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I. Introduction

It is well-known that the Kalman filter provides the unconstrained optimal solution of the

linear stochastic estimation problem.1,2 The Kalman filter algorithm has two main phases:

the state estimate propagation phase between measurements, and the state estimate update

phase when measurements become available. Unconstrained implies that the optimal state

estimate is not constrained during the state estimate update phase as the measurements are

processed. The Kalman filter provides the optimal state estimate considering n degrees of

freedom (that is, the entire vector space <n). However, if r state constraints are applied,

the degrees of freedom are reduced to n − r. Projecting the unconstrained solution into

the constrained space will not guarantee optimality. This work focus on norm constraints

applied to the state vector.

It is assumed throughout this paper that through the mathematical model (that is,

through the state equation) the underlying physics, including the state constraints, are

satisfied during periods between measurements. The mathematical model of the system

should adequately represent any desired state constraints.

The objective of this work is to modify the Kalman filter solution so as to constrain the

state update appropriately. In the discrete formulation of the Kalman filter, the state can be

related to the control algebraically. The optimization problem is formulated as a parameter

optimization problem, therefore the state constraint can be expressed as a control constraint.

A motivation to seek the norm-constrained solution to the filtering problem is attitude

estimation. Attitude estimation has been the topic of much research and debate in the past

two decades.3 The interest arises from the fact that the representation of the attitude is not a

vector space and redundancy is necessary to avoid singularities and discontinuities.4 For re-

altime space applications, the quaternion-of-rotation is the preferred attitude representation.

In order to represent a rotation, the quaternion obeys a unit-norm constraint. This work

will develop the theoretical foundations of norm-constrained Kalman filtering with reference

to the quaternion estimation problem.

One method of introducing state constraints is to use pseudo-measurements.5 The fun-

damental idea is to introduce a perfect measurement (hence the use of the term “pseudo-

measurement”) consisting of the constraint equation into the estimation solution. This

approach has shortcomings. The use of a perfect measurement results in a singular estima-

tion problem known to occur when processing noise-free measurements in a Kalman filter.

A small noise can be added to the pseudo-measurement to address the singularity; however

with the noise introduced, the constraint is no longer exactly satisfied.

One can consider state constraints when considering the optimization problems based on

least squares methods. The solution to the least squares problem in the presence of linear
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equality constraints is found in Lawson and Hanson.6 Another approach is to project the

Kalman solution into the desired subspace. Since the projection can be done in different

ways, a performance index can be defined to find the optimal projection. The optimal

projection for the linear state equality constraint problem is presented in Simon and Chia.7

The projection of the Kalman solution can be done at any time, not only during the update.

The constrained quaternion estimation problem was posed as a nonlinear programming

problem by Psiaki8 and solved using Newton’s method. Psiaki’s approach differs from the

proposed approach in several key areas. First, Psiaki’s minimizes a different cost function

and his method has a different interpretation of the covariance. Psiaki’s method is a global

optimal that solves a quadratically constrained quadratic program at every update stage

that will work with poor or no initial estimate. The method proposed here is a prediction

correction technique that relies on a priori estimates.

In sequential realtime quaternion estimation two main approaches received the most at-

tention: the Additive Extended Kalman Filter9 (AEKF) and the Multiplicative Extended

Kalman Filter10 (MEKF). Both the AEKF and MEKF necessitate restoring the norm con-

straint after the update. The straight forward method is to scale the updated quaternion

by its norm, thereby minimizing the Euclidean distance between the unconstrained and the

constrained estimates.11 The main focus of this work is to obtain the optimal estimate while

simultaneously constraining the norm. The result is that the normalization process provides

the unitary estimate with minimum mean square error–a fact heretofore unproven. Previous

work on the AEKF assumed quaternion normalization and studied the consequences.9,12,13

In this work normalization is not assumed but is a direct result of the optimization process.

The paper is organized as follows. Section II develops the new filter for a general norm

constraint assuming linear dynamics and a linear measurement model. The problem is

nonlinear because of the quadratic norm constraint. Section III shows how a subset of the

state vector can be estimated using the norm-constrained algorithm. Section IV details the

quaternion estimation problem used for the numerical examples. The results of section II are

extended to a nonlinear measurement model for this example. Section V contains numerical

simulations of the new algorithm applied to quaternion estimation. Section VI summarizes

the work and develops some conclusions.

