated.

Since the measurements are iid, the covariance after n updates is given by

Pn = P0 − P0H(HP0H
T +

1

n
R)−1HTP0 (27)

lim
n→+∞

Pn = P0 − P0H(HP0H
T )−1HTP0 (28)

Eq. (28) simply states that in the absence of process noise all the measurement noise eventually averages

out, and therefore the system is equivalent to processing a single perfect measurement. Three cases may

arise. If H is not of full row rank a steady state solution does not exist. This makes sense because a non-

full-rank H implies that the measurements are linear combinations of each other, a solution is not possible

when measurements are perfect and combinations of each other. The second case is when H is square

and full rank (i.e. invertible), in this case limn→+∞ Pn = O (the proof can be done by first showing that

limn→+∞HPnH
T = O). Finally when H is of full row rank but not square limn→+∞HPnH

T = O but

this does not imply limn→+∞ Pn = O.

In general, when the system is observable, the algebraic Riccati equation has at least one finite solution

(the weaker condition of detectability is sufficient [15]) even in the presence of process noise (the system
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subject to process noise needs to be stabilizable for the solution to be unique). The quantity Hx is always

observable because is measured directly, hence limn→+∞HPnH
T is always finite in a LTI system. In the

presence of process noiseHPnHT converges to a finite number, however, when the system is not observable

HPnH
T could converge while individual components of P are diverging.

In order to better illustrate this consider a MEMS gyro with angular random walk (ARW) of 0.2 deg/
√

hr

(1σ), and bias standard deviation 0.5 deg/hr. The star tracker measurement has an accuracy of 100 arcsec (3σ)

and an initial misalignment of 0.1 deg (3σ). The misalignment is randomly drifting with power spectral den-

sity 0.001 deg/
√

sec. The initial covariance of the 9 state filter is diagonal with initial attitude uncertainty of

0.1 deg (3σ). Figure 2 shows the performance of a multiplicative extended Kalman filter (MEKF) under this

scenario. It can be seen that the attitude error uncertainty increases driven by the star tracker/IMU misalign-

ment drift. Better modeling of the star tracker does not improve the attitude uncertainty, nor does reducing

the gyro’s ARW. A reduction of the ARW on the other hand does improve gyro bias estimation convergence.

The performance of the estimation of the gyro bias is equivalent to that in Figure 3(b). Because of the non-

observable misalignment, the attitude estimation error is significantly higher than the no-misalignment case

illustrated in Figure 3. The sum of the attitude and misalignment error converges to a steady state uncertainty

very similar to Figure 3(a).

(a) Attitude Error and 3σ Predicted Uncertainty (b) Misalignment Error and 3σ Predicted Uncertainty

Fig. 2 Estimation Error During Coast
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(a) Attitude Error and 3σ Predicted Uncertainty (b) Gyro Bias Error and 3σ Predicted Uncertainty

Fig. 3 Estimation Error During Coast Without any ST/IMU Misalignment

A. Gauss-Markov Gyro Bias and ST Misalignments

Instead of modeling the gyro bias and Star Tracker misalignments as constants, they can be modeled as

first-order Gauss-Markov processes. Given the state vector Eq. (3), the dynamics partial, F is

F =


O3 −I3 O3

O3 − 1
τb
I3 O3

O3 O3 − 1
τµ
I3

 (29)

and the resulting state transition matrix is

Φ(t, t0) =


I3 τbI3

(
e
− 1
τb

(t−t0) − 1
)

O3

O3 I3e
− 1
τb

(t−t0)
O3

O3 O3 I3e
− 1
τµ

(t−t0)

 (30)

With this H(t)Φ(t, t0) is

H(t)Φ(t, t0) =

[
I3 τbI3

(
e
− 1
τb

(t−t0) − 1
)
I3e
− 1
τµ

(t−t0)

]
(31)

from which we obtain

Λ =


I3 O3 I3

I3 τbI3

(
e
− 1
τb

(t1−t0) − 1
)
I3e
− 1
τµ

(t1−t0)

I3 τbI3

(
e
− 1
τb

(t2−t0) − 1
)
I3e
− 1
τµ

(t2−t0)

 (32)

Generally Λ is of full rank and hence all the states are observable. Since exp(−(t2 − t0)/τµ) → 0 as

τµ → ∞, the system reverts to the constant-misalignment model and loses observability (in the absence of
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attitude maneuvers). While under the assumption of the errors being first order Gauss-Markov processes

the system is observable, in practice this observability is weak for large time constants (> 1000 sec) and is

expected to be overwhelmed by process noise. Process noise degrades knowledge of the states over time,

hence even an observable state can have an uncertainty that grows over time if the information gained through

measurement updates is not enough to overcome the increase in uncertainty due to process noise. More

importantly, in order to design an observer (or a filter), τµ needs to be known, which is not the case for the

Orion vehicle.

IV. Observability During Attitude Maneuvers

The results of the observability analysis during coasts dictate the choice of not processing star tracker

measurements during most of these epochs. This section focuses on the observability of the states while

slewing the vehicle. This analysis aids the selection of the number of states in the filter. For all that follows,

it is assumed that the angular velocity, ω, is constant. Typically a vehicle equipped with a reaction control

system (RCS) like Orion, performs attitude maneuvers by firing the RCS jets to initiate the angular rate

along the principal rotation axis, then the vehicle is controlled to slew at a constant angular velocity until the

desired attitude is reached, finally the RCS jets are used to terminate the the slew.

