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Abstract—Nonlinear filters are often very computationally
expensive and usually not suitable for real-time applications.
Real-time navigation algorithms are typically based on linear
estimators, such as the extended Kalman filter (EKF) and,
to a much lesser extent, the unscented Kalman filter. This
work proposes a novel non-linear estimator whose additional
computational cost is comparable to (N —1) EKF updates, where
N is the number of recursions, a tuning parameter. The higher
N the less the filter relies on the linearization assumption. A
second algorithm is proposed with a differential update, which
is equivalent to the recursive update as N tends to infinity.

Index Terms—Estimation; Kalman filtering; Filtering; recur-
sive Kalman filter; nonlinear estimation

I. INTRODUCTION

HE well known Kalman filter [1], [2] is an optimal

estimation algorithm. The optimality holds in terms of
minimum mean square error and maximum likelihood estima-
tion under several conditions. These conditions are met when
all noises and the initial estimation error are Gaussian, and
when the dynamics and measurements are linear; under these
conditions the Kalman filter is globally optimal. For linear
measurements/dynamics but without Gaussian distributions,
the Kalman filter is not globally optimal, but it still is
the linear unbiased minimum variance estimator (i.e. is the
optimal out of all linear unbiased estimators) [3]. For the
general, non-Gaussian, linear case, the designer faces a choice:
investigate the actual distribution of the errors and design a
globally optimal filter, or settle for a sub-optimal, distribution
independent Kalman filter. The Kalman filter does not require
complete knowledge of the error distribution, it only requires
knowledge of the first two moments. Gaussian sum filters
[4] deal with non-Gaussian distributions. Their additional
computational cost and complexity however, make them less
attractive than the classical Kalman filter for practical real-time
applications. The real error distribution is usually not perfectly
known, hence the trade is between a suboptimal Kalman filter
versus being able to represent the distributions of all errors
accurately.

A widely used algorithm in real-time nonlinear estimation is
the extended Kalman filter [5] (EKF). The EKF is a nonlinear
approximation of the Kalman filter which assumes small esti-
mation errors and approximates them to first order to calculate
their covariance matrix. Like the Kalman filter, the EKF is
also a linear estimator but relies on the additional assumption
that the first order approximation is valid. Algorithms exists
that relax both the aforementioned assumptions. Filters with a
polynomial update of arbitrary order have been known since
the sixties [6], knowledge of moments of the conditional
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estimation error distribution higher than the second are needed
for these updates. Gaussian sum and particle filters have been
used for nonlinear problems [7], [8], but they also require
the knowledge of the distributions. Much like in the linear
measurement case, renouncing to using a linear estimator
requires to know the entire error distribution.

Techniques exist to overcome some of the limitations of
the EKF linearization assumption. The Gaussian second order
filter (GSOF) [9] takes into account second-order terms assum-
ing the error distribution is Gaussian. The iterated extended
Kalman filter [5] recursively improves the center of the Taylor
series expansion for a better linearization. The unscented
Kalman filter [10] (UKF) is able to retain higher-order terms of
the Taylor series expansion. Underweighting [11] is an ad hoc
technique to compensate for the second order effects without
actually computing them.

This paper introduces algorithms to incorporate nonlinear
measurements into a Kalman filter. The new nonlinear fil-
ter overcomes some of the limitations of the EKF without
requiring complete knowledge of the error distribution. The
main advantage of the proposed scheme is that the update
equation is not necessarily linear and outperforms the EKF
for nonlinear measurement functions. Possible divergence due
to Taylor series truncation is avoided in the proposed filter
and the computational cost is not excessive because the filter
is not affected by the curse of dimensionality. The new
algorithm does not search among all possible updates, but
follows the gradient of the nonlinear measurement function.
In a similar manner in which the Kalman filter only searches
for the minimum variance estimate out of the linear estimators,
the new algorithm minimizes the covariance while following
the curvature of the nonlinear measurement. The proposed
algorithm is not globally optimal and, like the EKF, can
be outperformed by other algorithms in certain nonlinear
scenarios. The proposed algorithm reduces to the extended
Kalman filter for linear measurements.

The EKF update can suffer from two issues that can make
its estimated statistics inconsistent with the true distribution
of the error. One possible issue is the first-order truncation of
the nonlinear measurement function; the proposed algorithm
solves this problem. Another possible limitation of the EKF is
not addressed by the proposed update scheme. By evaluating
the measurement Jacobian at the estimated value, the EKF
makes it a random variable. The Kalman gain is a function of
the measurement Jacobian and it is also random. In calculating
expectations the Jacobian and the Kalman gain are taken
outside the expected value, as if they were constants. The EKF
covariance update is valid when the Kalman gain is constant
across all possible estimates, which is true for the linear case
but not true for the nonlinear case. When the Kalman gain
varies significantly, the a posteriori EKF covariance can be



inadequate to represent the actual estimation error covariance.
The UKF solves this issue by choosing various sigma points
spread around the distribution and constructing the gain from
them.