II. Norm-Constrained Kalman Filtering

Given a state that evolves through linear dynamics and given linear measurements, the

optimal estimate in a mean-square error (MSE) sense is obtained using the Kalman filter

algorithm. A norm constrained estimate can be obtained by normalization of the Kalman

(unconstrained) estimate. In this section, it will be shown that brute force normalization
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is optimal in a MSE sense. Normalization is a nonlinear transformation, therefore similar

approximations to those associated with the extended Kalman filter are made. Optimality

does not hold strictly, but conditionally on the above approximations. The proof follows

that of Ref. 14. More recently Julier and La Viola15 presented a new method of Kalman

filtering in the presence of nonlinear state variable equality constraints. They propose a

method involving two projections (the first projection constrains the entire distribution and

the second constrains the statistics) and they provide a comparison of the resulting estimates

with other methods.

Define the a priori state estimate x̂−k to be the state estimate at time tk just prior to

employing the measurement yk in the state estimate update algorithm. The measurement

model is given by

yk = Hkxk + ηk,

where ηk is measurement noise. Define the a posteriori state estimate x̂+
k to be the state

estimate at time tk just after the state estimate update. The performance index is defined

as

Jk = E
{(

e+
k

)T
e+
k

}
, (1)

which is the MSE of the estimator. The a priori and a posteriori estimation errors are given

by

e−k = xk − x̂−k , and e+
k = xk − x̂+

k ,

respectively. Associated with the estimation errors, we can define the matrices

P−
k = E

{
e−k
(
e−k
)T}

, and (2)

P+
k = E

{
e+
k

(
e+
k

)T}
,

before and after the measurement update, respectively. The matrices P+
k and P−

k are mean

squares. For linear filters, when the mean of the estimation error is zero, these mean squares

reduce to state estimate error covariances. However, in general for the nonlinear problem

considered here, the estimator is not necessarily unbiased. The nonlinearity is introduced

by the norm constraint of the state vector which is desired to have a predefined value

‖x̂+
k ‖ =

√
l.

For the quaternion estimation problem l = 1. This constraint is equivalent to

(x̂+
k )Tx̂+

k = l. (3)
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Notice that

Jk = trace P+
k .

The update is

x̂+
k = x̂−k + Kkεk,

where εk = yk − ŷk is the residual. The estimated measurement is given by

ŷk = Hkx̂k.

Substituting the residual into Eq. (3), the state constraint can be expressed more conveniently

as a control constraint:

εTkKT
kKkεk + 2x̂−T

k Kkεk + x̂−T
k x̂−k − l = 0. (4)

The goal is to find the gain Kk such that Eq. (1) is minimized and the constraint given by

Eq. (4) is satisfied.

A. First Order Condition

The a posteriori error mean square is given by the Joseph formulaa:

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k

where P−
k is the a priori state error mean square and Rk is the covariance of ηk, assumed

to be zero mean. Define

Wk , HkP
−
k HT

k + Rk.

The Joseph formula can be rewritten as

P+
k = P−

k −KkHkP
−
k −P−

k HT
kKT

k + KkWkK
T
k .

The performance index to be minimized is then given by

Jk = trace
[
P−
k −KkHkP

−
k −P−

k HT
kKT

k + KkWkK
T
k

]
.

The Kalman gain is computed to satisfy the constraint in Eq. (4). We have P−
k ∈ <n×n,

Kk ∈ <n×m, l ∈ <, and the remaining are of appropriate dimensions. The augmented

asee page 9 for a discussion of the validity of the Joseph formula for this particular problem.
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performance index is

Jk = trace
[
P−
k −KkHkP

−
k −P−

k HT
kKT

k + KkWkK
T
k

]
+λk

[(
x̂−k
)T

x̂−k + 2εTkKT
k x̂−k + εTkKT

kKkεk − l
]
.

The n×m+1 optimal values of λk and Kk are obtained solving the n×m equations resulting

from taking the derivative of Jk with respect to Kk and setting it to zero yielding

−2P−
k HT

k + 2KkWk + 2λk(x̂
−
k ε

T
k + Kkεkε

T
k ) = 0, (5)

and the scalar constraint Eq. (4). The vector and matrix derivatives used to obtain Eq. (5)

are listed in the appendix.

Eq. (5) can be rewritten to obtain the following first order conditions

Kk = (P−
k HT

k − λkx̂−k ε
T
k )(Wk + λkεkε

T
k )−1, and

εTkKT
kKkεk + 2

(
x̂−k
)T

Kkεk +
(
x̂−k
)T (

x̂−k
)
− l = 0.