A. Observability of Constant Gyro Bias and Star Tracker Misalignment

This sub-section assumes that the gyro bias and star-tracker-to-IMU misalignment states are (unknown)

constants which are to be estimated. In such a case, given the state vector in Eq. (3), the dynamics partials

are (see Ref. [16] for the kinematic equation of the MEKF attitude error [13])

F =


−[ωm×] −I3 O3

O3 O3 O3

O3 O3 O3

 (33)

The state transition matrix is given by

Φ(t+ ∆t, t)=


Φ11 Φ12 O3

O3 I3 O3

O3 O3 I3

 (34)
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The following identities are used

[ω×]2 = [ω×][ω×] = ωωT − |ωm|2I3 (35)

[ω×]
n+2

= −|ωm|2[ω̂m×]n (36)

hence the even powers are symmetric and can be expressed in terms of [ωm×]2 and the odd powers are skew

symmetric and are expressed in terms of [ωm×].

Using the following definitions

|ωm|
∆
=
√
ω2
x + ω2

y + ω2
z (37)

[ω̂m×]
∆
=

1

|ωm|
[ωm×] (38)

∆θ
∆
= |ωm|∆t (39)

∆t
∆
= t− t0 (40)

matrix Φ11 is given by

Φ11(t, t0) = I3 − [ω̂m×] sin ∆θ + [ω̂m×]2 (1− cos ∆θ) (41)

which is a well known result. All the components of the state transition matrix are obtained analytically, such

as

Φ12(t, t0) = − 1

|ωm|
[
I3∆θ + [ω̂m×] (cos ∆θ − 1) + [ω̂m×]2 (∆θ − sin ∆θ)

]
(42)

which can be found in [17]

The discrete observability condition requires that

Λ =


I3 O3 I3

Φ11(t1, t0) Φ12(t1, t0) I3

Φ11(t2, t0) Φ12(t2, t0) I3

 (43)

be of full rank. However Λ has rank equal to 6. Notice that Φ11(t, t0)ω = ω, therefore

Λ


ω

0

−ω

 = 0 (44)
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which results in the attitude error and star tracker misalignment not being distinguishable along the direc-

tion of the constant angular velocity. Define two unit vectors i2 and i3, such that ω̂m, i2, and i3 form an

orthonormal triad. Then:

Φ12(t, t0) (|ωm|i2) = − [i3(cos ∆θ − 1) + i2 sin ∆θ] = − (Φ11(t, t0)− I3) i3 (45)

therefore

Λ


−i3

|ωm|i2

i3

 = 0 (46)

hence a combination of the attitude error and misalignment in the i3 direction is not distinguishable from the

gyro bias in the i2 direction. Similarly

Λ


i2

|ωm|i3

−i2

 = 0 (47)

A slew that varies the direction of the angular velocity makes the system observable. A direct conse-

quence of this fact is that when turning to and from a maneuver execution attitude, it is desirable that Orion

does not take the shortest “eigenaxis” turn, but varies the direction of the angular velocity in order to be

able to estimate all components of the misalignment between star tracker and IMU. The proposed concept of

operation is to slew to the maneuver attitude to gain observability and then process star tracker measurements

for some time. The slew back to “tail-to-sun” also improves observability and star tracker measurements will

be processed for some time during “tail-to-sun”.

B. Observability of Gauss-Markov Gyro Bias and Gauss-Markov Gyro Scale Factor and Gauss-Markov Star

Tracker Misalignment

This section analyzes the observability of the entire state vector during a constant angular velocity cali-

bration maneuver when the gyro scale factor errors are estimated. An important trade is whether to include

the gyro scale factor as a state in the filter; it is well known that during constant rate maneuvers the gyro

scale factor cannot be discerned from the gyro bias [9]. In this sub-section it is assumed that the gyro bias

and gyro scale factor states as well as the IMU/Star Tracker misalignments are first-order Gauss-Markov
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processes which are to be estimated. An analytical solution to the State Transition Matrix is used which, to

the best knowledge of the authors, is an original contribution of this paper. The angular velocity is given by

ωm = (I3 + [sg\])ω + b + ν (48)

where ω is the true angular velocity, ωm is the measured angular velocity, b is the gyro bias, sg is the gyro

scale factor and ν represents the angle random walk. The state vector is given by

X =



a

b

sg

µ


(49)

and the system dynamics partials are

F =



−[ω×] −I3 −[ωm\] O3

O3 − 1
τb
I3 O3 O3

O3 O3 − 1
τsg
I3 O3

O3 O3 O3 − 1
τµ
I3


(50)

Φ11, Φ12, and Φ13 are required to satisfy the following equations:

Φ̇11 = −1

2
[ω×]Φ11, with Φ110

= I3 (51)

Φ̇12 = −1

2
[ω×]Φ12 − Φ22, with Φ120

= O3 (52)

