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I. Introduction

Many space applications involve rendezvous with a vehicle in circular orbit. A subset of these

applications requires the visiting vehicle to approach with a constant direction as seen by the target.

This is the case for vehicles approaching the International Space Station (ISS), for example. By

approaching it in a straight line the crew onboard the station can easily monitor non-nominal

situations. The Space Shuttle employs a straight-line guidance law called glideslope [1]. Vehicles

visiting the ISS usually employ a �xed direction terminal approach, including HTV [2], ATV [3],

and Cygnus [4]. In this work a constant direction guidance law is developed to rendezvous a target

in circular orbit. This type of trajectory is referred to as glideslope.

Much work exist in the general area of optimal space trajectories, an illustrative early work

is that by Lawden [5]. Carter studied minimum delta-v maneuvers to rendezvous with a vehicle

in circular orbit [6]. The approach used by Carter and by many authors after him is to optimize

the system subject to the linearized dynamics, the so-called Clohessy-Wiltshire equations [7]. The

rendezvous strategy by Lembeck and Prussing [8] is to add to an initial impulsive phase a low-thrust

phase. Since continuous thrust is necessary to guide on the glideslope, this work also assumes low-

thrust propulsion.

Various aspects of this problem were generalized. Carter and Humi study the impulsive ren-

dezvous in proximity of a general Keplerian orbit [9] while Carter studies the continuous thrust
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case [10]. Power limitations and thrust bounds are also studied [11]. Guelman and Aleshin [12]

develop a two-stage solution for the �xed terminal-approach direction. The �rst stage consists in

an unconstrained optimization that puts the vehicle on the glideslope. The second stage is along

the glideslope. In this work only the terminal phase is considered, when the spacecraft is required

to �y on the glideslope.

The current work di�ers considerably from the work of Guelman and Aleshin. In their work

the constraint is not enforced directly, but the squared distance to the glideslope is added to the

performance index with a weighting parameter. The bigger the parameter the closer the constraint

is to be satis�ed. This work's approach is to satisfy the constraint exactly. Another di�erence

between the two works is that Guelman and Aleshin solve their optimization numerically, while a

closed-form solution is presented in this paper. The optimal guidance solution applies when the

vehicle is on the glideslope. In practice an inner loop controller is needed to maintain the vehicle

on the desired terminal direction.

II. Optimal Guidance

Clohessy-Wiltshire (CW) equations are used to express the dynamics of the chaser vehicle in

proximity of a target in circular orbit. The coordinate frame used in this derivation is centered at

the target, has the x-axis along the negative velocity vector and the y-axis along the radial direction.

In this coordinate system the linearized equations of relative motion are given by

ẍ = 2ωẏ + ux (1)

ÿ = 3ω2y − 2ωẋ+ uy (2)

z̈ = −ω2z + uz. (3)

The control acceleration is given by u = [ux uy uz]
T, and ω is the orbital angular velocity of the

target.

For a non-impulsive, power limited propulsion system, an appropriate performance index is (see

for example [13] and citations therein)

J =
1

2

∫ tf

0

uTu dt, (4)
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subject to the linear dynamics governed by the CW equations and constrained to be on the glides-

lope. The performance index of Eq. (4) is particularly useful for continuous low-thrust systems; for

impulsive maneuvers a minimum delta-v solution is more appropriate. To remain on the glideslope

at all times is necessary to continuously thrust in the direction perpendicular to the glideslope. For

electric propulsion systems Eq. (4) is also a minimum fuel solution. For any thruster the expelled

mass is given by

ṁe =
T

Ispg0
, (5)

where T is the desired thrust magnitude and g0 is constant. For an electric thruster the speci�c

impulse is given by

Isp =
2P

g0T
, (6)

where P is the output power. The input electrical power is greater than P and depends on the

e�ciency of the thruster. While the output power is not always constant with a throttleable engine,

for the purpose of this work it is assumed it is. By combining the last two equations it results that

the total expelled mass is proportional to the square of the thrust

ṁe =
T 2

2P
. (7)

For low thrust vehicles when the expelled mass is negligible with respect to the total mass it follows

that the expelled mass is proportional to the square of the commanded acceleration.