The paper is organized as follows. First a quick review
of minimum mean square error estimation is presented to
motivate the work (Section II). The new algorithms are then
introduced in Section III, followed by a comparison to existing
methods for nonlinear estimation (Section IV). A numerical
example is presented in Section V and some conclusions are
drawn in Section VI.

II. LINEAR MINIMUM MEAN SQUARE ERROR ESTIMATION

Given an n-dimentional random vector X with components
X1, ... X,, and probability density function (pdf) fx(x), the
notation Ex{g(X)} means

Ex(g(0) 2 [ [ gbox(dndr

The mean is given by ux = Ex{X} and the cross-covariance
is Txy £ Exy {(X— px) (Y — py)T}. For scalars the
notation 0%y is used instead of X xy.

Given two random vectors X and Y, the linear estimators
of X from Y are given by X = AY +b. The goal is to find
optimal values for A and b in a minimum mean square error
(MMSE) sense. The optimal coefficients are denoted with an
asterisk. The orthogonality principle [12] establishes that A*
and b* obey the relation

Exy {[X ~A*Y — b [AY+b}T} —0 VA,b. (2

Choosing A equal to zero, to satisfy the orthogonality condi-
tion for all vectors b it follows that

Exy {X-A*Y -b*]} =0 = b*=E{X}-A*E{Y}.

3)
The linear MMSE (LMMSE) estimator has the form X =
px +A(Y — py).
Choosing b = —p~ and A the identity matrix it follows
that

Exy {(X —px — A" (Y —py)] (Y —py)T} =0, @)

the optimal matrix is therefore given by

A" = Sxvy Iy ©)
The LMMSE estimator is
X = px + IxyEvy (Y — py), (6)
and has covariance
Zxx = SxySyy Ty (7)

The estimation error E is defined as E 2 X —X. The LMMSE
estimator is unbiased, i.e. the estimation error is zero mean.
The covariance of the estimation error is

e = Txx — Sxvy vy Sxy- ®)

Since the estimator is unbiased the error covariance and
mean square coincide, therefore LMMSE and linear unbiased

minimum variance have the same meaning. The global MMSE
estimator (i.e. possibly non-linear) of X based on Y is the
conditional mean Ex |y {X[Y}.

The UKF approximates p+- and the second order moments
in Egs. (6) and (8) using stochastic linearization through a
set of regression points while the EKF approximates them by
linearization around the mean.

The following example illustrates the consequences of
choosing a linear estimator. Define two independent Gaussian
random variables as Z ~ n(pz,0%,) and N ~ n(0,0% ).
The notation n(u,0?) indicates a Gaussian random variable
with mean g and variance o2. The random variable to be
estimated is X = Z + N, therefore X is Gaussian with mean
pux = pz and variance 0%y = 0%, + 0% - Suppose the
observed random variable is Y = (X — N)3, therefore the
measurement is nonlinear and N is interpreted as measurement
noise. Notice that Y = Z?3 therefore

py =E{Z%} = i} +3uz 0%, ©)
ovy =E{Y?} — 13 = E{Z°} — (1} +3uz 0%,)”
= uS + 15u%0%, +45u%0% 5 + 1505,
— (1% + 6z 0%y + 9uz0yy)

= 0%, + 36p%0%, + 1505, (10)
oky = E{XY} — uxpy
=E{Z'+ Z°N} — nz(p% +3pz 0% 7)
_ 4 2 2 4 4 2 2
=z +0uz077 + 3077 — iz —3Uz077
=3u30%, + 30y, (11)
A Hossible estimator of X is XMEAS = Y1/3. Notice
that ){ MEAS = Z and has estimation error Epypas =
X — Xymeas = N. The estimator is unbiased since
E{Emrpas} =E{N}=0. (12)
The estimation error variance is given by
Ohipas = ONN- (13)
The optimal LMMSE estimator is given by
o Xy
XLMMSE = pix — 2 (Y — py), (14)

YY

and has estimation error Erymse = X — Xoammse. The
estimation error variance (which is equal to the mean square)
is

ol

2 _ 2 _ Oxy

OLMMSE —0XX o2
YY

= oy + ok — gt ) Tir
o7, +36uzo,, + 150y,
_ (1 _ IpZ +0%4)°
I, + 36u%0%, + 1504,

_ 18u30% 5 + 60% 4
© 9ud +36p%0%, + 150%,
In a mean-square sense, the optimal linear estimator performs
worse (i.e. it has a bigger mean-square error) than Xy/pas.

It is not surprising that a nonlinear estimator performs bet-
ter than a linear estimator. It is however undesirable that

2 2
) Ozz tONN

U%Z + OJQVN. (15)




the linear estimator is not able to extract all the available
information from the measurement and performs worse than
the measurement itself. A perfectly tuned UKF is consistent
and has the same performance of the LMMSE estimator, but
this fact does not imply satisfactory results. Notice that to
calculate all the variances and cross-variances, the LMMSE
estimator necessitates, in general, to know the distribution of
the random variables. When the measurements are linear only
the knowledge of the first two moments is required.