Φ̇13 = −1

2
[ω×]Φ13 − [ω\] Φ33, with Φ130

= O3 (53)

The remaining non-zero elements of the state transition matrix are found to be:

Φ22 = I3e
− t−t0τb (54)

Φ33 = I3e
− t−t0τsg (55)

Φ44 = I3e
− t−t0τµ . (56)

As before Φ11 is

Φ11(t, t0) = I3 − [ω̂m×] sin ∆θ + [ω̂m×]2 (1− cos ∆θ) (57)
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The solution for Φ12 is given by

Φ12(t, t0) = τbI3

(
e
−∆t
τb − 1

)
− |ωm|τ2

b

1 + |ωm|2τ2
b

[ω̂m×] (cos ∆θ − 1) +
|ωm|τ2

b

1 + |ωm|2τ2
b

[ω̂m×]2 sin ∆θ

+
τb

1 + |ωm|2τ2
b

[ω̂m×]2 (cos ∆θ − 1) +
τb

1 + |ωm|2τ2
b

[ω̂m×] sin ∆θ

+
|ωm|2τ3

b

1 + |ωm|2τ2
b

[ω̂m×]2
(
e
−∆t
τb − 1

)
+

|ωm|τ2
b

1 + |ωm|2τ2
b

[ω̂m×]
(
e
−∆t
τb − 1

)
(58)

Having found the solution to a matrix differential equation of the kind

Ẋ(t) = AX(t) + αI, X(t0) = O (59)

it is simple to shown that the solution to

Ẏ (t) = AY (t) + αB, Y (t0) = O (60)

when Ḃ = O, is given by

Y = XB. (61)

With this in hand, the solution for Φ13 is easily found to be

Φ13(t, t0) =

{
τsgI3

(
e
− ∆t
τsg − 1

)
−

|ωm|τ2
sg

1 + |ωm|2τ2
sg

[ω̂m×] (cos ∆θ − 1) +
|ωm|τ2

sg

1 + |ωm|2τ2
sg

[ω̂m×]2 sin ∆θ

+
τb

1 + |ωm|2τ2
sg

[ω̂m×]2 (cos ∆θ − 1) +
τsg

1 + |ωm|2τ2
sg

[ω̂m×] sin ∆θ

+
|ωm|2τ3

sg

1 + |ωm|2τ2
sg

[ω̂m×]2
(
e
− ∆t
τsg − 1

)
+

|ωm|τ2
sg

1 + |ωm|2τ2
sg

[ω̂m×]

(
e
− ∆t
τsg − 1

)}
[ωm\] (62)

Of course, if τsg = τb, then

Φ13(t, t0) = Φ12(t, t0)[ωm\] (63)

Gyro misalignment and nonorthogonality errors are not considered in this analysis. However notice

that they can both be expressed (to first order) as M(ω)ε, where M(ω) is a matrix function of the angular

velocity and ε is the error (either misalignment or nonorthogonality). For example the contribution of the

misalignment errorµ is [ω×]µ, hence the state transition matrix used to calculate the attitude error generated

by a misalignment is

Φφµ(t, t0) =

{
τµgI3

(
e
− ∆t
τµg − 1

)
−

|ωm|τ2
µg

1 + |ωm|2τ2
µg

[ω̂m×] (cos ∆θ − 1) +
|ωm|τ2

µg

1 + |ωm|2τ2
µg

[ω̂m×]2 sin ∆θ

+
τb

1 + |ωm|2τ2
µg

[ω̂m×]2 (cos ∆θ − 1) +
τµg

1 + |ωm|2τ2
µg

[ω̂m×] sin ∆θ

+
|ωm|2τ3

µg

1 + |ωm|2τ2
µg

[ω̂m×]2
(
e
− ∆t
τµg − 1

)
+

|ωm|τ2
µg

1 + |ωm|2τ2
µg

[ω̂m×]

(
e
− ∆t
τµg − 1

)}
[ωm×] (64)
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and the state transition matrix used to calculate the attitude error generated by gyro nonorthogonality is

obtained in a similar manner

Back to the case without gyro misalignment and nonorthogonality states, matrix H(t)Φ(t, t0) is found

to be

H(t) Φ(t, t0) =

[
Φ11(t, t0) Φ12(t, t0) Φ13(t, t0) Φ44(t, t0)

]
(65)

The discrete observability condition requires that

Λ =



I3 O3 O3 I3

Φ11(t1, t0) Φ12(t1, t0) Φ13(t1, t0) Φ44(t1, t0)

Φ11(t2, t0) Φ12(t2, t0) Φ13(t2, t0) Φ44(t2, t0)

Φ11(t3, t0) Φ12(t3, t0) Φ13(t3, t0) Φ44(t3, t0)


(66)

be of rank 12. The rank of Λ was numerically confirmed to be 12 in all tested occorunces with ωm 6= 0 and

τsg 6= τb. If τsg = τb, then we can write Λ as

Λ =



I3 O3 O3 I3

Φ11(t1, t0) Φ12(t1, t0) Φ12(t1, t0) Φ44(t1, t0)

Φ11(t2, t0) Φ12(t2, t0) Φ12(t2, t0) Φ44(t2, t0)

Φ11(t3, t0) Φ12(t3, t0) Φ12(t3, t0) Φ44(t3, t0)





I3 O3 O3 O3

O3 I3 O3 O3

O3 O3 [ωm\] O3

O3 O3 O3 I3


(67)

The third column of the first matrix in Eq. (67) is identical to the second and hence the rank is, at most, 9.

