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I. Introduction

In the presence of significant and consistent non-gravitational accelerations, accelerometer measure-

ments are often used in lieu of analytical expressions to propagate the state of aerospace vehicles in model-

based estimation algorithms such as the Kalman filter [1, 2]. In space applications, accelerometers are often

used to propagate the state of the vehicle through a translational maneuver, or “burn”. At all other times

non-gravitational forces are usually much smaller than the accuracy of most commercially available ac-

celerometers, therefore space vehicles commonly threshold the acceleromter, i.e. they use it only when the

measurements are above a predetermined value [3]. Accelerometer thresholding is also referred to as ac-

celerometer gating. The Space Shuttle rendezvous and proximity operations program (RPOP), for example,

employs this strategy [4].

Rarely accelerometers are used as external measurements to update the state of the vehicle. One example

of this approach is Ref. [5] in which accelerometers are used in conjunction with a filter bank for Mars entry

navigation. Under this type of implementation, a model of the non-gravitational forces is required. When

on a launch pad a vehicle is stationary with respect to Earth and the predicted accelerometer measurement

is very easily obtained. Pre-launch operations therefore commonly employ accelerometer measurements to

update the estimate of its repeatable errors, such as biases, misalignments, and scale factors.
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Accelerometers usually have two types of repeatable biases. A constant bias (sometimes represented as

a first order Markov process [6] with very large time constant of the order of 24 hours) and a faster changing

Markov process with time constant of around one hour. Velocity random walk (VRW) also corrupts the

measurement, but this source of error is not estimable because it is white acceleration noise. Other sources

of error are the accelerometer scale factors, internal misalignment and non-orthogonality, quantization er-

rors, and mounting errors. In the standard accelerometer usage by space vehicles the accelerometer errors

are estimated from external measurements through their correlation to other states. This correlation is built

during maneuvers at which times the accelerometer measurement is incorporated into the filter dynamics. In

between maneuvers the accelerometer measurement is not used at all, therefore the estimate of the one-hour

Markov bias degrades, which results in a worse navigation performance during the next maneuver. For vehi-

cles with small thrusters and maneuvers far apart, this approach is often not sufficient to meet mission goals.

A common practice for these vehicles is to use a simple averaging scheme to estimate the accelerometer

bias prior to maneuvers. The computation of this average is carried outside the navigation filter, therefore

no correlation between the filter error and the accelerometer bias estimation error is taken into account when

formulating a navigation solution.

This work introduces a dual accelerometer usage strategy for onboard space navigation. In the pro-

posed algorithm the accelerometer is used to propagate the state when its value exceeds a threshold and it

is used to estimate its errors otherwise. The paper is organized as follows: accelerometer thresholding is

first introduced, the navigation algorithm is then presented and validated with numerical simulation, finally

conclusions are drawn.

II. Accelerometer Thresholding

This section presents a simple example to show the need of accelerometer thresholding in spacecraft

navigation. Outside of thrust, drag is usually the biggest non-gravitational acceleration source in low Earth

orbit (LEO). The international space station (ISS) is used as an example to quantify the contribution of drag.

The ISS is a large structure placed at an altitude of 400 km and is subject to high drag. A 2008 analysis from

the European Space Agency (http://www.esa.int/esaMI/Space_In_Bytes/SEM7FXJ26DF_0.html) finds that

the ISS coefficient of drag is 2.07, the frontal area between 700 and 2300m2 depending on the configuration,
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and the yearly average air density 3.98 10−12kg/m3. Assuming a configuration with frontal area 1000m2 the

drag acting on the ISS is 0.25N. The mass of ISS was 2.5 105kg in 2008, resulting in a drag acceleration of

10−6m/s2 or around 0.1µg.