Because of independence, the joint pdf of Z and N is given
by

fzn(z,n) = fz(2) fn(n). (16)
The transformation between [Z, N| and [X,Y] is
zZ (X yl/3
M= ()=l o

The absolute value of the determinant of the Jacobian is given
by

gt ‘ {0 (1/3)Y—2/3 } 1.,
— | = _ =Y ~?/3, (18)
‘a x v"| Il —amysf[ T3
The distributions of interest are
1 _
Ixv(z,y) = 3Y BEr' ) fn@ =yt (19)
1
fy(y) = gy_z/gfz(yl/g) (20)
Fxpy (@ly) = fn(z —y'/?). 1)
The MMSE (non-linear) estimator is
Xuvmse = Exp{X|Y} =Y+ un =Y, (22

where pny = 0 is used.

III. THE RECURSIVE UPDATE FILTER

The Kalman filter’s linear update is applied all at once
when a measurement becomes available. The idea behind the
proposed scheme is to apply the update gradually, allowing
to recalculate the Jacobian and to “follow” the nonlinearity of
the measurement as the update is applied.

Lower case letters indicate realizations of the random vari-
ables. For example x is the true state which amounts to
the value of of the random variable X for the event under
consideration.

Recall the Kalman filter with correlated measurement and
process noise [13], define the cross-covariance at time ?j
between the true (unknown) state x; and the zero-mean
measurement noise 7;, as Cy

Cr =E{(xx —%;)m} },

where X, is the a priori estimated state. To derive the
equations of this scheme a linear measurement yy is first
assumed

(23)

vi = Hgxy + ny,. (24)
Choosing a linear unbiased update
)A{$ =X, + Ki(yr — ka(;) (25)

The optimal gain in terms of minimum variance estimation is
given by

K, = (P, Hf +Cy) (H,P; H + Ry +H,Cj + CFHJ) !,
(26)
where P is the a priori estimation error covariance matrix
and R, is the measurement error covariance matrix. It is
assumed throughout this work that all errors and noises are
zero mean. The updated estimation error covariance is given
by
PZr :(Inxn - Kka)P]; (In><n - Kka)T + KkRkKr]g_
(Lnxn — K Hy) CrKj — KiCf (Lnxy — KiHy)™,
(27
where I,,,,, is the n X n identity matrix, n being the size of
the state vector.

Assume the same measurement is processed twice, after the

first update the a posteriori estimation error is
W= 5y =2V = (L — KV Hy ey — K7, (28)

ek = Xk

where e, = Xy — X, is the a priori estimation error. The first
optimal gain is

K" = PLHI (H,P; Hf + Ry) .. (29)
The cross-covariance of eg) and m,, is given by
clV = “K,Ry. (30)

The updated covariance is obtained simplifying Eq. (27) to
obtain

P = (1,,, - K\WH,)P; — K,CF. (31)

The cross-covariance between the a priori state and the
measurement error is denotes as C,(CO) and is assumed to be
zero, i.e. the quantities are uncorrelated and C,io) =C, =0.
Eq. (31) is only valid when the gain is chosen as the optimal
gain, which is not always true in the remaining of this section.
Eq. (27) is valid for any choice of Kj.

Processing the same measurement again the second optimal
gain is obtained by substituting Eq. (30) into Eq. (26) and
replacing P, with Pg)

K = PVHT +c) (32)
(HyP" —H] + Ry + HCV + CVTH) 1,

the resulting optimal gain Kf) is zero since

PUHT + Y = (I, - KVHPLH - KUR,
— P H - K\V(H,P; Hf +Ry)

=P, H, - P, H, =0. (33)

This result is to be expected; after the first update all the
information from the measurement is extracted, therefore
processing the same measurement again, no additional update
should occur.

Assume however that the first update is not optimal, only a
fraction of the optimal update is applied

K" = 05P Hf (H,P H} + R;) ', (34)



with this choice of K,(Cl) the resulting K,(f) is not zero.
After the first iteration only half of the optimal update is
applied. During the second iteration the full Kf) is applied
such that the net result after both updates is identical to the
standard Kalman algorithm. If three iterations are performed,
and each iteration updates one third of the total, the first
coefficient is 1/3. The second coefficient is 1/2 because the
remaining optimal update is two thirds of the total, the last
coefficient is 1. This procedure can be expanded to an arbitrary
number N of iterations. For the linear measurement case
this algorithm is equivalent to the Kalman filter, making the
iterations redundant. The benefits of this approach are evident
however for nonlinear measurements. Given a measurement
which is a nonlinear function of the state

vi = h(xi) +n; (35)

the algorithm for the nonlinear recursive update is given by
Table L.

