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I. INTRODUCTION

An underlying assumption of the Kalman filter is that the measurement and process

disturbances can be accurately modeled as random white noise. Various mitigation strategies

are available when this assumption is invalid. In practice sensor errors are often modeled

more accurately as the sum of a white noise component and a strongly correlated component.

The correlated components can, for example, be random constant biases. In this case, a

standard technique is to augment the Kalman filter state vector and estimate the random

biases. In an attempt to decouple the bias estimation from the state estimation, Friedland [1]

estimated the state as though the bias was not present, and then added the contribution of

the bias. Friedland showed that this approach is equivalent to augmenting the state vector.

This technique, known as two-stage Kalman filtering or separate-bias Kalman estimation,

was then extended to incorporate a walk in the bias forced by white noise [2]. To account

for the bias walk, the process noise covariance was increased heuristically, and optimality

conditions were derived [3, 4].

In this work, the effects of the noise and biases are considered as sources of uncertainty

and not as elements of the state vector. This approach is applicable in situations when

the biases are not observable or when there is not enough information to discern the biases

from the measurements. A common approach would be to tune the filter using process and

measurement noise such that the sample covariance obtained through Monte Carlo analysis

matches the filter state estimation error covariance. The technique presented here takes
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advantage of the structure of the biases to obtain a more precise representation of their

contributions to the state estimation uncertainty. The resulting algorithms are useful in

quantifying the uncertainty in a single simulation along the nominal state trajectory. This

process can aid in tuning the filter as well as be employed onboard to obtain an accurate

measure of the uncertainty of the state estimates.

The approach taken is similar to that of the consider filter proposed by Schmidt [5]. The

consider filter can be applied to our problem and the two solution approaches, although

different in form, are functionally the same.

The goal of this paper is to introduce the uncompensated bias Kalman filter as presented

by the authors in [6] and [7]. More recently Hough [8] independently derived a similar

algorithm and applied it to orbit determination. This technical note shows the relation

between these two recent techniques as well as their equivalency to the Schmidt consider

filter [5].

II. DISCRETE KALMAN FILTER WITH

UNCOMPENSATED BIAS

Consider the stochastic dynamical system model

xk+1 = Φkxk + Υkbν + Jkνk, (1)

where xk ∈ <n is the state vector at time tk, Φk ∈ <n×n is the deterministic state transition

matrix Φk = Φ(tk+1, tk), and νk ∈ <r is the process noise assumed to be a zero-mean, white

noise vector sequence with

E {νk} = 0 ∀ k, E
{
νk ν

T
j

}
= Vk δkj,

where Vk ∈ <r×r, Vk ≥ 0 for all k, and δkj = 1 if k = j, and δkj = 0 if k 6= j. A random

constant vector bias bν ∈ <m is also considered with the assumed properties that

E {bν} = 0, E
{
bν bT

ν

}
= Bν , E

{
νkb

T
ν

}
= 0 ∀k

where Bν ∈ <m×m and Bν > 0. The shape matrices Υk ∈ <n×m and Jk ∈ <n×r are

deterministic. From Eq. (1) and the fact that νk is modeled as a zero-mean random vector

sequence and bν is modeled as a zero-mean random constant vector, an unbiased estimate

of the state x̂k−1 can be propagated forward in time to obtain an unbiased estimate at time

tk via

x̂−
k = Φk−1x̂

+
k−1,
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where x̂−
k is the state estimate at tk before a measurement update and x̂+

k−1 is the state

estimate after the measurement update at tk−1. The estimation error at tk before the mea-

surement update is defined as

e−
k = xk − x̂−

k , (2)

and the estimation error at tk after the measurement update is defined as

e+
k = xk − x̂+

k . (3)

At tk, it is assumed that measurements are available in the form

yk = Hkxk + Λkbη + ηk, (4)

where yk ∈ <p, Hk is the measurement mapping matrix, ηk ∈ <p is the measurement noise

assumed to be a zero-mean, white noise vector sequence with

E {ηk} = 0 ∀ k, E
{
ηk η

T
j

}
= Rk δkj,

where Rk ∈ <p×p, Rk > 0 for all k. A random constant vector bias bη ∈ <q is also considered

with the assumed properties that

E {bη} = 0, E
{
bη bT

η

}
= Bη, E

{
ηkb

T
η

}
= 0 ∀k

where Bη ∈ <q×q and Bη > 0. The shape matrix Λk ∈ <n×q is deterministic. We also

assume that

E
{
bνb

T
η

}
= 0,E

{
ηjν

T
k

}
= 0,E

{
νkb

T
η

}
= 0, and E

{
ηkb

T
ν

}
= 0 for all k, j.