A relatively good accelerometer can have a one hour Markov with steady-state standard deviation σss =

10 µg. For each accelerometer’s axis, the Markov bias ba evolves as

ḃa = −1
τ
ba + ν, (1)

where τ = 3600s and ν is a zero-mean white process with spectral density Sν = σ2
ss/(2τ). In order to

establish to which accuracy this Markov bias can be estimated, we assume a continuous Kalman filter, we

also assume no non-gravitational forces acting on the vehicle, therefore the accelerometer measurement is

y = ba + η (2)

for each axis. The velocity random walk η is a zero-mean white process, a spectral density Sη = (10 µg
√
s)2

is assumed, which is a relatively good value. The estimate of the Markov bias evolves as

˙̂
ba = −1

τ
b̂a +K(y − b̂a), (3)

where K = P/Sη and P is the estimation error variance evolving as

Ṗ = −2
τ
P +

2
τ
σ2
ss − P 2/Sη. (4)

After some algebra it follows that the steady-state value of the estimation error standard deviation is
√
Pss =

1.5µg. Even under the optimistic assumptions of this example the estimation error of the Markov bias is 15

times bigger than drag. When using the compensated accelerometer measurement to propagate the state an

additional error source is the VRW. During non-thrusting phases it is therefore much more accurate not to

use the accelerometer to propagate the state but to use a simple drag model.

III. Dual Accelerometer Usage Strategy

In all spacecraft missions the authors are aware of accelerometers are thresholded during orbital coast

flight. In the majority of these missions the accelerometer bias is estimated to improve the navigation solu-

tion. The estimation occurs in either of two ways. A common solution is to include the accelerometer bias as
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a state in the filter and to estimate it through external measurements and the correlations built during maneu-

vers. The issue with this approach is that when maneuvers occur far apart the estimate degrades in-between

maneuvers, often resulting in a poor knowledge of the bias when the subsequent maneuver occurs. The usual

solution to this problem is to have an external estimator of the accelerometer bias. While this second solution

usually produces good results, it completely ignores the inevitable correlation between the states in the filter

and the accelerometer bias estimate. To optimally account for this correlation we propose an integrated filter

that uses the estimate of the bias during maneuvers and estimates it during coast flight.

Accelerometer measurements fed to the navigation filter are usually integrated accelerations over the last

time step and they are compensated for sculling errors. Sculling compensation means that the effects of the

rotation of the vehicle during the time step are compensated and the measurement ∆ṽbk is an inertial change

in velocity between times tk−1 and tk coordinatized in the body-fixed frame at time tk. When the filter is

called it first propagates the position (r), velocity (v), and accelerometer bias (b) to the current IMU time tk

as

d

dt
r̂i = v̂i (5)

d

dt
v̂i = ĝi + âi (6)

d

dt
b̂b = −1

τ
b̂ba, (7)

where ĝi is the estimate of the gravitational acceleration acting on the vehicle. When the accelerometer

measurement is above a threshold the estimated non-gravitational acceleration âi is obtained from the ac-

celerometer measurement âi = Ti
b(tk) (∆ṽbk/∆t − b̂b). When the measurement is below the threshold âi

is either zero or a model of drag, depending on the application. Matrix Ti
b(tk) is the coordinate transforma-

tion from the body-fixed frame at time tk to the inertial frame. Other states such as attitude can easily be

incorporated in the filter.

When the accelerometer is included during propagation the state is only updated with external measure-

ments. When the accelerometer is thresholded an estimate of the measurement ∆v̂bk is formed. This estimate

is given by

∆v̂bk =
∫ tk

tk−1

(b̂ba + d̂b)dt = τ
(
e∆t/τ − 1

)
b̂ba(tk) +

∫ tk

tk−1

d̂bdt ' ∆t
(
b̂ba(tk) + d̂b

)
, (8)

where d̂b is the drag acceleration expressed in body coordinates. The measurement mapping matrix for the

4



accelerometer measurement, Ha is a 3×nmatrix, where n is the number of states in the filter. Matrix Ha has

zeros everywhere except for an identity matrix times ∆t at the 3× 3 block corresponding the accelerometer

bias state. The Kalman gain is calculated as usual

Kk = P−
k HT

a (HaP−
k HT

a + Ra)−1, (9)

where P−
k is the a priori estimation error covariance matrix and Ra is the accelerometer noise covariance.

