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I. Introduction

The extended Kalman filter1 (EKF) is a nonlinear approximation of the optimal linear

Kalman filter.2,3 In the presence of measurements that are nonlinear functions of the state,

the EKF algorithm expands the filter’s residual (difference between the actual measurement

and the estimated measurement) in a Taylor series centered at the a priori state estimate.

The EKF truncates the series to first-order, but second-order filters also exist.4,5 It is well

known that in the presence of highly accurate measurements the contribution of the second-

order terms is essential when the a priori estimation error covariance is large.5,6 Possible

solutions include implementing a second-order Gaussian filter5 or an unscented Kalman

filter (UKF).7 The UKF is a nonlinear extension to the Kalman filter capable of retaining

the second moments (or higher) of the estimation error distribution. Even when retaining

the second-order terms of the Taylor series, the methods still rely on an approximation and

therefore good filtering results may not always be achievable. Historically, second-order

filters are not used because of their computational cost. The Space Shuttle, for example,

utilizes an ad hoc technique known as underweighting.8,9

The commonly implemented method for the underweighting of measurements for human

space navigation was introduced by Lear10 for the Space Shuttle navigation system. In

1966 Denham and Pines showed the possible inadequacy of the linearization approximation
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when the effect of measurement nonlinearity is comparable to the measurement error.11 To

compensate for the nonlinearity Denham and Pines proposed to increase the measurement

noise covariance by a constant amount. In the early seventies, in anticipation of Shuttle

flights, Lear and others developed relationships which accounted for the second-order effects

in the measurements.8 It was noted that in situations involving large state errors and very

precise measurements, application of the standard extended Kalman filter mechanization

leads to conditions in which the state estimation error covariance decreases more rapidly

than the actual state errors. Consequently the extended Kalman filter begins to ignore new

measurements even when the measurement residual is relatively large. Underweighting was

introduced to slow down the convergence of the state estimation error covariance thereby

addressing the situation in which the error covariance becomes overly optimistic with respect

to the actual state errors. The original work on the application of second-order correction

terms led to the determination of the underweighting method by trial-and-error.10

More recently, studies on the effects of nonlinearity in sensor fusion problems with ap-

plication to relative navigation have produced a so-called “bump-up” factor.12–15 While

Ferguson12 seems to initiate the use of the bump-up factor, the problem of mitigating fil-

ter divergence was more fully studied by Plinval13 and subsequently by Mandic.14 Mandic

generalized Plinval’s bump-up factor to allow flexibility and notes that the value selected

influences the steady-state convergence of the filter. In essence, it was found that a larger

factor keeps the filter from converging to the level that a lower factor would permit. This

finding prompted Mandic to propose a two-step algorithm in which the bump-up factor is

applied for a certain number of measurements only, upon which the factor was completely

turned off. Finally, Perea, et al.15 summarize the findings of the previous works and intro-

duce several ways of computing the applied factor. In all cases, the bump-up factor amounts

in application to the underweighting factor introduced in Lear.10 Save for the two-step

procedure of Mandic, the bump-up factor is allowed to persistently affect the Kalman gain

which directly influences the obtainable steady-state covariance. Effectively, the ability to

remove the underweighting factor autonomously and under some convergence condition was

not introduced.

While of great historical importance, the work of Lear is not well known as it is only doc-

umented in internal NASA memos.8,10 Kriegsman and Tau9 mention underweighting in their

1975 Shuttle navigation paper without a detailed explanation of the technique. The purpose

of this note is to review the motivations behind underweighting and to document its historical

introduction. Lear’s scheme uses a single scalar coefficient and tuning is necessary in order

to achieve good performance. A new method for determining the underweighting factor is

introduced, together with an automated method for deciding when the underweighting fac-

tor should and should not be applied. By using the Gaussian approximation and bounding
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the second-order contributions, suggested values for the coefficient are easily obtained. The

proposed technique has the advantage of Lear’s scheme’s simplicity combined with the the-

oretical foundation of the Gaussian second-order filter. The result yields a simple algorithm

to aid the design of the underweighted EKF.