The glideslope angle θ is de�ned as the angle between the direction of the approach and the

positive x-axis, counted positive using the right-hand rule around the positive z-axis. The direction

along the line of approach is called radial r, and its in-plane perpendicular is called transversal t.r
t

 =

 cos θ sin θ

− sin θ cos θ


x
y

 , (8)

in this frame the equations of motion become

r̈ = 2ωṫ+ 3ω2r sin2 θ + 3ω2t sin θ cos θ + ur (9)

ẗ = −2ωṙ + 3ω2r sin θ cos θ + 3ω2t cos2 θ + ut (10)

z̈ = −ω2z + uz. (11)
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In order to approach the target in a straight line it is necessary that t = ṫ = ẗ = 0, hence

r̈ = 3ω2r sin2 θ + ur (12)

0 = −2ωṙ + 3ω2r sin θ cos θ + ut (13)

z̈ = −ω2z + uz, (14)

it follows that the optimal transversal acceleration is given by

u∗t = 2ωṙ − 3ω2r sin θ cos θ. (15)

It is assumed that the desired approach direction lies in the plane of motion of the target's

vehicle. Most vehicles employ the strategy of eliminating the out-of-plane component early in the

rendezvous phase. Therefore the performance index to be minimized becomes

J =
1

2

∫ tf

0

[u2
r + u2

t ]dt =
1

2

∫ tf

0

[u2
r + (2ωṙ − 3ω2r sin θ cos θ)2]dt (16)

subject to the kinematic constraint

ṙ = v (17)

v̇ = 3ω2r sin2 θ + ur, (18)

and the boundary conditions

r(0) = r0 r(tf ) = rf v(0) = v0 v(tf ) = vf . (19)

The Hamiltonian is given by

H =
1

2
[u2
r + (2ωṙ − 3ω2r sin θ cos θ)2] + λrv + λv(3ω

2r sin2 θ + ur), (20)

the costate equations are given by

λ̇r = −∂H
∂r

= −(2ωṙ − 3ω2r sin θ cos θ)(−3ω2 sin θ cos θ)− 3ω2 sin2 θλv (21)

λ̇v = −∂H
∂v

= −2ω(2ωṙ − 3ω2r sin θ cos θ)− λr (22)

and the control optimality condition is given by

∂H

∂ur
= 0 = ur + λv. (23)
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Therefore the optimal control is given by ur = −λv and augmenting states and costates in a single

vector it follows that

d

dt



r

v

λr

λv


=

d

dt
x = Ax, (24)

where

A =



0 1 0 0

3ω2 sin2 θ 0 0 −1

−9ω4 sin2 θ cos2 θ 6ω3 sin θ cos θ 0 −3ω2 sin2 θ

6ω3 sin θ cos θ −4ω2 −1 0


. (25)

Partitioning the state transition matrix of A in four 2-by-2 blocks

ΦA(τ, t0) = eA(τ−t0) =

Φrr(τ − t0) Φrλ(τ − t0)

Φλr(τ − t0) Φλλ(τ − t0)

 (26)

the initial values of the costates are determined to beλr(t0)

λv(t0)

 = Φ−1
rλ (tf − t0)


rf
vf

−Φrr(tf − t0)

r0

v0


 , (27)

and the optimal control history is given by

u∗r(t) =

[
0 0 0 −1

]
ΦA(t, t0) x(t0). (28)

To show that the solution is a minimum the Weierstrass and Legendre-Clebsch conditions are

tested [14]. The Weierstrass condition requires that the Hamiltonian evaluated at any admissible

comparison control ur is larger than the Hamiltonian evaluated at the optimal control u∗r . From

Eq. (20)

H(ur)−H(u∗r) = [0.5u2
r + λvur − 0.5(u∗r)

2 − λvu∗r ], (29)

substituting λv = −u∗r

H(ur)−H(u∗r) =
1

2
(ur − u∗r)2 ≥ 0, (30)
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therefore the Weierstrass condition is satis�ed.