Notice that for any vector v

Λ



0

[ωm\]v

−v

0


= 0 (68)

which results in the gyro bias and scale factor not being individually observable while b + [ωm\] sg is.

Typically τsg and τb are both large numbers, hence the system is weakly observable, if at all. Appropriate

persistence of excitation conditions will make the system observable [9]. However this analysis shows that

when gyro biases and scale factors have different stability time constants (or one of them has an infinite time

constant, i.e. it is random bias) then their contributions can be distinguished from each other as long as the
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angular velocity has non-zero components in all three IMU sensitive axis. While a constant angular velocity

with non-zero components in all three IMU axis will make the IMU error observable, the attitude error and

the star tracker misalignment will not be completely distinguishable without variations in the angular velocity

vector.

V. Filter Design

In the prior sections an analytical formulation for the state transition matrix was introduced, the rationale

behind the decision to not process measurements during long coast segments was presented, and the observ-

ability of the states was derived. Orion will perform slews by varying the angular velocity direction in order

to completely observe the sensor error states. To finalize the algorithm design an analysis of the number of

states in the filter is needed, and in particular the sensitivity to the gyro scale factor errors.

A vehicle like Orion typically keeps its attitude rate within 0.025 deg/s while holding attitude and has a

slew rate of less than 1 deg/s. Typical gyros for this type of applications have an angular random walk around

0.01 deg/
√

hr, a bias of 0.02 deg/hr, and scale factors 15 parts per million, all 1σ values. Slewing with variable

angular velocity is typically not supported because it will increase complexity and fuel usage without any

tangible benefits. Using the above numbers, a 1σ scale factor causes an error of 0.025 15
106 deg/s = 0.0014

deg/hr, more than an order of magnitude less than the actual bias. This fact suggests that the gyro scale

factors are candidates to be removed from the filter, sensitivity analysis is done to confirm this fact. From the

observability analysis done above, the scale factors contributions can be potentially accounted for together

with the gyro bias state. It might seem that this can be done when slews always occur at about the same rate

and when the two quantities have similar time constants, an error budget provides the data to decide whether

to keep or remove the gyro scale factors states.

Error budgets break down the contributions of all error sources to the navigation error. For this particular

analysis we are interested in the contributors to the total attitude estimation error. For this analysis the initial

attitude uncertainty standard deviation is 0.033 deg. The simulation runs for 1500 seconds, for the first 1200

seconds the vehicle is coasting (a nominal residual rate of 0.02 deg/s is simulated), the estimation algorithm

starts processing star tracker measurements after 1100 seconds and continues until the end. The initial 1100

seconds of simulation are there to build correlations between gyro errors and attitude error. At 1200 the
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vehicle starts rolling at a rate of 1 deg/s. At 1300 seconds the vehicle stops rolling and starts pitching at a

rate of 1 deg/s. At 1400 seconds the vehicle returns to coasting flight. Table 1 shows the star tracker and

gyro errors used in the simulation (all values are 1σ per axis). Table 2 shows the attitude error budget with

contributions from measurement noise, Angular Random Walk (ARW), Misalignment Walk (MW), attitude

Initial Condition, gyro bias, gyro scale factors, and misalignment initial condition. The error budget shows

that the gyro scale factor contribution is as big as that of the bias. The reason for this is that during long coasts

the attitude and bias errors correlate, therefore the gyro bias is estimated when star tracker measurements are

processed. The gyro scale factors on the other hand, correlate with the attitude error during slews, which

are relatively slow and short, therefore the scale factors are weakly observable; yet it is a significant enough

contributor.

SENSOR ERROR TYPE 1σ VALUE

Star Tracker to Gyro Misalignment 0.333 deg

Misalignment Drift 0.001 deg/s

Star Tracker Measurement Noise 100 arcsec

Gyro Bias 0.01 deg/hour

Gyro Scale factor 15 ppm

Gyro Noise (ARW) 0.007 deg/
√

hour

Table 1 Sensors errors

In view of this fact the state in the filter as chosen as the attitude error, gyro bias, gyro scale factor, and

the star tracker to gyro misalignment:

x̂ =

[
âT b̂T ŝT µ̂T

]T

(69)

The filter propagates using the gyro during long coast times. Calibration maneuvers are initiated periodi-

cally to calibrate the star tracker misalignment. Some time before the calibration maneuvers and for some

time after they are concluded, star tracker measurements are being processed by the filter. Measurement

updates during these pre-maneuvers coast times collapse the star tracker misalignment uncertainty down to

the attitude knowledge uncertainty and potentially estimate the gyro bias.