II. Need for Underweighting

We review briefly the three state estimate update approaches assuming a linear time-

varying measurement model leading to the classical Kalman filter, a nonlinear measurement

model with first-order linearization approximations leading the widely used extended Kalman

filter, and a nonlinear model with second-order approximations leading to the second-order

extended Kalman filter.

A. Linear Measurement Model and the Classical Kalman Filter Update

In the classical linear setting associated with the development of optimal state estimation

using the Kalman filter,1 consider the measurement model given by

yk = Hkxk + ηk , (1)

where yk ∈ Rm are the m measurements at each time tk, xk ∈ Rn is the n-dimensional state

vector, Hk ∈ Rm×n is the known measurement mapping matrix, ηk ∈ Rm is modeled as a

zero-mean white-noise sequence with E {ηk} = 0, ∀ k and E
{
ηkη

T
j

}
= Rkδkj where Rk > 0

∀ k and δkj = 1 when k = j and δkj = 0 when k 6= j. The Kalman filter state update

algorithm provides an optimal blending of the a priori estimate x̂−k and the measurement

yk at time tk to obtain the a posteriori state estimate x̂+
k via

x̂+
k = x̂−k + Kk

[
yk −Hkx̂

−
k

]
, (2)

where the superscript − denotes a priori and + denotes a posteriori.

Defining the a priori estimation error as e−k = xk− x̂−k and the a posteriori estimation er-

ror as e+k = xk−x̂+
k and assuming these errors to be zero mean, the associated symmetric, pos-

itive definite a priori and a posteriori estimation error covariances are P−k = E
{
e−k
(
e−k
)T}

and P+
k = E

{
e+k
(
e+k
)T}

, respectively. Using Eq. (2) and the definitions of the state estima-

tion errors and error covariances, we obtain the a posteriori state estimation error covariance

via the well-known Joseph formula

P+
k = [I−KkHk]P−k [I−KkHk]T + KkRkK

T
k , (3)
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which is valid for any Kk. If the gain Kk is chosen so as to minimize the trace of the a

posteriori estimation error, we call that gain the Kalman gain and it is given by

Kk = PkH
T
k

[
HkP

−
k H

T
k + Rk

]−1
. (4)

The trace of the state estimation error covariance is generally not a norm but is equivalent

to the nuclear norm (the matrix Shatten 1-norm) for symmetric semi-positive matrices. If

the gain given in Eq. (4) is applied to the state estimation error covariance of Eq. (3), then

the update equation can be rewritten after some manipulation as

P+
k = [I−KkHk]P−k , (5)

or equivalently,

P+
k = P−k −Kk[HkP

−
k H

T
k + Rk]KT

k . (6)

Under the assumptions of the Kalman filter development (linear, time-varying measurement

model with a zero-mean white-noise sequence corrupting the measurements, unbiased a pri-

ori estimation errors, known dynamics and measurement models, etc.), the state estimate

and state estimation error covariance updates are optimal and we expect no filter diver-

gence issues. The estimation error covariance will remain positive definite for all tk and the

estimation error covariance will be consistent with the true errors. In practice, the mea-

surements are generally better represented with nonlinear measurement models leading to

a variety of engineering solutions, mostly ad hoc, that must be carefully designed to ensure

acceptable state estimation performance. Underweighting is one such method to improve

the performance of the extended Kalman filter in practical settings.

B. Nonlinear Measurement Model and the Extended Kalman Filter Update

In the nonlinear setting, consider the measurement model given by

yk = h(xk) + ηk , (7)

where h(xk) ∈ Rm is a vector-valued differentiable nonlinear function of the state vector

xk ∈ Rn. The idea behind the extended Kalman filter (EKF) is to utilize Taylor series

approximations to obtain linearized models in such a fashion that the EKF state update

algorithm has the same general form as the Kalman filter. To that end, we find that the

state estimate update is given by1

x̂+
k = x̂−k + Kk[yk − h(x̂−k )] . (8)
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Following the usual extended Kalman filter development procedure of using Taylor series

expansions about the a priori state estimate (and neglecting higher-order terms), we find

the measurement residual is given by

εk = yk − h(x̂−k ) ' Hke
−
k + ηk , (9)

where

Hk ,

[
∂h(xk)

∂xk

∣∣∣∣
xk=x̂−

k

]
. (10)

Computing the measurement residual covariance E
{
εkε

T
k

}
yields

Wk = HkP
−
k H

T
k + Rk . (11)

The state estimation error covariance and Kalman gain are the same as in Eqs. (3) and (4),

respectively, with Hk given as in Eq. (10). The state estimation error covariances in the

forms shown in Eqs. (5) and (6) also hold in the nonlinear setting with Hk as in Eq. (10).