Using the matrix inversion lemma (see Appendix), it follows that

Kk = P−
k HT

kW−1
k −λkx̂

−
k ε

T
kW−1

k −P−
k HT

kW−1
k

λkεkε
T
kW−1

k

1 + λkεTkW−1
k εk

+λkx̂
−
k ε

T
kW−1

k

λkεkε
T
kW−1

k

1 + λkεTkW−1
k εk

.

Substituting into Eq. (4), after some manipulations, the following scalar equation with the

scalar unknown λk is obtained

λ2
k ε̃

2
k

(
−
(
x̂−k
)T

x̂−k +
(
x̂−k
)T (

x̂−k
)
− l
)

+ λk ε̃k

(
−2
(
x̂−k
)T

x̂−k + 2
(
x̂−k
)T (

x̂−k
)
− 2l

)
+

+
(
εTkW−1

k HkP
−
k P−

k HT
kW−1

k εk + 2
(
x̂−k
)T

P−
k HT

kW−1
k εk +

(
x̂−k
)T (

x̂−k
)
− l
)

= 0,

where

ε̃k = εTkW−1
k εk.

Therefore, the optimal lagrange multiplier is

λk =
−b/2±

√
b2/4− ac
a

,

where

a = −lε̃2k, b = −2ε̃kl, and

c = εTkW−1
k HkP

−
k P−

k HT
kW−1

k εk + 2
(
x̂−k
)T

P−
kH

T
k W−1

k εk +
(
x̂−k
)T (

x̂−k
)
− l.
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Finally, it follows that

λk =
ε̃kl ±

√
ε̃2kl

2 + lε̃2kc

−lε̃2k
=

1±
√

1 + c/l

−ε̃k
. (6)

Notice that

1 + c/l = (εTkW−1
k HkP

−
k P−

k HT
kW−1

k εk + 2
(
x̂−k
)T

P−
kH

T
k W−1

k εk +
(
x̂−k
)T (

x̂−k
)
)/l

= (εTkW−1
k HkP

−
k +

(
x̂−k
)T

)T(εTkW−1
k HkP

−
k +

(
x̂−k
)T

)/l ≥ 0

Therefore, λk is always a real number and can be rewritten as

λk =
−1

ε̃k
± ‖x̂

−
k + P−

k HT
kW−1

k εk‖
ε̃k
√
l

.

B. Second Order Condition

Taking the second derivative of the performance index presents some representation issues.

Each of the entries of the first derivative can be differentiated again, but this approach

results in m× n matrix equations. Another approach is to perturb the gain and show that

the perturbation results in an increment of the performance index. We will show the proof

in case of scalar measurement, the result is identical for vector measurements.

In the case of scalar measurement, the gain Kk reduces to a vector and can be partitioned

as

Kk =

kk

kk

 ,
where kk is a scalar. The constraint becomes

ε2kk
T
k kk + ε2kk

2
k + 2εk

(
χ̂−
k

)T
kk + 2εkx

−
k kk +

(
χ̂−
k

)T
χ̂−
k − l = 0,

where

x̂−k =

χ̂−
k

x̂−k

 .
Differentiating the constraint, yields

2(ε2kk
T
k + εk

(
χ̂−
k

)T
)dkk + 2(ε2kkk + εkx̂

−
k )dkk = 0.

Assuming the residual is not zero (if the residual is zero the a posteriori estimate is always
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equal to the a priori estimate), it follows that

dkk = −
εkk

T
k +

(
χ̂−
k

)T
εkkk + x̂−k

dkk.

The second-order differential of the performance index is

dJ 2
k = dKT

kGKKdKk,

GKK = 2Wk + 2λkε
2
k, and

dJ 2
k = (2Wk + 2λkε

2
k)(dK

T
k dKk) = (2Wk + 2λkε

2
k)(dk

T
k dkk + dk2

n)

= dkT
k

{
2(Wk + λkε

2
k)

(
I +

εkkk + χ̂−
k

εkkk + x̂−k

εkk
T
k +

(
χ̂−
k

)T
εkk + x̂−k

)}
dkk. (7)

The sufficient condition for a minimum is that the matrix inside curly brackets in Eq. (7) is

positive definite. An equivalent condition is

(Wk + λkε
2
k)

I +

 εk
(
P̃−
k

)T

HT
k +Wkχ̂

−
k

(εkkk + x̂−k )(Wk + λkε2k)


 εk

(
P̃−
k

)T

HT
k +Wkχ̂

−
k

(εkkk + x̂−k )(Wk + λkε2k)


T
 > 0, (8)

since

kk =

(
P̃−
k

)T

HT
k − λkεkχ̂

−
k

Wk + λkε2k
, kk =

pTHT
k − λkεkx̂−k

Wk + λkε2k
, P−

k =
[

P̃−
k pk

]
.