The propagated estimation error after the measurement update at tk−1 to before the next

measurement update at tk is

e−
k = Φk−1e

+
k−1 + Υk−1bν + Jk−1νk−1, (5)

and the associated covariance propagation, P−
k = E

{
e−
k e−T

k

}
, is given by

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Υk−1BνΥ

T
k−1 + Jk−1Vk−1J

T
k−1

+ Φk−1 E
{
e+
k−1b

T
ν

}
ΥT
k−1 + Υk−1 E

{
bν(e

+
k−1)

T
}

ΦT
k−1, (6)
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where we assume that νk−1 is uncorrelated to bν and e+
k−1. The state update at tk is assumed

to be the linear update

x̂+
k = x̂−

k + Kk(yk − ŷk), (7)

where

ŷk = Hkx̂k,

and ŷk follows from the measurement model in Eq. (4) and the fact that ηk is modeled as

a zero-mean random vector sequence and bη is modeled as a zero-mean random constant

vector. The update in Eq. (7) provides an unbiased a posteriori estimate when the a priori

estimate is unbiased. With the estimation error at tk after the measurement update defined

as in Eq. (3), we obtain the estimation error after the update as

e+
k = (I−KkHk)e

−
k −KkΛkbη −Kkηk. (8)

The update of the state estimation error covariance, P+
k = E

{
e+
k e+T

k

}
, is given by

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkΛkBηΛ
T
kKT

k + KkRkK
T
k + (9)

− (I−KkHk) E
{
e−
k bT

η

}
ΛT
kKT

k −KkΛk E
{
bη(e

−
k )T
}

(I−KkHk)
T,

where we assume that ηk is uncorrelated to bη and e−
k . Substituting Eq. (5) into Eq. (8)

yields

e+
k = (I−KkHk)

(
Φk−1e

+
k−1 + Υk−1bν + Jk−1νk−1

)
−KkΛkbη −Kkηk.

Forming e+
k bT

ν and taking the expectation yields

E
{
e+
k bT

ν

}
= (I−KkHk)

[
Φk−1 E

{
e+
k−1 bT

ν

}
+ Υk−1Bν

]
. (10)

where we assume that bν is uncorrelated to bη, νk−1, and ηk, ∀k. Factor E
{
e+
k−1 bT

ν

}
as

E
{
e+
k−1 bT

ν

}
= Lk−1Bν , (11)

where we note that Bν > 0. Substituting Eq. (11) into Eq. (6) yields

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Υk−1BνΥ

T
k−1 + Jk−1Vk−1J

T
k−1

+ Φk−1Lk−1BνΥ
T
k−1 + Υk−1Lk−1B

T
ν ΦT

k−1, (12)
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where Lk is found via recursion. Substituting Eq. (11) into Eq. (10) yields

E
{
e+
k bT

ν

}
= (I−KkHk) [Φk−1Lk−1 + Υk−1] Bν = LkBν .

Recalling that Bν > 0, we obtain the recursion for Lk as

Lk = (I−KkHk)(Φk−1Lk−1 + Υk−1). (13)

The initial condition, L0, for the Lk recursion is found by considering the state estimation

error after the first update, or

e+
1 = (I−K1H1) (Φ0e0 + Υ0bν + J0ν0)−K1Λ1bη −K1η1.

Computing e+
1 bT

ν and taking the expectation yields

E
{
e+
1 bT

ν

}
= (I−K1H1) Υ0Bν ,

with the assumption that bν is not correlated with the initial state estimation error, e0. We

find that

L1 = (I−K1H1)Υ0,

which can be obtained using the recursion of Eq. (13) for k = 1 if we set L0 = 0. Therefore,

we start the recursion for Lk with L0 = 0.