The Legendre-Clebsch condition requires that the second order partial of the Hamiltonian with

respect to the optimal control is positive de�nite. From Eq. (20)

∂2H

∂u2
r

= 1, (31)

hence the Legendre-Clebsch condition is also satis�ed and the solution is indeed a minimum.

III. Implementation Considerations

The most computationally demanding part of the algorithm is the computation of the matrix

exponential in order to obtain the state transition matrix. However applying the Cayley-Hamilton

theorem vastly reduces the complexity. The matrix exponential of the 4-by-4 matrix A can be

computed as

eA∆t =

3∑
k=0

αkA
k, (32)

where the coe�cients αk are calculated solving

eλi∆t =

3∑
k=0

αkλ
k
i , (33)

where λi is the i-th eigenvalue of A.

Since A is constant, so are its four eigenvalues, which can be computed a priori and are given

by

λi = ±
(

3 sin2 θ + 2±
√

9 sin4 θ + 3 sin2 θ + 4
)1/2

ω. (34)

Using vector notation

λ =

[
λ1 λ2 λ3 λ4

]T

α =

[
α0 α1 α2 α3

]T

(35)

it follows that

α = Λ−1eλ∆t, (36)

where ew represents a vector whose components are the exponentials of the components of vector

w. The four columns of Λ are given by the eigenvalues elevated to the zero-th, �rst, second, and
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third power, respectively. The inverse of Λ needs to be computed only once and can be a parameter

uploaded from the ground.

A practical implementation should not assume that t, z and their derivatives are always zero

but dispersions should be corrected. An inner loop controller needs to be implemented to cancel

the out-of-plane and transversal components. Alternatively the control thrust can be chosen using

a simple PD controller

ur = u∗r − 2ωṫ− 3ω2 sin θ cos θt (37)

ut = u∗t − 3ω2 cos2 θt− kpt− kdṫ (38)

uz = −kz ż. (39)

where the asterisk represents the previously de�ned values from the guidance law. The positive

coe�cients kp, kd, and kz are design parameters to dampen the dispersions.

IV. Three Special Cases

Three scenarios deserve special attention, these cases are the common glideslope angles that

posses an analytic solution. These cases are the V-bar approach (θ = π) in which the chaser starts

directly in front of the target, the minus V-bar approach (θ = 0) in which the chaser starts directly

behind the target, and the R-bar approach (θ = −π/2) in which the chaser starts directly below

the target. A minus R-bar approach also possesses an analytical solution, but in practice this kind

of approach is not used.

The V-bar approach is the most common Space Shuttle rendezvous strategy. Eq. (34) shows that

A has repeated eigenvalues only when sin θ = 0. Under this circumstance the repeated eigenvalues

are equal to zero and the other two are given by ±2ω. The system of Eq. (33) is not solvable in this

situation, the equation relative to the repeated eigenvalue needs to be replaced by its derivative

λi e
λi∆t =

3∑
k=1

αkλ
k−1
i . (40)
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Solving this modi�ed set of equations results in

α0 = 1 (41)

α1 = ∆t (42)

α2 =
cosh(2ω∆t)− 1

4ω2
(43)

α3 =
sinh(2ω∆t)− 2ω∆t

8ω3
. (44)

Matrix A is given by

A =



0 1 0 0

0 0 0 −1

0 0 0 0

0 −4ω2 −1 0


(45)

and its state transition matrix is given by

Φ(∆t) =



1 ∆t+ 4ω2α3 α3 −α2

0 1 + 4ω2α2 α2 −∆t− 4ω2α3

0 0 1 0

0 −4ω2∆t− 16ω4α3 −∆t− 4ω2α3 1 + 4ω2α2


. (46)

The state transition matrix for the minus V-bar approach (which is used by ATV and some Rus-

sian vehicles) is also given by Eq. (46). To implement the algorithm the inverse of the top-right

component of Φ(∆t) is also needed, for the V-bar approach this inverse is given by