TABLE I
RECURSIVE UPDATE, NONLINEAR MEASUREMENTS
(0)
Ck

— (0) _ %0 _ 4~
=0, P, x5,

=P, =X,
for ¢ (;) 1 tOBN
i h
i) 1q()p(i=1) g3 ()T i) ~(i—1 i—1)Tyy(i)T
W<<> %%)P((i 1 H((%)T i t>H§“ C<I(“> —)1+C'(“ T
Ifm - Fr o k. J (W)
X, K (ye —h(x ) o
P%) — (]:n><77 K( )H( ))P(l 1)(]: xn — K/(;)Hg))T +
FZ)R K(z)T (Inxn _ K(l)H(Z))Cg)K](;)T
z)cmT( K H)T |
C(Z) — ( K(Z)H( )) (i—1) KI(;)RIC
(” = 1/(N+ 1—14)
end for

— &™)

+ _pWN)
P, =P xk

k )

As the number of recursions steps /N tends to infinity, it is
possible to obtain differential equations that govern an update
law that continuously re-linearizes. Define the independent real
variable 7 € [0, 1]. Assume the domain of 7 is divided into N
intervals, each of length 1/N. Then the algorithm of Table I
can be rewritten as

Cr(0) = 0, Kg(0)=0, Py(0) =P, , %x(0) =%,
fori=1to N

Ti Zi/NZTZ‘,l +1/]\/v7 70 =0

Hy(r;) = 28

x=%Xp(Ti—1)
Cr(1i) = (Inxn — Kg(ri—1)Hg(7:)) Cr(1i—1)
(1) = (1/N)/(1+1/N — 1)

Wk(Tz) = Hy(r)Pr(ri—1)HF (1:) + Ry + Hy(r:)Cr(m) +
C (T’L)H ( )

Kk(‘f'i) = 'Yk(Ti)(Pk(Tifl)HT(Ti) + Ck (7))

— Ky (mi-1)Ryg

W, (m)

% (1) = Rp(rim1) + K () [y — h(Rp(1i-1))]
Pp(ri) = (Inxn — Kp(m)Hp(m))Pr(ric1) Tnxn —
Ki(r)Hi(m)"  +  Kp(m)ReKP(r) = (Inxn -
Kk(TZ)H]C(TZ))C]C(TZ)KE(TZ) - Kk(Ti)CE(Ti)(Inxn -
K (71)Hy (1:)) "

end for

Pl =Py(1), % =%x(1)

Notice that as N — oo, 7 — 0, therefore K, — O. A

new gain K7 is defined as

ey oo Ki(m) K (7i)
Ki(r) = Jim =xr = 3m )8
1 —
=15 (Pr(ri)HE (75) + Cr(1)) Wi (7).

(36)
The change in cross-covariance between time steps is given
by
Ack(ﬂ) = Ck(Ti) — Ck(Ti—l)

= —K(1i—1)Hi (1) Cr(1i—1) — Ki(7i-1) Ry

(37

Similarly the changes in covariance and state estimate are

Axp(7i) = Ki (1) [yr — h(%k(7i-1))] (38)
AP(7) = —Kp (1) Hi (1) Pr(7i) — Py () Hy (1)K (3)
+ K () Hy ()P () H, (1) K (72)
— K(1) G (73) (T — K () Hy (1)
— (Luxn — K (1) Hyo (7)) Ci (1) K (3)
+ K, (1) Ry K, (73) (39)
The evolution of the cross-covariance is given by
ok = Jim L
= —Ki(7)Hp(7:)Cr(7) — Ki(T)Ry  (40)
Notice that Kj(1) = O because when 7 = 1 all the

information from the measurements has been extracted. The
evolutions in covariance and state estimate are

shr) = Jim X k) - nalm)] @
P} (1) = —Kj () (Pr(m)Hy <n>+ck< ) =
(Pr(n)HF (1) + Cr(r)) " K;T(7). 42)

For the linear measurement case, integrating Eqs. (40),
(41), and (42) from 7 = 0 to 7 = 1 is equivalent to the
standard Kalman update. The differential update algorithm in
the presence of nonlinear measurements is given by Table II.

TABLE I
DIFFERENTIAL UPDATE, NONLINEAR MEASUREMENTS

Cr(0) =0, Pr(0) =P, , %4(0) =%,
Integrate C;., Xx, and Py for 7 =0to 1
Hy(r) = %Tx:zk(r)
Wi(r) = Hi(nPr(r)HL (1) + Rx + Hg(1)Ck(r) +
Ci (m)H] (1)
K (1) =1/(1 = 7)(Pr(r)H] (1) + Ci(1)) W ' (1)
Cj(1) = =K (1) (Hi(7)Cr(7) + Ry,)
%1, (1) = K5 (7) [yr — h(%x(7))]
Pl (1) = =K (1) (Pr(r)H] (1) + C(1)) — (Pr(r)H] (1) +

Ty
Ci(1)) K;"(7)
end Integrate
Pl =Pi(1), % =%(1).