From Eqs. (6) and (8), it is seen that reducing the Kalman gain leads to a smaller update

in both the state estimation error covariance and the state estimate, respectively. Reducing

the gain is the essence of underweighting and the need for this adjustment is illuminated in

the following discussion.

Adopting the viewpoint that the state estimation error covariance matrix represents the

level of uncertainty in the state estimate, we expect that when we process a measurement

(representing new information) that the uncertainty would decrease (or at least, not in-

crease). This is, in fact, the case and can be seen in Eq. (6). Under the assumption that the

symmetric matrices P−k > 0 and Rk > 0, it follows that

Kk[HkP
−
k H

T
k + Rk]KT

k ≥ 0 , (12)

and we can find a number αk ≥ 0 at each time tk such that

P−k −P+
k ≥ αkI , (13)

which shows that the P−k − P+
k is non-negative definite. The same argument can be made

from the viewpoint of comparing the trace (or the matrix norm) of the a posteriori and

a priori state estimation error covariances. As each new measurement is processed by the

EKF, we expect the uncertainty in the estimation error to decrease. The question is, does

the a posteriori uncertainty as computed by the EKF represent the actual uncertainty, or in

other words, is the state estimation error covariance matrix always consistent with the actual
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state errors? In the nonlinear setting when there is a large a priori uncertainty in the state

estimate and a very accurate measurement, it can happen that the state estimation error

covariance reduction at the measurement update is too large. The underweighting discussed

here is a method to address this situation by limiting the magnitude of the state estimation

error covariance update with the goal of retaining consistency of the filter covariance and

the actual state estimation errors.

Pre- and post-multiplying the a posteriori state estimation error covariance in Eq. (6)

by Hk and HT
k , respectively, yields (after some manipulation)

HkP
+
k H

T
k = HkP

−
k H

T
k (HkP

−
k H

T
k + Rk)−1Rk . (14)

In Eq. (14), we see that if HkP
−
k H

T
k � Rk then it follows that

HkP
+
k H

T
k ' Rk . (15)

The result in Eq. (15) is of fundamental importance and is the motivation behind under-

weighting.

C. Nonlinear Measurement Model and the 2nd-Order Kalman Filter Update

Consider the nonlinear measurement model in Eq. (7) and assume the state update is given

by

x̂+
k = x̂−k + Kk(yk − ŷk) . (16)

We compute the measurement residual following the usual extended Kalman filter develop-

ment procedure of using Taylor series expansions about the a priori state estimate except

that we now keep up to second-order terms in the Taylor series expansion. Let bk represent

the second-order term of the Taylor series expansion of h(xk). Define

H′i,k ,

[
∂2hi(xk)

∂xk∂xT
k

∣∣∣∣
xk=x̂−

k

]
,

where hi(xk) is the ith component of h(xk). Then the ith component of bk is given by

bi,k =
1

2
(e−k )TH′i,ke

−
k =

1

2
trace(H′i,ke

−
k (e−k )T) . (17)

To keep the filter unbiased the measurement estimate in Eq. (16) is chosen as

ŷk = h(x̂−k ) + b̂k , (18)
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where the ith component of b̂k is given by

b̂i,k = 1/2 trace(H′i,kP
−
k ) .