The accelerometer white noise is expressed in terms of a velocity random walk with an associated spectral

density Sa whose units are the square of m/s/
√
s or, more frequently, µg

√
s. Therefore the covariance of

the noise over an IMU step ∆t is given by

Ra = Sa ∆t. (10)

It is not desirable to update all the states, only the accelerometer bias should be updated. Therefore a

consider gain K∗
k is formed by zeroing all the rows of Kk corresponding to the other states. Since the new

gain is not optimal the Joseph’s formula is used to obtain the a posteriori covariance

P+
k = (In×n −K∗

kHa) P−
k (In×n −K∗

kHa)T + K∗
kRa(K∗

k)T. (11)

The state is updated as

x̂+
k = x̂−k + K∗

k

(
∆ṽbk −∆v̂bk

)
. (12)

The choice of the threshold value is usually driven by the thruster size, the accelerometer accuracy, and

engineering judgement. A good rule of thumb is to threshold the accelerometer when the measurement is

below the 3σ value of the sum of the bias and noise, assumed independent

(∆ṽbk)T∆ṽbk < 9
(
trace Ba∆t2 + trace Sa∆t

)
, (13)

where Ba is the accelerometer bias covariance from the IMU specifications. If ∆ṽbk is compensated with

the estimate of the bias, Ba is replaced with the accuracy of the bias estimate. It is also possible to choose a

non-constant threshold

(∆ṽbk − b̂b∆t)T(∆ṽbk − b̂b∆t) < 9
(
trace P−

aa∆t2 + trace Sa∆t
)
, (14)

where P−
aa is the 3× 3 portion of the covariance corresponding to the accelerometer bias state. Spacecrafts

usually operate at low angular rates, but in case of high rates the term b̂b∆t in Eq. (14) needs to be replaced
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by

∫ tk

tk−1

Tb(tk)
b(τ) bb(τ) dτ, (15)

where Tb(tk)
b(τ) is the transformation matrix that takes the vehicle’s body frame at time τ into the body frame

at time tk.

This section assumes that the entire accelerometer measurement is either applied or thresholded, it is

also possible to develop similar algorithms by considering the measurement from each axis independently.

IV. Numerical Results

An orbital rendezvous is used as an example. The target spacecraft is placed on a circular 400km orbit.

The chaser vehicle is placed in a circular orbit 4km below the target and 14km behind. At a downrange of

13.2km an altitude raise maneuver is commanded. This maneuver is a 135 degree Lambert targeting taking

the chaser to 1.4km below and 4.3km behind the target. A clean up maneuver is performed half the way

during this transfer. A circularization maneuver is performed once the end of the transfer (2030s). The next

maneuver is performed to take the chaser 500m below the target with zero relative velocity. Figure 1 shows

the relative trajectory in the local vertical-local horizontal (LVLH) reference frame. The origin of the plot

is the location of the target, while the line represents the relative position of the chaser as time passes. The

y-axis is the altitude counted positive below the target, while the x-axis is downrange.

The simulated true environment contains a 9 by 9 gravity model and atmospheric drag. The filter is a

nine state filter with relative position, velocity, and accelerometer bias. The filter’s propagation includes J2

effects and no drag. The chaser vehicle has a 20N thruster and a mass of 1000kg. The accelerometer errors

are given in Table 1.

Error Type 1σ Error Units

Time Constant 3600 s

Markov Bias 100 µg

Velocity Random Walk 100 µg
√

s

Table 1 Accelerometer Model Error Parameters

Together with the accelerometer there is a long range radar whose errors are shown in Table 2. The radar
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Fig. 1 Relative In-Plane LVLH Trajectory

provides range to the target as well as azimuth and elevation to it.

Error Type 1σ Error Units

Range Error 5 m

Angles Errors 0.5 deg

Table 2 Radar Model Error Parameters

The initial filter covariance is diagonal with entries as shown in Table 3, while the velocity process noise

spectral density is 10−6m2/s3.