The gyro measurement ∆θ̃j is a rotation vector (an integrated angular velocity compensated for coning)
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Time (s) 3σ Attitude Error Contributors (deg)

Meas. Noise ARW MW Att. IC Bias SF Mis. IC RSS

0 0 0 0 0.2997 0 0 0 0.2997

200 0 0.0148 0 0.2997 0.0050 0.0002 0 0.3001

400 0 0.0210 0 0.2997 0.0100 0.0004 0 0.3006

600 0 0.0257 0 0.2997 0.0150 0.0005 0 0.3012

800 0 0.0297 0 0.2997 0.0200 0.0007 0 0.3018

1000 0 0.0332 0 0.2997 0.0249 0.0009 0 0.3026

1100 0.0025 0.0345 0.0030 0.2967 0.0271 0.0010 0.0298 0.3015

1200 0.0110 0.0359 0.0133 0.2954 0.0295 0.0011 0.0299 0.3012

1300 0.0253 0.0184 0.0377 0.1086 0.0127 0.0054 0.0110 0.1461

1400 0.0313 0.0105 0.0487 0.0116 0.0028 0.0050 0.0012 0.0606

1500 0.0268 0.0144 0.0487 0.0106 0.0042 0.0049 0.0011 0.0590

Table 2 Attitude Error Budget

and is accumulated by the filter at the gyro output rate ∆tj as follows

qaccum,j = q
(
∆θ̃j − b̂k∆tj

)
⊗ qaccum,j−1 (70)

where the subscript k designates the last navigation filter call time which is at a slower rate than gyro ac-

cumulation, ⊗ is the quaternion multiplication such that quaternion compose in the same order as attitude

matrices, and q(·) is the function that returns a quaternion from another attitude parameterization. Eq. (70)

is only valid when the gyro bias is either constant or its time constant is several orders of magnitude greater

than the filter call rate, otherwise the estimated gyro bias needs to be propagated at the IMU rate as well

b̂kj = e−∆tj/τb b̂kj−1 (71)

The state transition matrix is propagated at either the fast IMU rate, ∆tj , or the slower filter call rate, ∆tk,
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and is given by

Φ(tk+1, tk)=



Φ11(tk+1, tk) Φ12(tk+1, tk) Φ13(tk+1, tk) O3

O3 e−∆tk/τbI3 O3 O3

O3 O3 e−∆tk/τsI3 O3

O3 O3 O3 e−∆tk/τµI3


(72)

where

∆θk = θ
(
qaccum,k ⊗ q∗accum,k−1

)
(73)

∆θk = ‖∆θk‖ (74)

[ω̂m,k×] =
1

∆θk
[∆θk×] (75)

ωk = ∆θk/∆tk (76)

Φ11(tk+1, tk) = I3 − [ω̂m×] sin ∆θk + [ω̂m×]2 (1− cos ∆θk) (77)

and the other two components of the state transition matrix are given by Eqs. (58) and (62)

Φ12(tk+1, tk) = τbI3

(
e−∆tk/τb − 1

)
− ∆θ τ2

b

1 + ∆θ2
k τ

2
b

[ω̂m,k×] (cos ∆θk − 1) +
∆θ τ2

b

1 + ∆θ2
k τ

2
b

[ω̂m,k×]
2

sin ∆θk

+
τb

1 + ∆θ2
k τ

2
b

[ω̂m,k×]
2

(cos ∆θk − 1) +
τb

1 + ∆θ2
k τ

2
b

[ω̂m,k×] sin ∆θk

+
∆θ2 τ3

b

1 + ∆θ2
k τ

2
b

[ω̂m,k×]
2
(
e−∆tk/τb − 1

)
+

∆θ τ2
b

1 + ∆θ2
k τ

2
b

[ω̂m,k×]
(
e−∆tk/τb − 1

)
(78)

Φ13(tk+1, tk) =
{
τsI3

(
e−∆tk/τs − 1

)
− ∆θ τ2

s

1 + ∆θ2
k τ

2
s

[ω̂m,k×] (cos ∆θk − 1) +
∆θ τ2

s

1 + ∆θ2
k τ

2
s

[ω̂m,k×]
2

sin ∆θk

+
∆θ2 τ3

s

1 + ∆θ2
k τ

2
s

[ω̂m,k×]
2
(
e−∆tk/τs − 1

)
+

∆θ τ2
s

1 + ∆θ2
k τ

2
s

[ω̂m,k×]
(
e−∆tk/τs − 1

)
+

τs
1 + ∆θ2

k τ
2
s

[ω̂m,k×]
2

(cos ∆θk − 1) +
τs

1 + ∆θ2
k τ

2
s

[ω̂m,k×] sin ∆θk

}
[ωk\] (79)

function θ(·) returns a rotation vector from another attitude parameterization and superscript “∗” indicates

the quaternion conjugate. The state and covariance P propagation are given by

q̂bi(tk+1) =
(
qaccum,k ⊗ q∗accum,k−1

)
⊗ q̂bi(tk) (80)

b̂(tk+1) = e−∆tk/τb b̂(tk) (81)

ŝ(tk+1) = e−∆tk/τs ŝ(tk) (82)

µ̂(tk+1) = e−∆tk/τµ µ̂(tk) (83)

P−k+1 = Φ(tk+1, tk)P+
k Φ(tk+1, tk)T +Qk (84)
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The simplest approximation for Qk is a single-step forward Euler integration which is expressed as

QkEuler =



QARW∆tk O O

O σ2
bb(1− e−2∆tk/τb)I O O

O O σ2
ss(1− e−2∆tk/τs)I O

O O O σ2
µµ(1− e−2∆tk/τµ)I


(85)

where QARW is the gyro angular random walk and σ2
bb, σ2

ss, σ2
µµ are the gyro bias, scale factor, and star

tracker to gyro misalignment steady-state variances. The matrix Qk, on the other hand, can be computed

analytically, as done in the next section. This analytical covariance is not used in the on-board filter because

of its complexity; however, it is an important tool to evaluate whether the approximated values, used in the

filter, are acceptable.