The matrix in the curly brackets in Eq. (8) is of the form

I + vvT,

which is always positive definite. As a consequence, the optimal gain produces a minimum

performance index when the scalar Wk + λkε
2
k is positive. Since

Wk + λkε
2
k = ±Wk

√
1 + c/l,

the minimum occurs when the plus sign is chosen for the lagrange multiplier. Also, if the

minus sign is chosen, the performance index will be maximized.
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C. Constrained Minimum Solution

The performance index is minimized and the constraint is satisfied when the optimal gain is

chosen as

K∗
k = (P−

k HT
k − λkx̂−k ε

T
k )(Wk + λkεkε

T
k )−1, where

λk =
−1

ε̃k
+
‖εTkW−1

k HkP
−
k +

(
x̂−k
)T ‖

ε̃k
√
l

.

The asterisk was added to distinguish from the unconstrained Kalman gain Kk given by

Kk = P−
k HkW

−1
k .

The unconstrained a posteriori estimate is

x̂+
k = x̂−k + Kkεk.

The minimizing constrained gain can be rewritten as

K∗
k = Kk +

( √
l

‖x̂+
k ‖
− 1

)
x̂+
k

εTkW−1
k

ε̃k
. (9)

Property 1. The optimal constrained solution shares the same direction as the optimal

unconstrained solution.

Proof. Let x̂∗k be the optimal constrained estimate. Then it follows that

x̂∗k = x̂−k + K∗
kεk = x̂−k + Kkεk +

( √
l

‖x̂+
k ‖
− 1

)
x̂+
k

εTkW−1
k

ε̃k
εk =

√
l

‖x̂+
k ‖

x̂+
k .

So x̂∗k and x̂+
k have the same direction, but different magnitude. Property 1 states that brute

force normalization is optimal not only in a geometrical sense, but also in a Mean Square

Error sense.

The a posteriori estimation error is

e∗k = (I−K∗
kHk)e

−
k + K∗

kηk.

Under the assumption that measurement noise ηk is independent of process noise and initial
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estimation error, it follows that

P∗
k = E

{
(I−K∗

kHk)e
−
k (e−k )T(I−K∗

kHk)
T
}

+ E
{

K∗
kηkη

T
k (K∗)T

}
. (10)

The optimal gain is a function of the a priori state and the residual, therefore it is a random

variable and it should not be taken out the expectation operator. A similar situation happens

in nonlinear Kalman filtering. In the extended Kalman filter, for example, the measurement

mapping matrix is a function of the a priori state, thus making the gain a function of the

a priori state as well. The straight forward approach is to take the Kalman gain out of the

expectation sign (following the EKF derivation assumption) yielding

P∗
k = (I−K∗

kHk)P
−
k (I−K∗

kHk)
T + K∗

kRk (K∗
k)

T .

Therefore P∗
k is a covariance-like matrix and not strictly the covariance of the estimation

error. Substituting for K∗
k yields

P∗
k = P+

k +
1

ε̃k

(
1−

√
l

‖x̂+
k ‖

)2

x̂+
k

(
x̂+
k

)T
, (11)

which is very similar to the correction given by Choukroun et al.16 The covariance update

by Choukroun et al. is given by

P?
k = P+

k +

(
1−

√
l

‖x̂+
k ‖

)2

x̂+
k

(
x̂+
k

)T
.

Besides the evident difference of missing ε̃k, the two methods also differ from a more fun-

damental perspective. Choukroun et al. assume brute force normalization and derive a

covariance correction. In this work brute force normalization is shown to be optimal in

mean square sense.

The proposed covariance correction is a second order effect

P∗
k = P+

k +
1

ε̃k

x̂+
k

(
x̂+
k

)T
‖x̂+

k ‖

(
‖x̂+

k ‖ −
√
l
)2

.

Both the AEKF and MEKF provide estimates with unit norm to first order,17 since the EKF

covariance is valid to first order, the correction is not necessary, and P+
k can be used. If the

AEKF necessitates a covariance adjustment, so does the first order MEKF since brute force

normalization affects the multiplicative error as well.