The measurement residual is defined as

εk = yk − ŷk. (19)

Expanding Eq. (19), the ith component of the residual is obtained to be

εi,k = Hi,k e
−
k + 1/2 trace(H′i(tk)e−k (e−k )T)− 1/2 trace(H′i(tk)P−k ) + ηi,k , (20)

where Hi,k is the ith row of the measurement Jacobian and ηi,k is the ith component of the

measurement noise ηk. Computing the measurement residual covariance E
{
εkε

T
k

}
yields

Wk = HkP
−
k H

T
k + Bk + Rk , (21)

where matrix Bk is the contribution of the second order effects and its ijth component is

given by

Bij, k , 1/4 E
{

trace(H′i(tk)e−k (e−k )T) trace(H′i(tk)e−k (e−k )T)
}

− 1/4 trace(H′i(tk)P−k ) trace(H′i(tk)P−k ) .

Under the Gaussian approximation, the ijth component of Bk is given by

Bij, k =
1

2
trace(H′j(tk)P−k H′i(tk)P−k ) . (22)

Comparing the measurement residual covariance for the EKF in Eq. (11) with the mea-

surement residual covariance for the second-order filter in Eq. (21), we see that when the

nonlinearities lead to significant second-order terms which should not be neglected, then

the EKF tends to provide state estimates that are not consistent with the actual errors.

Typically, we address this by tuning the EKF using Rk and the process noise (not dis-

cussed here but part of the propagation phase of the EKF) as parameters to be tweaked.

If the contribution of the a priori estimation error HkP
−
k H

T
k to the residuals covariance

is much larger than the contribution of the measurement error Rk, the EKF algorithm

will produce HkP
+
k H

T
k ' Rk. If Bk is of comparable magnitude to Rk then the actual

HkP
+
k H

T
k ' Rk + Bk. Therefore, a large underestimation of the a posteriori covariance can

occur in the presence of nonlinearities when the estimated measurement error covariance is

much larger than the measurement error covariance.
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The covariance update is given by the modified Gaussian second order filter update4

P+
k = P−k −HkP

−
k W

−1
k

(
HkP

−
k

)T
, (23)

where the residual covariance Wk is given by Eq. (21).

III. Underweighting Measurements

Underweighting is the process of modifying the residual covariance to reduce the update

and compensate for the second-order effects described above. In this section, we describe

three common methods for performing underweighting with the EKF algorithm.

A. Additive Compensation Method

The most straightforward underweighting scheme is to add an underweighting factor Uk as

Wk = HkP
−
k H

T
k + Rk + Uk . (24)

With the Kalman gain given by

Kk = P−k H
T
kW

−1
k , (25)

we see that the symmetric, positive-definite underweighting factor Uk decreases the Kalman

gain, thereby reducing the state estimate and state estimation error covariance updates. One

choice is to select Uk = Bk, which is, for example, the current design for the Orion vehicle.16

The advantage of this choice is its theoretical foundation based on analyzing the second-order

terms of the Taylor series expansions. The disadvantages include higher computational costs

to calculate the second-order partials and the reliance on the assumption that the estimation

errors possess Gaussian distributions. In practical applications, the matrix Uk needs to be

tuned appropriately for acceptable overall performance of the EKF. The process of tuning a

positive definite matrix is less obvious than tuning a single scalar parameter.

B. Scaling the Measurement Error Covariance

Another possible underweighting approach is to scale the measurement noise by choosing

Uk = βRk , (26)

where β > 0 is a scalar parameter selected in the design process. This approach has been

successfully used;17 however, it is not recommended from both a conceptual and a practical
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reason. Recalling that the underweighting is necessary because of neglecting the second-order

terms of the Taylor series expansion of the measurement function, it seems more natural

to express the underweighting as a function of the a priori estimation error covariance.

Choosing a constant coefficient to scale Rk seems less practical and will probably lead to a

more complicated tuning procedure.

C. Lear’s Method

Lear’s choice was to make Uk a percentage of the a priori estimation error covariance via10

Uk = βHkP
−
k H

T
k . (27)

Let P̄−k ∈ R3×3 be the partition of the state estimation error covariance associated with

the position error states. The Space Shuttle employs underweighting when
√

trace P̄−k > α.

The positive scalars α and β are design parameters. For the Space Shuttle, α is selected to

be 1000 meters and β is selected to be 0.2.10 When
√

trace P̄−k > 1000 m, then β = 0.2,

otherwise β = 0.

IV. Tuning Aids

In this section, a technique to aid the tuning of the underweighting coefficient is presented.