The estimation error at tk+1 before the measurement update is found from Eq. (5) to be

e−
k+1 = Φke

+
k + Υkbν + Jkνk. (14)

Substituting Eq. (8) into Eq. (14) yields the recurrence relation

e−
k+1 = Φk

[
(I−Kk Hk) e−

k −Kk ηk −Kk Λk bη
]

+ Υkbν + Jkνk.

Forming e−
k+1 bT

η and taking the expectation, it follows that

E
{
e−
k+1 bT

η

}
= Φk (I−Kk Hk) E

{
e−
k bT

η

}
−ΦkKk ΛkBη, (15)

where we assume that bη is uncorrelated to bν , νk, and ηk, ∀k. Factoring E
{
e−
k bT

η

}
as

E
{
e−
k bT

η

}
= Mk Bη, (16)
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it follows that

E
{
e−
k+1 bT

η

}
= Mk+1 Bη, (17)

and using Eq. (15)–(17), the matrix Mk can be found recursively as

Mk+1 = Φk [(I−KkHk)Mk −KkΛk] . (18)

If, at the initial time, a propagation occurs such that

e−
1 = Φ0e0 + Υ0bν + J0ν0,

with the assumption that bη is not correlated with the initial state estimation error, e0, it

follows from Eq. (16) that E
{
e−
1 bT

η

}
= 0 which in turn implies that M1 = 0 since Bη > 0.

We assume here that a propagation occurs at t0 before the first measurement update at t1.

Hence, we require the starting values L0 = 0 and M1 = 0. If an update occurs at time t0

before the first propagation, the same algorithm can be used by setting M0 = 0 and L0 = 0.

Substituting Eq. (16) into Eq. (9), after some rearrangement, we obtain

P+
k = P−

k −Kk

(
HkP

−
k + ΛkBηM

T
k

)
−
(
P−
k HT

k + Mk BηΛ
T
k

)
KT
k +

+ Kk

(
HkP

−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k + ΛkBηM

T
kHT

k

)
KT
k . (19)

Taking the derivative of the trace of P+
k with respect to Kk, setting the result to zero, and

solving for Kk yields the optimal gain,

Kk =
(
P−
k HT

k + Mk BηΛ
T
k

)
W−1

k , (20)

where the matrix Wk is the covariance of the residuals given by

Wk = E
{

(y − ŷ) (y − ŷ)T
}

= HkP
−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k + ΛkBηM

T
kHT

k .

Substituting Eq. (20) into Eq. (19) yields

P+
k = P−

k −KkWkK
T
k .

The discrete uncompensated bias algorithm is summarized in Table 1. The uncompensated

bias algorithm for the continuous time models of the measurements and dynamics is presented

in [7].
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System Model xk+1 = Φkxk + Υkbν + Jkνk
E {νk} = O, E

{
νk ν

T
j

}
= Vk δkj,∀k, j

E {bν} = O, E
{
bνb

T
ν

}
= Bν > O

Measurement Model yk = Hkxk + Λkbη + ηk
E {ηk} = O, E

{
ηkη

T
j

}
= Rkδkj, ∀k, j

E {bη} = O, E
{
bηb

T
η

}
= Bη > O

Assumptions E
{
νkb

T
ν

}
= O, E

{
ηkb

T
η

}
= O, E

{
ηkb

T
ν

}
= O, ∀k

E
{
bν bT

η

}
= O, E

{
νkb

T
η

}
= O, E

{
ηkν

T
j

}
= O, ∀k, j

Initial Conditions x̂+
0 = E {x(t0)} , P+

0 = E
{
e0e

T
0

}
, e0 = x(t0)− x̂+

0

Recursion Initialization M1 = O, L0 = O

State Propagation x̂−
k = Φk−1x̂

+
k−1, k = 1, 2, · · ·

Covariance Propagation P−
k = Φk−1P

+
k−1Φ

T
k−1 + Υk−1BνΥ

T
k−1 + Jk−1Vk−1J

T
k−1+

+Φk−1Lk−1BνΥ
T
k−1 + Υk−1BνL

T
k−1Φ

T
k−1

Gain Calculation Kk =
(
P−
k HT

k + Mk BηΛ
T
k

)
W−1

k

Wk = HkP
−
k HT

k + Rk + ΛkBηΛ
T
k + HkMk BηΛ

T
k + ΛkBηM

T
kHT

k

State Update x̂+
k = x̂−

k + Kk(yk −Hkx̂
−
k )