When two random variables are related through a nonlinear transformation, it is generally
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impossible to relate exclusively their second moments but all the moments of the original

variable will contribute in the second moment of the transformed variable. Therefore, the

correction on the covariance can be accurate or not depending on the distribution of the

estimation error. The matrix P∗
k is an approximation, and like any approximation might

not be satisfactory under certain circumstances. From Eq. (11) it can be seen that P∗
k

can be unsatisfactory for small ε̃k and large norm errors of the unconstrained estimate. This

situation could arise, for example, in the presence of scalar measurement when the estimation

error is large.

III. Constrain Only Part of the State

The derivation of the previous section assumes the entire state x is subject to the norm

constraint. In this section it is shown how to constrain only part of the state. Suppose that

the n× 1 state vector x is partitioned into z and q as

x =

z

q

 ,
where z ∈ <n−p and q ∈ <p. Suppose that z is not subject to any constraint, while q needs

to satisfy a norm constraint. The estimation error associated with each partition will be

minimized independently. The Kalman gain is partitioned appropriately as

K =

Kz

Kq

 ,
where Kz ∈ <(n−p)×m, Kq ∈ <p×m, also m is the dimension of the measurement vector y.

At the measurement time tk, a linear update is assumed where

x̂+
k = x̂−k +

Kz,k

Kq,k

 (yk − ŷk).

The measurement model is

yk = Hkxk + ηk = Hk(x̂
−
k + e−k ) + ηk = ŷk + Hke

−
k + ηk.
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The estimation error covariance before the update can be partitioned as follows

P−
k =

[
P1,k P2,k

]
=

P−
zz,k P−

zq,k

P−
qz,k P−

qq,k

 ; P2,k ∈ <n×p.

Note that

KkHkP
−
k =

Kz,kHkP1,k Kz,kHkP2,k

Kq,kHkP1,k Kq,kHkP2,k


KRkK

T =

Kz,kRkK
T
z,k Kz,kRkK

T
q,k

Kq,kRkK
T
z,k Kq,kRkK

T
q,k

 .
The partitioned a posteriori covariance is

P+
zz,k = P−

zz,k −Kz,kHkP1,k −PT
1,kH

T
kKT

z,k + Kz,kWkK
T
z,k

P+
zq,k = P−

zq,k −Kz,kHkP2,k −PT
1,kH

T
kKT

q,k + Kz,kWkK
T
q,k

P+
qq,k = P−

qq,k −Kq,kHkP2,k −PT
2,kH

T
kKT

q,k + Kq,kWkK
T
q,k

Wk = HkPkH
T
k + Rk.

The matrix P+
zz,k is only a function of Kz,k, and P+

qq,k is only a function of Kq,k. Also, the

trace of P+
k is equal to the sum of the traces of P+

zz,k and P+
qq,k. The two facts imply that

the minimum of the sum is equal to the sum of the minima, or

min
Kk

(
trace P+

)
= min

Kz,k,Kq,k

(
trace P+

zz,k + trace P+
qq,k

)
= min

Kz,k

(
trace P+

zz,k

)
+ min

Kq,k

(
trace P+

qq,k

)
,

hence the two minimizations can be performed independently. The optimal gains are

Kz,k = PT
1,kH

T
kW−1

k and Kq,k = PT
2,kH

T
kW−1

k . (12)

As expected, there is no difference in calculating the gains independently or together, because

the correlation is taken into account in P1,k and P2,k.

Kk =

Kz,k

Kq,k

 =

PT
1,k

PT
2,k

HT
kW−1

k = P−
k HT

kW−1
k .
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Generally there is no advantage in computing the gain via the partition because the full

residual covariance matrix still has to be inverted. However when the updates of q and z

are different, the optimal gain can be derived via the partitions and the results previously

presented apply to calculate Kq,k to obtain a norm constrained estimate of q.

IV. Attitude Estimation

An important application of the norm-constrained filter architecture is spacecraft attitude

estimation. Mathematical models describing rotational motion of spacecraft typically consti-

tute equations involving the kinematics and dynamics. Several alternative sets of parameters

are available to model the rotational kinematics of a rigid body.18 All of the three param-

eter sets to describe orientation possess a singularity. The quaternion of rotation, having

four parameters, forms a singularity free attitude parameterization of the lowest dimension.