In the nonlinear measurement case the total update is differ-
ent from the EKF and is generally nonlinear. In the differential



formulation of the algorithm the Jacobian is computed con-
tinuously, therefore the algorithm “follows” the nonlinearity
of the measurement. The EKF assumes a linear update and
truncates the Taylor series expansion of the residual to first
order, this second assumption can be inadequate in certain
situations. The algorithms in Table I and Table II have either
an infinitesimal update or an update arbitrarily small, therefore
the linearization assumption can always be made valid. The
proposed algorithms are not globally optimal, to solve the
nonlinear minimum variance problem the distribution of the
errors needs to be defined.

In practical implementations the differential update needs
to be computed numerically which requires an integration
step and inevitably introduces numerical errors. In the au-
thor’s experience, it is more accurate to use 4 recursions
from Table I than a single step fourth order Runge-Kutta
propagation from Table II; the two approaches require the
same number of function evaluations. Using N recursions
is equivalent to solving the differential update with N Euler
steps. Since K (1) = O numerical integration schemes that
do not evaluate the derivative at the end of the step seem to
be more precise.

The number of iterations is a user-defined parameter that
needs to be selected by addressing two conflicting design
objectives. On the one hand the number of iterations should
be chosen high to improve performance; the more iterations
the more often the algorithm re-linearizes and the better the
non-linearity of the measurement is followed. On the other
hand whenever computational time is of concern it is desirable
to reduce the number of iterations. In general, the higher
the degree of nonlinearity of the measurement, the more
iterations are needed. A good indicator of the performance
of the algorithm is the post-update residual. The residual
(actual measurement minus estimated measurement) where the
estimated measurement is computed with the updated state,
should match its predicted covariance. Discrepancies between
the two indicate the nonlinear effects are of concern and more
iterations are needed.

IV. COMPARISON WITH EXISTING SCHEMES

The algorithms proposed in this paper have two character-
istics that differentiates them from other schemes. The EKF
can suffer divergence when nonlinearities become significant
[9]. For example, it is known that the linearization assumption
of the EKF is not adequate in the presence of very accurate
nonlinear measurement when the prior estimation error covari-
ance is large [14]. In this circumstance the update is “large”
and the actual covariance often does not decrease as fast as the
filter’s predicted covariance. The proposed algorithms mitigate
this issue by substituting a single “large” update with small
or infinitesimal updates. Algorithms such the GSOF and the
UKF are able to capture some of the nonlinearities and are
more robust to these divergence problems than the EKF.

The second feature of the proposed schemes is the nonlin-
earity of the total update. Both the UKF and GSOF have a
linear update. Since the update is not applied all at once and
the Jacobian is re-calculated, the total update is not linear. It

is well known that in the presence of nonlinear measurements
the linear update is not necessarily optimal.

As seen in the appendix, the Gaussian second order filter
mostly consists in increasing the process noise covariance
Ry by the second order contributions Bj. In practice the
nonlinearities are treated as additional sensor noise. The pos-
terior uncertainty of the EKF’s estimated measurements tends
to be equal to the measurement covariance when the prior
uncertainty is high and the measurement is precise. Under
the same conditions the post-update estimated measurement of
the Gaussian second order filter tends to Ry + Bg. Therefore
after an update the second order filter could perform worse
than the measurement it is provided in terms of the size of
the estimation error covariance. This fact illustrates a possible
shortcoming of the linear update in the presence of nonlin-
ear measurements. After an update an estimation algorithm
should perform at least as accurately as the measurement it is
provided, otherwise the measurement itself would be a better
estimate. The UKF behaves in a very similar manner. A quick
review of the UKF is also presented in the appendix.

The existing algorithm that most resembles the proposed
scheme is the iterated Kalman filter (IKF). The purpose of the
iterated Kalman filter update [5] is to repeatedly calculate the
measurement Jacobian each time linearizing about the most
recent estimate. The iteration is initialized by choosing

Xp0 =X, Pio=P,. (43)
The loop is given by

_ _ -1
K1 =Py HL, [Hy P HL + Ry (44)

Xiiv1 =X + Kig [yr — h(Xei) — Hyi(Xei) (X, — Xni)]

(45
Py =[1-Ki;Hp ;] Py (46)
oh
H,,= — 47
k, ox N @7)
The updated state estimate and covariance are given by
X5 = XN, P! =Pin, (48)

where NV is the number of iterations. The IKF is fundamentally
different from the proposed algorithm because it recursively
recalculates the center of the Taylor series expansions and re-
applies the entire update to both the state and the covariance.
The estimate X provided by the IKF is equivalent to using a
Gauss-Newton method [15] to minimize the following nonlin-
ear least-squares problem

min 7 =(x %) "(P7) " (x ~ %)
+(h(x) - y)"R " (h(x) — y).