Covariance Update P+
k = P−

k −KkWkK
T
k

L Calculation Lk = (I−KkHk)(Φk−1Lk−1 + Υk−1)

M Calculation Mk+1 = Φk [(I−KkHk)Mk −KkΛk]

Table 1. Discrete-time Kalman filter with uncompensated bias.

III. Equivalency with Bias Characterization Filter

In this section we show that the bias characterization filter algorithm presented by

Hough [8] is a subset of the discrete uncompensated bias algorithm previously presented

by the authors [6,7]. The bias characterization filter incorporates only biases in the discrete

measurements. In our notation, this is equivalent to stating that Bν = O. In the derivation

by Hough, the estimation error δx̂ is defined with the opposite sign of the estimation errors

in Eq. (2) and (3), or

δx̂k = x̂k − xk = −ek. (21)

Other notation equivalencies include the correlation matrix Sk ↔ −MkBη, measurement

mapping matrix Ck ↔ Hk, the bias shaping matrix Mk ↔ Λk, and the prior correlation
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matrix is already propagated to the current measurement time, such that the state transition

matrix in Eq. (18) reduces to the identity matrix, or I ↔ Φk. With the above changes our

discrete uncompensated bias filter can be rewritten as

Kk = LT
kN−1

k (22)

Lk = CkP
−
k −Mk(S

−
k )T

Nk = HkP
−
k HT

k + MkBηM
T
k + Rk −HkS

−
k MT

k −Mk(S
−
k )THT

k

P+
k = P−

k −KkLk − LT
kKT

k + KkNkK
T
k

S+ = (I−KkHk)S
−
k + KkMkBk,

which are the equations presented by Hough [8].

The next section shows the mathematical equivalency between our uncompensated bias

filter and the consider filter. Since the bias compensation filter [8] is a subset of the uncom-

pensated bias filter, this implies that the bias compensation filter is also equivalent to the

consider filter.

IV. Equivalency with Consider Filter

Slightly different versions of the consider filter exist. In this work we refer to the consider

filter developed by Schmidt and presented by Jazwinski [5].

Under the same modeling assumptions of Section II, assume that an augmented state zk

is created at tk by

zk =


xk

bν

bη

 . (23)

Denoting the augmented state estimation error at tk after the measurement update as e+
z,k =

zk − ẑ+
k , we have the augmented state error covariance matrix at tk after the measurement

update given by

Z+
k = E

{
e+
z,ke

+T

z,k

}
where the nonzero submatrices are

E
{

e+
k e+T

k

}
= P+

k , E
{
e+
k bT

ν

}
= LkBν

E
{
e+
k bT

η

}
= [(I−KkHk) Mk −KkΛk] Bη (24)

E
{
bνb

T
ν

}
= Bν , E

{
bηb

T
η

}
= Bη

Denote the augmented state estimation error at tk+1 before the measurement update as
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e−
z,k+1 = zk+1 − ẑ−

k+1 and the associated augmented state error covariance matrix as

Z−
k+1 = E

{
e−
z,k+1e

−T

z,k+1

}
.