However, being once redundant, it is subject to unit norm constraint. This description of

attitude kinematics and dynamics has lead to many successful spacecraft attitude estimation

and control designs.3 The equations governing the quaternion kinematics are given by

q̇ =
1

2
Ω(ω) q (13)

where qT = {ρT, q4 } = { q1, q2, q3, q4 } is the quaternion, ωT = {ω1, ω2, ω3 } is the

angular velocity (body frame),

Ω(ω) =

−[ω×] ω

−ωT 0

 , and [ω×] =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
As long as the direction of ω does not change, Eq. (13) admits closed-form solution19 that

can be used to propagate the quaternion from tk to tk+1

q−k+1 =

[
I4×4 cos

(
‖ωk‖ δtk

2

)
+

Ω(ωk)

‖ω+
k ‖

sin

(
‖ωk‖ δtk

2

)]
q+
k . (14)

This equation is exact for a pure spin (about any axis). This condition is a good approxi-

mation in most practical cases.

Since the quaternion must preserve its length, Eq. (14) can be obtained by building the

matrix performing a rigid rotation in a 4-D space.20 In fact, the quaternion describing the

attitude of a pure-spinning rigid body also spins in the 4-D space by describing a great

circle with angular velocity ω/2.21 The plane of rotation is defined by the 4 × 2 matrix
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P = [ q q̇/‖q̇‖ ]. Eq (14) is obtained from the quaternion spin rate and the plane of

rotation.b

The angular velocity, ω is available for measurement aboard spacecraft by gyros. In

addition, there are attitude sensors (e.g., star trackers, magnetometers, Sun sensors, etc.,)

providing vector. The rate gyro measurement, typically modeled as a random walk following

the classical work of Farrenkopf,23 is given by

ω̃ = ω + β + ην

β̇ = ηu

where ην and ηu are zero mean white noise processes with covariances given by

E
{
ην(t)η

T
ν (τ)

}
= σ2

ν I3×3δ(t− τ) and E
{
ηu(t)η

T
u (τ)

}
= σ2

u I3×3δ(t− τ),

respectively, and β represents the gyro bias and random walk. The attitude sensor measure-

ment model is given by

bi = A(q) ri + νi,

where bi and ri are the ith body vector and the reference vector, respectively, and A(q) is

the direction cosine matrix parameterized in terms of the unknown true quaternion q.

The attitude estimation problem is nonlinear (in general) owing to the presence of non-

linearity in the quaternion kinematics and measurement models. In this section the novel

filtering architecture (termed CKF for the subsequent developments of the paper) discussed

in the previous sections is applied to attitude filtering. The developments of the previous

sections assume a linear dynamical system and a linear measurement model in the presence

of a quadratic state equality constraint. The results obtained for the linear case are extended

to nonlinear dynamics and measurements through the use of linearization, as in the extended

Kalman filter.

To this effect, consider the quaternion estimation error given by the quaternion product

δq = q⊗ q̂−1. (15)

where δqT = { δρT, δq4 }. Using the properties of the quaternion product and quaternion

bIn particular, Ref. 22 has shown that the 4 × 4 matrix Ω(ω̄+
k ) is simultaneously orthogonal and skew-

symmetric.
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kinematics, it can be shown that10

δq̇ = −

 [ω̂×] δρ

0

+
1

2

 δω

0

⊗ δq. (16)

The first-order approximation of Eq. (16)

δρ̇ = −[ω̂×] δρ+
1

2
δω

δq̇4 = 0,

where the angular velocity estimate is given by ω̂ = ω̃ − β̂ and the estimation error of

angular velocity is defined as δω = −(δβ + ηv) so as to include the bias estimation error as

δβ = β − β̂ and the measurement noise, ηv. Therefore, the bias estimation dynamics are

governed by

δβ̇ = ηu (17)

With the state definitions ∆xT = [δqT δβT], the equations can be assembled as

∆ẋ = F ∆x + G w (18)

where

F =


−[ω̂×] 03×1 −1

2
I3×3

01×3 0 01×3

03×3 03×1 03×3

 and G =


−1

2
I3×3 03×1 03×3

01×3 1 01×3

03×3 03×1 I3×3

 (19)

and where 0m×n denotes the m × n matrix of zeros. The process noise vector wT =

[ηT
ν ηq4 η

T
u ] ∈ <7 contains the zero mean random variable ηq4 , with standard deviation σq4 .

This additional process noise term is introduced to represent the modeling error resulting

from the linearization process. Ideally ηq4 cannot be independent of the other three elements,

as it has to lie on the quaternionic geodesic. This insight is particularly useful in tuning the

filter. At a given measurement epoch, tk, multiple measurements can be concatenated as

yk =


b1

b2

...

bm


tk

=


A(δq) A(q̂−) r1

A(δq) A(q̂−) r2

...