Newton methods converge on an interval when the derivative
of the function is non-zero in the interval and the interval is
“small” enough, i.e. the higher order effects are not dominat-
ing. When the second of these two conditions does not apply
the method can overshoot and diverge. Much like the IKF, the
proposed recursive update method fails when the derivative is
zero (as does the EKF). However, because the update is applied
gradually, no overshooting occurs. A very simple example

(49)



illustrates this concept. The arctangent function is monoton-
ically increasing and is a well-behaved function. Assume a
true state z = 0 and a perfect measurement y = arctanz.
The measurement sensitivity is H = dy/dz = 1/(1 + 2?)
and is not zero anywhere close to the true state. Since the
measurement is perfect R = 0 and the Kalman gain is
K = P~H/(P~H?) = 1/H. Choosing the a priori estimate
i~ = 20 = 1.5 the IKF diverges since

#2 =2321
2 = 32.295.

#) = —1.694
#G3) = 5114

Under the same conditions, four recursions of the proposed
algorithm provide

#2 = 0.397
#@ = —0.004.

+M = 0.701
#3) =0.178

For this particular case, since the measurement is perfect, the
minimum of Eq. (49) is zero and the IKF reduces to a Newton-
Raphson method.

As long as the measurement sensitivity does not approach
zero, in most practical situations both the IKF and the re-
cursive update filter are equally adequate to solve this type
of problems. The IKF requires less computations, but the
proposed method is preferable under certain conditions like
the one illustrated above. While the IKF is a Gauss-Newton
method, the recursive update filter closely resembles a gradient
method. Line searching techniques [16] can avoid divergence
of Newton methods, they usually rely on numerical optimiza-
tion and their complexity is not usually suitable for real-time
applications.

V. NUMERICAL EXAMPLES

In order to demonstrate the advantages of the proposed al-
gorithm two examples are presented here. The first is a simple
scalar example that provides a good geometrical interpretation
of the difference between the various estimation techniques.
Assume the true state is z = 3.5, the a priori estimated
state is £~ = 2.5. The a priori estimation error covariance
is P~ = .52 such that the a priori error falls exactly at the
2-sigma point. The measurement is nonlinear and given by

y=2a°+n, (50)

with 7 ~ n(0,0.1%), therefore the measurement is very accu-
rate. A possible estimate is obtained from the measurement
only and is given by

ivpas = y'/>. (51)

A simple Monte Carlo simulation shows that for this case
where R = 0.12, the estimation error covariance of £y gas
is given by Pppas = 0.0027%, which is very close to its
linear approximation: the measurement Jacobian is H = 3z
and Pypas ~ R/H 2, By evaluating H at the true state
Pyeas ~ 12/(3-3.5%)% = 0.00272 .

The EKF gain is given by

Kerxr =P [3(27)%/[9(27)*P~ + R] = 0.0533.  (52)

To keep the analysis deterministic we assume that the particu-
lar measurement under consideration happens to be error free,
i.e. y = 42.875. The updated state is equal to

hp =2 +Kprrly—(37)% =39532,  (53)

the estimation error is equal to 0.4532. The a posteriori error
covariance is

Phrpr=01-3Kpkr(@™)*?P~ + KixpR = 0.0053°.

(54
The estimation error is 85 times its expected standard devi-
ation. Since the measurement is much more accurate than
the a priori estimate, the a posteriori estimate is mainly
based on the measurement. The EKF “thinks” it extracts all
the information but it has two issues. First the a posteriori
covariance is calculated based on the a priori estimate rather
than the true state, Py, ~ R/[3(27)%)? = 0.0053%. The
second problem is that the filter is not actually able to extract
all the information from the measurement because it performs
a linear update. Fig. 1 gives a graphical representation of the
EKF update. The z-axis is the state while the y-axis is the
measurement, the gray line is y = 23. The EKF correctly
recognizes that the measurement is much more precise than the
a priori information, therefore it attempts to update the state
to match the measurement. However, relying on linearization,
the EKF does not match (#7)3 with the measurement, instead
it matches its first order approximation

(@) ~§ + HKprr(@T —27) = (27)° + 3(27)%Ag,
(55)
in this situation the first order approximation is not accurate.
Fig. 1 shows that the approximated a posteriori measurement
estimate matches very closely the actual measurement, unfor-
tunately in this case it does not imply good performance.
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Fig. 1. EKF Update.

The Gaussian second order filter improves the estimate a
little, but its biggest effect is to increase the a posteriori error
covariance. The principal merit of the GSOF is to represent



the fact that the update is not as good as it should be, but it
does not actually improve it. The Hessian of the measurement
is given by H' = 6x. The GSOF gain is given by

Kasor = P(32%)/[92* P4+ R+0.5(627)%(P~)%] = 0.0494,

(56)
the gain is only slightly smaller that the EKF’s gain. The
updated state is

itsor =3 +Kasor [y—(27)*—0.5(627)P~] = 3.7530,

(57)
the estimation error is equal to 0.253. The a posteriori error
covariance is

Plsor =[1- 3Kasor(d™)?P P

+ KZgop[R +0.5(627)%(P™)?%] = 0.13622,
(53)

the error estimation error is 1.86 times its expected standard
deviation. The filter is able to correctly predict the estima-
tion error, but it mainly accomplishes that by increasing the
uncertainty rather than improving the estimate.