The measurement update is given by

x̂−k =

[
0T b̂(tk)T ŝ(tk)T µ̂(tk)T

]T

(86)

εk = a
(
qbi,meas(tk)⊗ q(−µ̂k)⊗ q̂∗bi(tk)

)
(87)

H =

[
I3 O3 O3 I3

]
(88)

Kk = P−k H
T
(
HP−k H

T +Rk
)

(89)

P+
k = (I −KkH)P−k (I −KkH)T +KkRkK

T
k (90)[

âT
k b̂(tk)T ŝ(tk)T µ̂(tk)T

]T

= x̂−k +Kkεk (91)

q̂bi(tk) = q(âk)⊗ q̂bi(tk) (92)

where Rk is the star tracker measurement error covariance and a(·) is the function that returns the three-

dimensional attitude parameterization a from another parameterization such as the quaternion. Our choice

of attitude error parameterization is four times the modified Rodrigues parameters [13] which we will refer

to as scaled MRPs.

A. The Process Noise Matrix

The mapped process noise matrix, Qk is defined as

Qk
∆
=

∫ tk

tk−1

Φ(tk, τ)QΦT (tk, τ) dτ
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where the power spectral density Q is

Q
∆
=



Q1 O3 O3 O3

O3 Q2 O3 O3

O3 O3 Q3 O3

O3 O3 O3 Q4


=



Q1I3 O3 O3 O3

O3 Q2I3 O3 O3

O3 O3 Q3I3 O3

O3 O3 O3 Q4I3


(93)

Where Q1 is the per-axis gyro angular random walk and Q2 = 2σ2
bb/τb, Q3 = 2σ2

ss/τs, Q4 = 2σ2
µµ/τµ.

With this in hand, we now will solve for Qk, a 16× 16 matrix, partitioned into sub-matrices as

Qk =



Qk,11 Qk,12 Qk,13 03×3

Q
T

k,12 Qk,22 03×3 03×3

Q
T

k,13 03×3 Qk,33 03×3

03×3 03×3 03×3 Qk,44


(94)

We will solve each of these sub-matrices, Qk,11, Qk,12, Qk,13, Qk,22, Qk,33, and Qk,44 in turn. We begin

with Qk,11, which is

Qk,11 = Qk,11a +Qk,11b
+Qk,11c (95)

=

∫ tk

tk−1

Φ11(tk, τ)Q1 ΦT11(tk, τ) + Φ12(tk, τ)Q2 ΦT12(tk, τ) + Φ13(tk, τ)Q3 ΦT13(tk, τ) dτ(96)

The first term, Qk,11a is found to be

Qk,11a =

∫ tk

tk−1

Φ11(tk, τ)Q1 ΦT11(t, τ) dτ = Q1∆tk I3 (97)

The second term, Qk,11b
is found to be

Qk,11b
=

∫ tk

tk−1

Φ12(tk, τ)Q2 ΦT12(t, τ) dτ (98)

= Q2 τ
2
bg

[
−
τbg
2

(
e
− 2∆tk

τbg − 1

)
+ 2τbg

(
e
−∆tk
τbg − 1

)
+ ∆tk

](
I3 +

ω2τ2
bg

1 + ω2τ2
bg

[ω̂m×]2

)

+[ω̂m×]2

[
2Q2 τ

3
bg

(1 + ω2
mτ

2
bg

)2

] [
e
−∆tk
τbg
(
ωmτbg sin ∆θk − cos ∆θk

)
+ 1 + (1 + ω2

mτ
2
bg )(e

−∆tk
τbg − 1)

]

The third term, Qk,11c , is far more complicated and is expressed in Eq. (A1) in the appendix A.
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Proceeding along, Qk,12 is

Qk,12 =

∫ tk

tk−1

Φ12(tk, τ)Q2 ΦT22(t, τ) dτ

= Q2τ
2
bg

[
I3 +

ωmτbg [ω̂m×]

1 + ω2
mτ

2
bg

(
ωmτbg [ω̂m×] + I3

)] [
−1

2

(
e
− 2∆tk

τbg − 1

)
+

(
e
−∆tk
τbg − 1

)]

+
τ2
bg
Q2[ω̂m×]

(1 + ω2
mτ

2
bg

)2

(
[ω̂m×]− ωmτbgI3

) [
e
−∆tk
τbg
(
ωmτbg sin ∆θk + cos ∆θk

)
+ 1 +

(
1 + ω2

mτ
2
bg

)
(e
−∆tk
τbg − 1)

)

−
τ2
bg
Q2[ω̂m×]