A(δq) A(q̂−) rm


tk

+


ν1

ν2

...

νn


tk

. (20)
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Conforming to the EKF tradition,10 the measurement equations are linearized around the

a priori estimate of the state. The state itself is not estimated but its the deviation ∆x is

estimated instead. The quaternion deviation must satisfy a unit norm constraint which will

be achieved with the CKF algorithm.

V. Numerical Results

In this section the performance of the proposed filter is investigated. A comparison is also

performed with three different filter implementations pertinent to the attitude estimation

problem. The first implementation is the standard Multiplicative Extended Kalman Filter3

(MEKF, or simply denoted as EKF) implemented from Crassidis and Junkins.10 The second

estimator is the Extended Kalman filter with linearized state variable equality constraints,

as developed originally by Simon and Chia.7 The third estimator is the Unscented Attitude

Filter developed by Crassidis and Markley.24 The numerical comparison presented here-in is

between estimators presenting local solutions to the nonlinear problem of attitude estimation.

Results from global solutions such as the one proposed by Psiaki8 are not included.

A. Case 1

Suppose a spacecraft is spinning at the constant angular velocity of ωT(t0) = [1, 0, 1 ]

revolution/day. Measurements consist of 6 directions to stars provided at the rate of 1 Hz,

with the rate integrating gyro operating at the same frequency. A star tracker simulator25 is

used to generate the 6 direction measurements at the required measurement noise intensity

(for this case, σ = 10−4). At every measurement time, the unit vectors bj and the reference

vectors rj are available. The true initial attitude for cases 1, 2 and 3 of the simulations is

assumed to be the unit quaternion q(t0) = [0, 0, 0, 1]T.

The estimated initial quaternion (also for cases 2 and 3) to initialize the Kalman filter is

assumed to be q̂(t0) = [1, 0, 0, 0]T (a principal angle of π away from the truth described about

the principal axis e = {1, 0, 0}T). The two process noise parameters are σu =
√

10 10−10

rad/sec
3
2 and σv =

√
10 10−7rad/sec

3
2 , respectively. The initial unknown bias of the rate

gyro is β(t0) = [1 1 1]T deg/hr. The initial error standard deviation σρ(t0) is set at 0.1

deg uniformly among all three channels of the vector component of the quaternion and 0.2

deg/hr for angular rate components, σβ(t0). The uncertainty along the fourth component of

the quaternion σq4(t0) is set to 0.5176 rad considering a small angle assumption and bearing

in mind that the trace of the covariance matrix is bounded near unity due to the norm

constraint. The initial bias estimate is β̂
T

(t0) = [20.6, 41.2, 41.2] deg/hr. The initial bias

estimate is chosen outside the initial bias estimation error covariance levels to stress the
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algorithms. Some of the parameters above do not exist for the Extended Kalman Filter

(EKF) and the Unscented Kalman Filter (UKF). The filter parameters for the Unscented

Kalman Filter (refer to Crassidis and Markley for more information24) are set at a = 1 and

λ = −3 for cases 1, 2 and 3. To keep the comparisons consistent, the tuning parameters

are set at values where the Extended Kalman Filter performs in a well-tuned manner. This

choice freezes all the tuning parameters except for the ones corresponding to the fourth

component of the quaternion (initial uncertainty and the process noise level), which are

parameters of much lower sensitivity when compared to all the others. In other words once

the ’classical’ tuning parameters are set to some nominal values, there is not much freedom

left in the tuning part of the new filter. This is important since the analyst does not have to

spend significant effort in tuning the additional degrees of freedom realized by the constraint

handling mechanism developed in this paper. The observations made are valid only for the

situations discussed here. The nonlinearity of the problem makes it difficult to extrapolate

to other problems and hence the analyst has to investigate the observations on a case by

case basis.

The filter is run for 100 times and the average attitude errors are computed from this data

(Monte Carlo simulations). The vector component of the error quaternion is employed for

error computations, as, for small angles, the magnitude of the vector component of the error

quaternion is known to represent the attitude error sufficiently well. Figure 1 shows the

average attitude errors incurred by each of the estimators over a 100 different measurement

sets. From Figure 1, it is clear that the linear constrained filter (denoted by LCKF1 in

the legend) has trouble converging. The other filter architectures seem to be converging to

approximately 10 degrees of error in the 2.5 hour simulation.