Φ−1
rλ (∆t) =

1

−α3(∆t+ 4ω2α3) + α2
2

−∆t− 4ω2α3 α2

−α2 α3

 . (47)

The R-bar approach consists in going to the ISS from below and it is used by HTV. Matrix A

is given by

A =



0 1 0 0

3ω2 0 0 −1

0 0 0 −3ω2

0 −4ω2 −1 0


, (48)
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its eigenvalues are ±ω and ±3ω, the coe�cients are given by

α0 =
− cosh(3ωt) + 9 cosh(ωt)

8
(49)

α1 =
−(1/3) sinh(3ωt) + 9 sinh(ωt)

8ω
(50)

α2 =
cosh(3ωt)− cosh(ωt)

8ω2
(51)

α3 =
sinh(3ωt)− 3 sinh(ωt)

24ω3
(52)

and the state transition matrix is

Φ(∆t) =



α0 + 3ω2α2 α1 + 7ω2α3 α3 −α2

3ω2α1 + 21ω4α3 α0 + 7ω2α2 α2 −α1 − 10ω2α3

36ω6α3 12ω4α2 α0 + 3ω2α2 −3ω2α1 − 21ω4α3

−12ω4α2 −4ω2α1 − 40ω4α3 −α1 − 7ω2α3 α0 + 7ω2α2


. (53)

Finally the inverse of the top right component of the state transition matrix is given by

Φ−1
rλ (∆t) =

1

−α3(∆t+ 10ω2α3) + α2
2

−α1 − 10ω2α3 α2

−α2 α3

 . (54)

V. Numerical Examples

In this section numerical examples are presented to assess the validity of the guidance law. In

the examples below the simulation uses nonlinear dynamics assuming central gravity only.

The �rst numerical example is a V-bar approach with glideslope angle θ = π. The chaser vehicle

is placed 200 meters in front of the target. Fig. 1 shows the relative trajectory. The chaser starts in

front of the target at the minus 200 meters x coordinate. The �nal position is at the origin. Fig. 2

shows the radial and transversal components of the relative velocity. Fig. 3 shows the commanded

acceleration.
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Fig. 1 V-bar approach trajectory.
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Fig. 2 Velocity Components in V-bar approach.
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Fig. 3 Commanded Acceleration in V-bar approach.
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The second example is an R-bar approach. The chaser vehicle is placed 200 meters below the

target with an o�set of 10 meters from the glideslope. The control gains in this example are chosen

as kp = 5E − 4 and kd = 1E − 2. Fig. 4 shows the relative trajectory. This initial position is

below the target at the minus 200 meters y coordinate. The �nal position is again at the origin.

Fig. 5 shows the radial and transversal components of the relative velocity while Fig. 6 shows the

commanded optimal acceleration.
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Fig. 4 R-bar approach with initial o�-glideslope error.
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Fig. 5 Velocity Components in R-bar approach.
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Fig. 6 Commanded Acceleration in R-bar approach.

VI. Conclusions

A common approach for the �nal phase of spacecraft rendezvous is to approach the target along

a straight line, the so-called glideslope. In this paper a new �xed terminal direction guidance law

to rendezvous with a target vehicle in circular orbit is introduced. The guidance law is derived by

minimizing a commonly employed performance index that assumes �nite thrust and is particularly

adapt for electric thrusters. The guidance law is provided in closed-form assuming the vehicle

starts from the glideslope. Calculation of a matrix exponential is required to compute the optimal

acceleration. By performing some of the calculations a priori the total computational cost can be

greatly reduced. For some commonly-employed glideslope angles the matrix exponential can be

written analytically which allows for further reduction of the onboard computations.

The guidance law is obtained in closed-form by employing linearized dynamics, numerical ex-

amples demonstrate the validity of this assumption. A �xed direction approach requires continuous

thrust and is less e�cient than other approach strategies. For this reason this kind of guidance law

is only used at the very end of the rendezvous phase when the vehicles are in close proximities and

the linearization assumptions provide a very good approximation.
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