(1 + ω2
mτ

2
bg

)2

(
I3 + ωmτbg [ω̂m×]

) [
e
−∆tk
τbg
(
sin ∆θk + ωmτbg cos ∆θk

)
− ωmτbg

]
(99)

Likewise Qk,13 is

Qk,13 =

∫ tk

tk−1

Φ13(tk, τ)Q3 ΦT33(t, τ) dτ

= Q3 τ
2
sg

{[
I3 +

ωmτsg [ω̂m×]

1 + ω2
mτ

2
bg

(
ωmτsg [ω̂m×] + I3

)] [
−1

2

(
e
− 2∆tk

τsg − 1

)
+

(
e
−∆tk
τsg − 1

)]
+

[ω̂m×]

(1 + ω2
mτ

2
sg )2

(
[ω̂m×]− ωmτsgI3

) [
e
−∆tk
τsg
(
ωmτsg sin ∆θk + cos ∆θk

)
+ 1 +

(
1 + ω2

mτ
2
sg

)
(e
−∆tk
τsg − 1)

)
− [ω̂m×]

(1 + ω2
mτ

2
sg )2

(
I3 + ωmτsg [ω̂m×]

) [
e
−∆tk
τsg
(
sin ∆θk + ωmτsg cos ∆θk

)
− ωmτsg

]}
[ωm\] (100)

We find that Qk,22 is

Qk,22 =

∫ tk

tk−1

Φ22(tk, τ)Q2 ΦT22(t, τ) dτ =
Q2τbg

2

(
1− e

− 2∆tk
τbg

)
I3 (101)

Likewise. Qk,33 is

Qk,33 =

∫ tk

tk−1

Φ33(tk, τ)Q3 ΦT33(t, τ) dτ =
Q3τbg

2

(
1− e

− 2∆tk
τbg

)
I3 (102)

Finally, Qk,44 is

Qk,44 =

∫ tk

tk−1

Φ44(tk, τ)Q4 ΦT44(t, τ) dτ =
Q4ταST

2

(
1− e−

2∆tk
ταST

)
I3 (103)

The complete analytical process noise matrix described above which involve sin ∆θk and cos ∆θk are com-

putationally expensive to evaluate at each propagation step. To obviate this, it is also possible to approximate
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the process noise matrix as follows:

Qk,11 = Q1 ∆tk I3 +Q2 τ
2
bg

[
−
τbg
2

(
e
− 2∆tk

τbg − 1

)
+ 2τbg

(
e
−∆tk
τbg − 1

)
+ ∆tk

]
I3

+Q3 τ
2
sg

[
−
τsg
2

(
e
− 2∆tk

τbg − 1

)
+ 2τsg

(
e
−∆tk
τbg − 1

)
+ ∆tk

]
[ωm\]2 (104)

Qk,12 = Q2 τ
2
bg

[
−1

2

(
e
− 2∆tk

τbg − 1

)
+

(
e
−∆tk
τbg − 1

)]
I3 (105)

Qk,13 = Q3 τ
2
sg

[
−1

2

(
e
− 2∆tk

τsg − 1

)
+

(
e
−∆tk
τsg − 1

)]
[ωm\] (106)

Qk,22 =
Q2 τbg

2

(
1− e

− 2∆tk
τbg

)
I3 (107)

Qk,33 =
Q3 τbg

2

(
1− e

− 2∆tk
τbg

)
I3 (108)

Qk,44 =
Q4 ταST

2

(
1− e−

2∆tk
ταST

)
I3 (109)

VI. Numerical Example

This section presents the results of a Monte Carlo simulation used to test the proposed design. The

initial attitude uncertainty standard deviation is 0.033 deg, in order to simulate the effects of long coast

flights prior to measurement acquisition, the initial attitude estimation error is correlated to the initial gyro

bias estimation error with a correlation coefficient ρφb = −0.9. The simulation runs for 500 seconds, for the

first 200 seconds the vehicle is coasting, the estimation algorithm starts processing star tracker measurements

after 100 seconds and continues until the end. At 200 seconds the vehicle starts rolling at a rate of 1 deg/s.

At 300 seconds the vehicle stops rolling and starts pitching at a rate of 1 deg/s. At 400 seconds the vehicle

returns to coast flight. The star tracker and gyro errors used in the simulation are the same shown in Table 1

(all values are 1σ per axis). Figs. 4 and 5 show the performance of the filter. It can be seen that the actual

errors match the uncertainty predicted by the filter.

When star tracker measurements become available at 100 seconds of simulation time the star tracker

misalignment errors collapse to the attitude knowledge uncertainty and the two are negatively correlated.

There is no noticeable improvement in attitude knowledge because the information is used to estimate the

misalignment. Only a slight improvement (less than 0.01 degree) in gyro bias error is observed (best seen

in the Y-axis) despite the fact that the gyro bias is observable. Initially, when the gyro bias and the star

tracker misalignment are uncorrelated the star tracker misalignment error is quite large (on the order of 1

degree), thereby reducing the gain corresponding to these states. As the attitude error decreases during
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(a) Attitude Error and 3σ Predicted Uncertainty (b) Misalignment Error and 3σ Predicted Uncertainty

Fig. 4 Attitude and Misalignment Estimation Errors, 100 Monte Carlo Runs

(a) Gyro Bias Error and 3σ Predicted Uncertainty (b) Gyro Scale Factor Error and 3σ Predicted Uncertainty

Fig. 5 Gyro Estimation Errors, 100 Monte Carlo Runs

slews, so does the gyro bias steady state value. The results show that the gyro scale factor uncertainty is

not decreasing, as expected, however the state is important to correctly condition the covariance since it is a

significant contributor to the total attitude error. Detailed analysis of gyro calibration maneuvers, persistence

of excitation conditions, and analysis of convergence can be found in reference [10].