B. Case 2

A considerably different case is demonstrated using a different value for the true constant

angular velocity ω̂ = [10, 0, 0]T revolutions/day. The process noise is inflated (σu =
√

10 10−8

rad/sec
3
2 and σv =

√
10 10−5 rad/sec

3
2 ) to handle this change. The comparison of the attitude

errors incurred by the different filters (average of 100 runs of a Monte Carlo simulation) is

presented in Fig. 2. It is clear from Fig. 2 that for this case, all the filters perform equally

well. Convergence is quite good.

C. Case 3

Case 3 has been devised to evaluate the algorithms performance in presence of noisy mea-

surements. The standard deviation for the additive vector white noise to the measurements

is increased to σνj
= 10−2 . In the presence of increased measurement noise the convergence
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Figure 1. Case 1: Attitude error comparison. EKF denotes Multiplicative extended Kalman
filter, UKF denotes the unscented Kalman filter, CKF denotes constrained Kalman filter
developed in this paper and LCKF1 denotes the linearized constrained Kalman filter by Simon
and Chia

time of all the filters increased. This coincidentally conforms to the intuitive learning theory

rule which states that in the presence of a noisy environment, one should not learn too fast.

All the filters seem to slowly agree with each other towards the end of the 27 hour simulation.

The simulation parameters for cases 1, 2 and 3 are provided in the Table 1. To facilitate the

longer simulation run, the sampling rate is decreased and hence the algorithms are stressed

further in the absence of rich measurement sampling rates. The results are shown in Fig. 3.

D. TRMM Example of Crassidis and Markley

The performance of the filters are compared using a realistic spacecraft model. The TRMM

spacecraft is a representative Earth-pointing spacecraft in a near-circular 90 min (350-km)

orbit with an inclination of 35 deg. The spacecraft is assumed to be equipped with three

axis magnetometers and gyroscopic rate sensors whose specifications are provided in Ref. 24.
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Figure 2. Case 2: Attitude error comparison

The parameters for the Unscented Kalman Filter are a = 1, λ = 0. A true orientation,

given by the quaternion q0 = [−0.0111, 0.7070, 0.5855, 0.3964]T is considered. Similar to

Ref. 24, two situations of interest are investigated in the comparisons. An initial quaternion

estimate set to be at an orientation obtained by rotating the true attitude quaternion by a

principal angle of π/2 along the principal axis of e = [0 0 1]T is given as the starting estimate

in both cases. The first case is executed with initial bias errors set to zero. Results of a

single simulation run are shown in Fig. T4. A more dramatic situation arises by setting the

initial bias estimate to be β̂(t0) = 10−2[1 2 1]T rad/sec. For all filters to handle this large

uncertainty, the initial bias standard deviation is set to σβ0 = 20 deg/hr. The extra tuning

parameters for the constrained Kalman filter (CKF) and the linear constrained Kalman filter

(LCKF1) are set at σq4,0 = 0.7654 rad, and the corresponding process noise level is set to be

σq4 = 0.0314. The results in this case are shown in Fig. 5. It is interesting to note that the

linear Constrained Kalman Filter (LCKF1) performs the best in this situation.
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Figure 3. Case 3: Attitude error comparison

VI. Conclusions

A novel method to estimate the state vector is presented in this paper for the important

case when a subset of the state vector needs to satisfy the constraint of having a given mag-

nitude (e.g. quaternion). The motivation arises from the area of attitude estimation, but the

proposed method is general. Examples of the use of the proposed norm constrained Kalman

Filter to the attitude estimation problem are provided. In this problem, the state vector

consists of a four component parametrization of the spacecraft orientation (quaternion) and

is found to be naturally constrained to have a unit norm. Numerical comparisons with the

classical multiplicative extended Kalman filter (MEKF), the unscented Kalman filter, and

the linear constrained Kalman filter have been included for three different typical scenarios.
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Figure 4. Case 4: Attitude Estimation Error for case with low initial bias error

Appendix

The following calculus identities are used in the derivations:

d/dX (aTXTb) = baT

d/dX (aTXb) = abT

d/dX (aTXTXb) = X(abT + baT)

d/dX (trace(ATXBT)) = d/dX(trace(BXTA)) = AB

d/dX (trace(XAXT)) = X(A + AT).

Capital bold letters indicate matrices, lowercase bold indicates column vector. The matrix

inversion lemma is also used.

if det(C + VAU) 6= 0⇒ (A−1 + UC−1V)−1 = A−AU(C + VAU)−1VA

21 of 24



Figure 5. Case 4: Attitude Estimation Error for the case with large initial bias error
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