Error Type 1σ Error Units

Relative Position 10 m

Relative Velocity 0.1 m/s

Accelerometer Bias 100 µg

Table 3 Initial Estimation Errors

Figs. 2 and 3 show the comparison of three filters’ performances in estimating position and velocity.

All lines show the root-sum-squared (RSS) of the estimation error standard deviation. The dash line shows a

filter without thresholding the accelerometer (i.e. the accelerometer measurement is always used to propagate

the vehicle state). It can be seen that the estimate becomes progressively better as the chaser approaches
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the target. At the very beginning of the simulation the estimate of velocity degrades, this fact is due to the

accelerometers errors entering the dynamics. The solid lines show the filter’s performance with accelerometer

thresholding. The overall performance of the system improves; the uncertainty of the state is greatly reduced

with respect to the previous case, especially during coast phases. The times at which the maneuvers occur are

easily visible from the velocity error plot. During the maneuver a spike in velocity error occurs, which drives

an increase of position error as well. The dash-dot lines show the performance of the proposed algorithm

for which the accelerometer bias is estimated from the accelerometer measurements outside maneuvers. The

proposed algorithm performs the best and it can be seen that the new algorithm outperforms the simple

thresholding scheme while firing of the thrusters. Fig. 4 gives great insight on the reason of the various filters

performances. Once again the dashed line is the scheme in which the accelerometer measurement is always

incorporated to propagate the state. After a first period in which the uncertainty decreases relatively fast, the

filter estimates the bias to its full capability and further improvements are slow and due to the progressive

reduced distance between the two vehicles (which causes a better estimate of position from radar bearing

measurements). The filter estimates the accelerometer bias through radar measurements taking advantage of

the correlations built during the propagation phase. The dot-dash line shows the proposed algorithm and it

can be seen that the bias uncertainty decreases much faster and to a much lower level. The reason is that

the accelerometer bias is estimated directly from the accelerometer measurements and not deduced from

radar measurements. The maneuvers are clearly visible as little spikes in the accelerometer bias estimation

error. The reason is that the small thrusters cause long burn times and during maneuvers no measurement

is available to directly estimate the bias. These two effects result in degradation of the estimate during

maneuvers, followed by an improvement once the maneuver ended. While the simple thresholding scheme

outperforms the no-thresholding algorithm in estimating position and velocity, it provides the worst estimate

of accelerometer bias as seen by the solid line in Fig. 4. Until the first maneuver no correlation exists therefore

the bias is not estimated at all and remains constant at the Markov steady-state value. After the first maneuver

the built correlation allows the filter to estimate the bias through radar measurements until a point is reached

in which the quantities have de-correlated enough that the estimates starts degrading again. This pattern is

repeated after subsequent maneuvers. The large accelerometer bias estimation errors of this scheme are the

reason of the corresponding large velocity error spikes during maneuvers in Fig. 3.
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Fig. 2 Comparison of position estimation error
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Fig. 3 Comparison of velocity estimation error

V. Conclusions

This papers presents a dual accelerometer usage in an orbital Kalman filter. The accelerometer is both

used to propagate position and velocity during maneuvers and to update the accelerometer bias state outside

of maneuvers. The advantage of this approach is its superior performance to a simple thresholding of the ac-

celerometer. In the simple thresholding scheme the correlation between accelerometer bias and position and

velocity during the maneuvers is not sufficient to adequately estimate the bias during coast flight. Therefore
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Fig. 4 Comparison of accelerometer bias estimation error

the estimate of the bias degrades outside of maneuvers adding considerable uncertainty during subsequent

maneuvers. A common solution to this problem is to estimate the accelerometer bias outside of the naviga-

tion filter just prior to a maneuver is performed. A simple averaging scheme is often used, but a Kalman filter

is also a possibility. The advantage of the proposed scheme over a stand-alone bias estimator is that a single

estimator is globally optimal because it accounts for all the correlations.
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