VII. Conclusions

The design for the Orion Attitude Filter is being solidified based upon an extensive observability analy-

sis. In particular, the selection of filter states and dynamics has been informed by an analysis of performance

during coast and during attitude maneuvers. Filter performance and error budgets analysis have driven the
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design to selecting attitude errors, gyro bias, gyro scale factors and star tracker-to-gyro misalignment as el-

ements of the state space to be estimated. The gyro and star tracker parameters are modeled as first-order

Gauss-Markov random processes. Insight into the observability of the state-space was gained by performing

a detailed analytic observability analysis. Concept of operations are developed based on the results of this

observability analysis.

The performance analysis demonstrates that, as expected, during coasts the gyro bias and attitude errors

correlate so that when star tracker measurements are processed, the gyro bias is well estimated. Conversely,

during attitude maneuvers the gyro scale-factors correlate with attitude errors; however, the estimation of

scale-factor errors is slow. Yet, this particular error is a significant contributor to the total attitude errors and

hence is included in the filter state space.
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APPENDIX A: THE THIRD PROCESS NOISE MATRIX, Qk,11c

We are after the following integral, Qk,11c . which is

Qk,11c =

∫ tk

tk−1

Φ13(tk, τ)Q3 ΦT13(tk, τ) dτ = Q3

∫ tk

tk−1

Φ13(tk, τ) ΦT13(tk, τ) dτ (A1)

= ηaW1 − ηb(W2 + WT
2 ) + ηc (W3 + WT

3 )− ηdW5 − ηe (W7 + WT
7 ) + ηf W9

where ηa, . . . , ηf are described in Eqs. (A11) - (A16) and W1, . . . ,W9 are given by:
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W1 = [ωm\]2 (A2)

W2 = [ωm\]2 [ω̂m×] (A3)

W3 = [ωm\]2 [ω̂m×]2 (A4)

W4 = [ω̂m×] [ωm\]2 (A5)

W5 = [ω̂m×] [ωm\]2 [ω̂m×] (A6)

W6 = [ω̂m×]2 [ωm\]2 = WT
3 (A7)

W7 = [ω̂m×]2 [ωm\]2[ω̂m×] (A8)

W8 = [ω̂m×] [ωm\]2 [ω̂m×]2 (A9)

W9 = [ω̂m×]2 [ωm\]2 [ω̂m×]2 (A10)

Finally, ηa, . . . , ηf are

ηa = Q3τ
2
sg

∫ tk

tk−1

(
e
− (ξ−t0)

τbg − 1

)2

dξ

= Q3ω
2
mτ

2
sg

[
−
τsg
2

(
e
− 2∆tk

τbg − 1

)
+ 2τsg

(
e
−∆tk
τbg − 1

)
+ ∆tk

]
(A11)

ηb =
Q3τ

2
sg

1 + ω2
mτ

2
sg

∫ tk

tk−1

[
−ωmτsg (cos ∆θ − 1) + sin ∆θ + ωmτsg

(
e
−∆tk
τsg − 1

)](
e
− (ξ−t0)

τbg − 1

)
dξ

=
Q3ω

2
mτ

2
sg

1 + ω2
mτ

2
sg

{
−

ωmτ
2
sg

1 + ω2
mτ

2
sg

[
e
−∆tk
τsg

(
ωmτsg sin ∆θk − cos ∆θk + 1 + ω2

mτ
2
sg

)
− ω2

mτ
2
sg

]
+τsg sinω∆tk −

τsg
1 + ω2

mτ
2
sg

[
e
−∆tk
τsg (sin ∆θk + ωτ cos ∆θk)− ωmτsg

]

+
1

ωm
(cos ∆θk − 1)−

ωmτ
2
sg

2

(
e
− 2∆tk

τsg − 1

)
+ 2ωmτ

2
sg

(
e
−∆tk
τsg − 1

)}
(A12)

ηc =
Q3τ

2
sg

1 + ω2
mτ

2
sg

∫ tk

tk−1

[
(cos ∆θ − 1) + ωmτsg sin ∆θ + ω2

mτ
2
sg

(
e
−∆tk
τsg − 1

)](
e
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)
dξ
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Q3ω

2
mτ

2
sg

1 + ω2
mτ

2
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{
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sgω

2
m
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mτ
2
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)
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mτ
2
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]
− 1
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sin ∆θk + ∆tk −

ωmτ
2
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2
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(
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3
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e
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)
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3
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(
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)
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2
sg∆tk

}
(A13)
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ηd =
Q3τ

2
sg

(1 + ω2
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2
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(A14)

ηe =
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ηf =
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