The augmented state estimation error covariance is propagated from tk to tk+1 via

Z−
k+1 = ΨkZ

+
k ΨT

k + Wk (25)

where the state transition matrix and process noise are given by

Ψk =


Φk Υk O

O I O

O O I

 , Wk =


JkVkJ

T
k O O

O O O

O O O

 .
Computing Z−

k+1 in Eq. (25) yields the following relationships

E
{

e−
k+1e

−T

k+1

}
= ΦkP

+
k ΦT

k + ΦkLkBνΥ
T
k + ΥkBνL

T
kΦT

k + ΥkBνΥ
T
k + JkVkJ

T
k (26)

E
{
e−
k+1bν

}
= [ΦkLk + Υk] Bν , E

{
e−
k+1bη

}
= Φk [(I−KkHk)Mk −KkΛk] Bη

We know that P−
k+1 = E

{
e−
k+1e

−T

k+1

}
and from Eq. (17) that E

{
e−
k+1 bT

η

}
= Mk+1 Bη, hence

from Eq. (26) it follows that

P−
k+1 = ΦkP

+
k ΦT

k + ΦkLkBνΥ
T
k + ΥkBνL

T
kΦT

k + ΥkBνΥ
T
k + JkVkJ

T
k

Mk+1 = Φk [(I−KkHk)Mk −KkΛk]

which are the same as Eq. (12) and Eq. (18). When a measurement becomes available at

tk+1 the augmented measurement mapping matrix is

Yk+1 =
[
Hk+1 O Λk+1

]
,

the residual covariance is given by

Wk+1 = Yk+1Z
−
k+1Y

T
k+1 + Rk+1

= Hk+1P
−
k+1H

T
k+1 + Λk+1BηM

T
k+1H

T
k+1 + Hk+1Mk+1BηΛ

T
k+1 + Λk+1BηΛ

T
k+1 + Rk+1,

The consider gain K∗
k+1 is one in which the rows corresponding to the consider states are
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zero [9]

K∗
k+1 =


Kk+1

O

O

 . (27)

The Schmidt-Kalman gain is obtained by minimizing the trace of P+
k+1 (and equivalently of

Z+
k+1) out of all possible choices of consider gains in Eq. (27). The Schmidt-Kalman gain is

given by

K∗
k+1 =


P−
k+1H

T
k+1 + Mk+1BηΛ

T
k+1

O

O

W−1
k+1, (28)

where the non-zero rows end up being equal to the corresponding portion of the globally

optimal Kalman gain

Kopt
k+1 =


P−
k+1H

T
k+1 + Mk+1BηΛ

T
k+1

Bν

(
LT
kΦT

k + Υk

)
HT
k+1

BηM
T
k+1H

T
k+1 + BηΛ

T
k+1

W−1
k+1. (29)

Then, computing the a posteriori augmented state error covariance matrix,

Z+
k+1 = E

{
e+
z,k+1e

+T

z,k+1

}
,

via

Z+
k+1 = (I−K∗

k+1Yk+1)Z
−
k+1(I−K∗

k+1Yk+1)
T + K∗

k+1Rk+1K
∗T
k+1,

with Kk+1 = (P−
k+1H

T
k+1 + Mk+1BηΛ

T
k+1)W

−1
k+1, P+

k+1 = E
{

e+
k+1e

+T

k+1

}
, and E

{
e+
k+1 bT

ν

}
=

Lk+1 Bν , yields

P+
k+1 = P−

k+1 −Kk+1

(
Hk+1P

−
k+1 + Λk+1BηM

T
k+1

)
−
(
P−
k+1H

T
k+1

+ Mk+1 BηΛ
T
k+1

)
KT
k+1 + Kk+1

(
Hk+1P

−
k+1H

T
k+1 + Rk+1 + Λk+1BηΛ

T
k+1

+ Hk+1Mk+1 BηΛ
T
k+1 + Λk+1BηM

T
k+1H

T
k+1

)
KT
k+1.

Lk+1 = (I−Kk+1Hk+1) (ΦkLk + Υk)

which are the same as Eq. (19) and Eq. (13). The fundamental relationships presented in

Table 1 are replicated by the consider filter when we set the initial conditions as M0 = 0,

L0 = 0, and K0 = 0.
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V. Conclusions

In this work, the algorithms for precise navigation are derived to include uncompensated

bias terms in both the process and measurement noise. The proposed algorithm treats the

biases as error terms rather than states and produces the minimum variance estimator under

this assumption. The proposed algorithm is compared to the well-known Schmidt-Kalman

filter or consider filter. The consider filter treats the biases as states but neglects to update

them when a measurement becomes available. This note shows that the two algorithms,

while approaching the problem from different perspectives, are mathematically equivalent.
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