Since x and 7 are Gaussian, the UKF parameter is chosen
as k = 2 [10]. For this particular case, the UKF outputs are

Kukr =0.0513 (9
&7 ey = 3.8654 (60)
Py = 0.1688 = 0.4109°. (61)

The UKF has the biggest estimated covariance and the es-
timation error is 0.89 times the expected standard deviation.
The UKF achieves consistency and minimizes the mean square
error out of all linear updates. The performance however is not
ideal because it is worse than the measurement accuracy. The
discussion in section II highlights that a nonlinear update is
necessary to overcome this issue.

Using 10 steps in the recursive update filter the results are

ity p = 3.5014 (62)
P e =8.0234107° = 0.0028%. (63)

The ratio of the estimated error over its expected standard
deviation is 0.4993. Fig. 2 and Fig. 3 show the performance
of RUF with 2 and 10 steps, respectively.

To further illustrate the difference between the proposed
algorithm and the IKF, two iterations are used and Fig. 2
is compared with Fig. 4. Two recursions in the proposed
algorithm result in an estimate of aﬁg& p = 3.5238 while two
iterations IKF produce :2%)( r = 3.5499. Under the conditions
of this example the proposed algorithm outperforms the IKF.
As the number of iterations increase the IKF performance
improves significantly and the IKF converges fast. Fig. 4
shows how the IKF operates. The true state is at center
of the plot, while the initial estimate is at the bottom left.
The first IKF iteration is identical to the EKF and happens
along the tangent of the measurement function at the a priori
estimation point. The IKF then recalculates the tangent of the
measurement function at the current estimation point (thinner
dashed line in the figure). The second IKF iteration applies
the entire update along the recalculated tangent starting from
the a priori estimation point.
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Fig. 3. RUF Update with 10 steps.

Fig. 5 shows the algorithms comparison for 100 Monte
Carlo runs. For each algorithm the 100 estimation errors are
plotted together with the filter’s 30 predictions. All 100 runs
have the same a priori estimate, while the true state is ran-
domized according to a normal distribution with mean £~ and
variance P~. The measurement error is also randomized with
mean zero and variance R. The results show that the EKF is
unable to predict its performance. The GSOF performs better,
but still underestimates the estimation error, probably higher
order filters are needed. The UKF is able to correctly predict its
performance. Ten iterations are chosen for both the recursive
update filter and the IKF. Notice that under the conditions of
this example, RUF and IKF are the only algorithms for which
the a posteriori covariance varies for each Monte Carlo run.
In Fig. 5 the covariance of the measurement-only update is the
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Fig. 4. 1KF Update.

sample covariance of 10000 Monte Carlo runs. RUF and IKF
reflect the fact that the bigger the true state, the smaller the
covariance (Pt ~ R/H 2), where the measurement Jacobian
is evaluated at the true state).
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Fig. 5. Estimators Comparison.

The second example presented here is a tracking problem
where an object being tracked travels on a planar trajectory as
shown in Fig. 6. The estimated state x contains position and
velocity, the initial filter covariance P is obtained setting the
state uncertainty to 10 m in position and 0.05 m/s in velocity
per axis.

10213><3
O3x3

. 0
x=Ax+v  Po= [ 0.05gi<§x3] ©4)

where

(65)

_ | Osx3 Isxs
a= %

and

0 0 0 0 0 2n
A =10 —n? 0 Ay=| 0 0 0],
0 0 3n? —2n 0 0
with n = 0.0011rad/s. The process noise is given by
Osx3  Osxs
E{v}=0 E{w'}=|" o 66
{v} '} Osx3 107 %Isxs (66)

A range measurement p with 0.1 m accuracy and two bearing
angles with 0.1 deg accuracy are available. The bearing

angles are azimuth o = tan~!(x(1)/x(2)) and elevation
e = sin" 1 (x(3)/p).
p
y=|a|+n (67)
€
_ T _ 0.12 O1><2
Efny=0.  E{m'}=\g (0.17/180) 2T 5
(68)

One hundred runs are performed in which the initial estimation
error and the sensors errors are dispersed using zero mean
Gaussian independent random variables. Fig. 7 shows the
performance of the EKF, the lighter lines are the 100 samples
of the estimation error, while the thicker black lines are the
EKEF predicted standard deviations. Much like in the previous
example the EKF is overly optimistic in predicting its perfor-
mance. Eventually however the EKF is able to recover. Under
similar but more severe circumstances, it is also possible that
the EKF would diverge all together [11].
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Fig. 6. Trajectory.