When the nonlinearities lead to second-order terms that cannot be neglected, we find that

the measurement residual covariance is more accurately given by (see Eq. (21))

Wk = HkP
−
k H

T
k + Rk + Bk . (28)

Following Lear’s approach to underweighting the measurement residual covariance, we pro-

pose an underweighting of the form

WU,k = (1 + βk)HkP
−
k H

T
k + Rk . (29)

Comparing Eqs. (28) and (29), the desired effect is to have

traceWU,k ≥ traceWk ∀ k . (30)

This leads us to choose the underweighting coefficient βk such that

βk ≥ traceBk/ traceHkP
−
k H

T
k . (31)
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On the surface, this approach does not have any great advantage over the additive compen-

sation method where we choose Uk = Bk since Bk needs to be calculated in both cases.

However, often a bound on the Hessian of the measurement function exists, therefore it is

not necessary to compute the second-order term of the Taylor series expansion. It is known

that the jth term on the diagonal of B at time tk is bounded by18

Bjj, k ≤
1

2

(
‖H′j,k‖ traceP−k

)2
, (32)

where ‖ · ‖ indicates the matrix or vector 2-norm. Therefore, it follows that

traceBk ≤
1

2
(traceP−k )2

m∑
j=1

‖H′j,k‖2 ≤
ck
2

(traceP−k )2 , (33)

where ck is an upper bound of
∑m

j=1 ‖H′j,k‖2. If we select βk as

βk =
ck
2

(traceP−k )2

traceHkP
−
k H

T
k

, (34)

then the inequality in Eq. (31) is satisfied at any tk. Based on previous discussions, the

underweighting should be applied when the nonlinearities are such that the second-order

terms in the Taylor series expansion are comparable in magnitude to the measurement noise.

A good rule of thumb in determining when underweighting should be applied is

ck
2

(traceP−k )2 > z traceRk , (35)

where 0 < z < 1 is a parameter to be specified. Since P−k > 0, the relationship in Eq. (35)

is equivalent to

traceP−k >

(
2z

ck
traceRk

)1/2

. (36)

Notice that Eq. (36) is similar to Lear’s rule on when to apply underweight in that the check

depends on computing the trace of the a priori state estimation error covariance. In this case,

however, Eq. (34) is derived using upper bounds that could be artificially loose if precautions

are not taken. An artificially loose upper bound could negate the positive contribution of the

underweighting method proposed here to obtain a good design value for βk. The suggested

precaution is to only include in the computation of the trace of P−k the states that actually

contribute to the measurement. This is similar to Lear’s method in which only the trace of

the state estimation error covariance associated with the position states are included in the

computation. Of course, Lear was considering the spacecraft rendezvous problem and this

was a sensible precaution given the measurements from the Shuttle rendezvous radar.
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V. Numerical Results

Consider a two spacecraft system with a non-maneuvering target vehicle and a chaser

vehicle maneuvering in proximity. The principle relative sensor is a LIDAR (Light Detection

And Ranging) measuring the range and two bearing angles from the chaser to the target.

The chaser vehicle also has an IMU (inertial measurement unit) providing measurements of

velocity changes (due to non-gravitational sources) and changes in attitude, and an on-board

GPS system. The range measurement at tk is modeled as the range between the two vehicles

ρk = ‖rrel,k‖. The Jacobian (with respect to position only) is given by

Hk =
1

ρk

rTrel,k .

The Hessian (with respect to relative position only) is given by

H′k =
1

ρk

(
I− rrel,kr

T
rel,k/ρ

2
k

)
= − 1

ρ3k
[rrel,k×]2 .

The matrix H′k is symmetric with a zero eigenvalue and a repeated eigenvalue at 1/ρk. The

norm of the Hessian does not need to be bounded because is known analytically ‖H′k‖ = 1/ρk.

Out of the three LIDAR measurements, the range is the bigger contributor to the second

order effects, therefore the upper bound ck is chosen as 3/ρ2k. The LIDAR is activated when

the two vehicles are 1 km apart. The chaser EKF filter is initialized with a GPS update of

the chaser state and a ground update of the target state. The GPS accuracy is assumed 10

m per axis (1σ) the ground update is assumed to have accuracy 20 m per axis (1σ).

The LIDAR measurement is corrupted by normally distributed random noise and a ran-

dom constant bias. The LIDAR range noise and bias are assumed to be range dependent,

varying linearly from 0.01 m at docking to 0.1 m (1σ) at a relative distance of 100 meters.

For any range greater than 100 meters the noise and bias are fixed to the maximum value

of 0.1 m (1σ). It is assumed that the LIDAR takes 2 minutes to scan its entire field of view

and that two scans are required for reacquisition. We simulate a loss of track scenario in

which the LIDAR is tracking nominally for about 1.3 hours before a loss of track leading to

a 4 minute gap in LIDAR measurements. The performance of the EKF with and without

underweighting is examined.

Figures 1 and 2 show the performance of the EKF filter without underweighting for

a set of 100 monte carlo runs. Each plot contains the 100 actual state estimation errors

(gray lines) and the the square root of the diagonal elements of the filter’s covariance for

each of the 100 runs (black lines, 3σ). Figure 3 zooms in the position error after loss of

track. It can be seen that when the EKF reacquires (after the 4 minute delay for the two
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LIDAR scans) the uncertainty in the state estimate (as measured by the EKF covariance)

rapidly decreases. However, in many of the samples the actual state errors do not decrease

as quickly leading to an inconsistency in the state errors and the state estimation error

covariance. Therefore, when the next measurement becomes available the predicted state

estimation error covariance of the residual is small and the measurement is rejected because

the actual measurement residual is more than 5 times its predicted standard deviation. In

the absence of residual editing, i.e. if the measurements are accepted regardless of how large

the measurement residuals are, the EKF would diverge. When measurements are rejected,

the filter only propagates and the state estimation error covariance will continue to increase.

In either case, the performance of the EKF is unacceptable. From Figure 3 it can be seen

that in a few runs the covariance snaps back down some time after re-acquisition. Because

of the rejections, the propagation-only phase causes the covariance to increase. In certain

cases, the added uncertainty is sufficient to eventually accept measurements. Figure 3 also

shows many diverging cases. In a well-designed filter, the estimation error should match

the predicted covariance, and the filter should not reject measurements after re-acquisition.

The filter’s covariance should rapidly decrease after re-acquisition and stay small for the

remainder of the simulation.
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Figure 1. Relative Position Performance without Underweighting.
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Figure 3. Relative Position Performance without Underweighting.

Figures 4 and 5 show the results when underweighting is applied. The underweighting

coefficient is chosen using Eq. (34) and it is applied when the condition of Eq. (36) is satisfied

with z = 0.1 in Eq. (35). Following the suggested precaution discussed in the previous

section, we include only the relative position states in the computation of the traceP−k . The

covariance update is given by Eq. (23) by substituting Bk with βkHkP
−
k H

T
k and rewriting it

in an equivalent Joseph formula-like form

P+
k = [I−KkHk]P−k [I−KkHk]T + Kk(βkHkP

−
k H

T
k + Rk)KT

k .

It can be seen in Figures 4 and 5 that the proposed underweighting method allows the

EKF to re-converge after the LIDAR begins to provide measurements again.

From Figures 4 and 5 it can be seen that all 100 samples of the filter’s covariance are

nearly on top of one another. Figures 6 and 7 show one realization of the covariance (1σ,

solid line) versus the sample covariance calculated from the estimation errors of the 100 runs

(1σ, dashed line). It can be seen that the two lines are closely superimposed, demonstrating

the filter’s covariance is consistent with the actual estimation error’s uncertainty.

VI. Conclusions

In this note the purpose of underweighting is reviewed. The original underweighting

scheme by Lear is introduced. Other existing schemes are discussed. Techniques to aid

the choice of the tuning parameters of Lear’s underweighting schemes are introduced. A

numerical example showing the need for underweighting and the performance of the pro-
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Figure 4. Relative Position Performance with Underweighting.
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Figure 5. Relative Velocity Performance with Underweighting.

posed method is illustrated. The numerical results suggest that the proposed solution is a

viable method to tune the underweighted extended Kalman filter in the presence of LIDAR

measurements.
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