Fig. 8 shows the performance of 10 recursive updates
using the proposed algorithms. It can be seen that the filter
outperforms the EKF during the first few hundred seconds. The
recursive update filter is also able to predict its performance
as most error samples are within the 1o prediction and all of
them are within the 30 values. The performance of the two
algorithms in estimating velocity is very similar to that of the
position shown in Figs. 7 and 8.
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Fig. 7. EKF Estimation Error and Predicted Covariance.
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Fig. 8. Recursive Update Filter Estimation Error and Predicted Covariance.

VI. CONCLUSION

Optimal does not mean good. The linear minimum mean
square error (LMMSE) estimator is optimal out of linear esti-
mators, however the feature does not guarantee good perfor-
mance for certain measurements nonlinearities. In a minimum
mean square sense, the LMMSE estimate is always better than
the a priori estimate (i.e. the estimate without incorporating
the measurements) but there is no guarantee it performs better
than the measurements themselves. This work proposes a
nonlinear estimator that outperforms the extended Kalman
filter (EKF) in the presence of non-linear measurements. Like
the EKF, the proposed algorithm linearizes the measurement
residual but the update is applied a little at the time to assure
the validity of the linearization assumption. Like most practical
non-linear filters, the proposed algorithm makes simplifica-
tions and approximations and it could be outperformed under
certain conditions. The main assumption is that the optimal
gain follows the measurement gradient. This is often a good
assumption and it is an improvement over the EKF. However
under some conditions, namely the slope of the measurement
function approaches zero, the approach can be unsatisfactory.
The EKF also underperforms in these circumstances. In this
work the Kalman gain and the measurement Jacobian are taken

outside the expected value sign when calculating the filter’s
covariance matrix as done by the EKF.

Under the conditions of this work’s numerical example, the
proposed algorithm outperforms the EKF, the Gaussian second
order filter, and the unscented Kalman filter. In the example,
the proposed algorithm is able to extract all the information
from the measurements therefore it has a higher convergence
rate than linear estimators such as the UKF or the GSOF.
Because of this property the algorithm is particularly useful
in highly uncertain environments subject to scarce nonlinear
measurements.

APPENDIX A
THE GAUSSIAN SECOND ORDER FILTER

Given the nonlinear measurement of Eq. (35), the GSOF
assumes a linear update

%0 =% + K (ye — h(ki) = by). (69)

The EKF truncates the Taylor series expansion of the non-
linear measurement to first order, while the GSOF includes
an additional term, Bk, which is the expected value of the
second order terms of the Taylor series. The Hessian of the
measurement function is given by

/ A 82 hz (Xk)

ik axk(?XE — ’
=Xy,

where h;(x},) is the i component of h(xy). The i*" compo-
nent of by, is given by

~ 1
bix = 3 trace(H , (P;)"). (70)

B}

Matrix By is the contribution of the second order effects,
under the Gaussian approximation, the ij*" component of By,
is given by
1 _ -
Bij k= 3 trace(H) (t,) Py, Hi(ty) Py) (71)
and the posterior estimation error covariance is given by

Py = (Luxn — KeHy) Py (L, — KpHy)T

+ Ki(Ry, + Br)Kj (72)
finally the optimal gain is given by
K; =P, H} (H,P,H} + Ry +B;) . (73)

In the second order filter the process noise covariance Ry, is
increased by the second order contributions By.

APPENDIX B
THE UNSCENTED KALMAN FILTER

The unscented Kalman filter (UKF) [10] is developed
assuming that it is more accurate to select a fixed number
of points (called sigma points) to approximate a nonlinear
transformation of a distribution than to approximate it by
linearizing the transformation. This assumption is certainly
true for Gaussian distributions, for which optimal locations
of the sigma points are known. For general, non-Gaussian,
distributions tuning and engineering judgement is needed to



appropriately select the sigma points. Even when the distribu-
tion is initially Gaussian, it generally looses Gaussianity after
non-linear transformations.

When the measurement noise is additive and uncorrelated,
the set of 2n + 1 sigma points X; is chosen as

Xy=%" (74)
Xi=% + ( n+ /{)P*) (75)
Xipn =% — ( (n+ R)P*)i (76)

where n is the size of the state vector, («/(n + m)P—)l is
7

the i-th column of the matrix square root of (n + x)P~, and
K is a tuning parameter. The non-additive and/or correlated
measurement noise case requires only slight modifications to
the algorithm. The set of measurement sigma points Y; is
calculated as

Yi =h(X;), (77)
the predicted measurement is given by
2n
y=> Wi (78)
i=0

where the weight is calculated as W; = 0.5/(n + &) for i #
0 and Wy = k/(n + k). The UKF uses Egs. (6) and (8)
to calculate the estimated state and covariance with pux =
%X~ and p = y. The UKF approximates the second order
moments in those equations as

2n
Svyy =R+> W (¥i-9)YVi-9)" (79
=0
2n
Sxy = Wi (X —x) (i-3)". (80)
=0
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