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I. Introduction

The Kalman filter (KF) [1, 2] and its extension for nonlinear systems, the extended Kalman

filter (EKF), are widely used algorithms in spacecraft navigation. To estimate spacecraft attitude,

one favorite representation is the quaternion-of-rotation [3, 4]. Different approaches exist to enforce

the unit-norm constraint of the quaternion-of-rotation (simply referred to as the quaternion from

here on) in the Kalman filter, such as the multiplicative extended Kalman filter (MEKF) [5], the

additive extended Kalman filter (AEKF) [6], as well as projection techniques [7], and constrained

Kalman filtering [8]. Another extension of the Kalman filter for attitude estimation is the unscented

quaternion estimator [9] that is based on the unscented Kalman filter (UKF) [10].

Like the EKF, the UKF is a linear estimator for nonlinear systems. Whereas the EKF employs

linearization around the mean, the UKF utilizes stochastic linearization [11]. Stochastic linearization

through a set of regression points employs the full set of nonlinear equations to estimate means and

covariances for both the filter’s propagation and update phases. As such, the UKF is capable of

producing estimates of the means and covariances that are accurate to at least second order [12].

In this work, the filter update is performed utilizing unit vector measurements. Direction

measurements from attitude sensors are often provided as bearing angles, but a unit vector can be

easily derived from these angles. While it is possible to process the angular measurements directly,

processing unit vectors is a widely adopted technique [6, 13]. The QUEST model [13] and the model
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by Cheng et al. [14] are two unit vector measurement models in which the measurement error is

represented as an additive contribution to the perfect measurement value. Mortari and Majji [15],

on the other hand, introduced a multiplicative measurement model, which is the most natural unit

vector model because it more closely represents the actual errors of the measurements. Contingent

upon the linearization assumption, the multiplicative residual approach is equivalent to the additive

residual approach [16], and the two are effectively identical to processing the bearing angles directly

[17]. A key aspect of this work is the removal of the linearization assumption.

Both the EKF and the UKF are approximations of the optimal linear minimum mean square

error (LMMSE) estimator. By performing a Taylor series and truncating to first order, the EKF

defines the error as an additive quantity. This inconsistency with the nature of attitude is addressed

by the MEKF by estimating attitude deviations, i.e. the series center of the attitude state is

zero. By avoiding linearization around the mean, the UKF is capable of bypassing some of the

limitations of linearization. At the heart of the UKF algorithm, however, the calculation of the

sample mean and covariance from a set of sigma points is required. In every work to date, UKF-

based attitude estimation approaches have computed these sample statistics by subtracting three-

dimensional attitude deviations as if they were vectors.

This work presents a novel attitude UKF that has considerable conceptual and algorithmic

differences from the attitude UKF of Crassidis and Markley [9]. Both a multiplicative measurement

model and a multiplicative residual [16, 18] are utilized in this work, whereas Ref. [9] uses an

additive measurement model and an additive residual. The propagation phase of the novel filter

is also different from that of [9] in calculating the propagated estimated quaternion. Ref. [9] relies

on the algebraic average of three-dimensional attitude parameterizations in order to compute the

propagated quaternion. This work utilizes quaternion averaging [19], which provides the estimate

with the minimum attitude error. Rather than minimizing the vector part of the attitude error as

in Ref [19], this work minimizes the Gibbs error vector.

The consistent treatment of attitude and unit vectors results in robustness to extremely large

measurement errors, validating the remarkable characteristic of the proposed algorithm of not rely-

ing on linearization or additivity but truly representing the nature of rotations. To demonstrate the
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robustness of the proposed scheme, a numerical example is provided with extremely large measure-

ment errors, well beyond traditional sensor accuracy and even beyond their nominal field-of-view.

Information is extracted through filtering many of these erratic measurements. Traditional attitude

sensor models are not applicable to such large errors; hence, unit vectors and the multiplicative

measurement model are employed [15].

II. The Unscented Kalman Filter

The EKF requires linearization of both the dynamics and measurement equations. The Kalman

filtering paradigm, however, does not require that the models be linear. In fact, all that is required

is that we have consistent, minimum variance estimates such that the distribution can be well-

represented by its first two moments, that the measurement update be a linear scheme (that is,

it is a linear combination of the prior state estimate and the measurement information), and that

accurate predictions of the first two moments can be made [20]. The UKF works under similar

assumptions.

This work considers a stochastic system whose state x evolves as

xk = f(xk−1,wk−1) ,

where wk−1 is a zero-mean, white sequence with covariance Qk−1 in conjunction with discrete

measurements yk that are modeled by

yk = h(xk,vk) ,

where vk is a zero-mean, white sequence with covariance Rk. The subscripts k and k − 1 are used

to denote the time index of the subscripted quantity.

A. Propagation

The UKF propagation step computes the a priori mean and covariance at time tk (denoted x̂−k

and P−k , respectively) given the a posteriori mean and covariance at time tk−1 (denoted x̂+
k−1 and

P+
k−1, respectively). An augmented state zk is defined as

zT
k−1 =

[
xT
k−1 wT

k−1

]
.
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Let the set of sigma points for the augmented state be denoted by the N values of Zi,k−1 and the

associated weights by wi where i ∈ {1, . . . , N} and
∑N

i=1 wi = 1. These sigma points are generated

from the augmented mean and covariance given by

mk−1 =

x̂+
k−1

0

 P aug
k−1 =

P+
k−1 O

O Qk−1

 ,
and each of the sigma points is partitioned as

ZT
i,k−1 =

[
XT

i,k−1 WT
i,k−1

]
.

The propagated sigma points are obtained via application of the nonlinear dynamical system, which

gives

Xi,k = f(Xi,k−1,Wi,k−1) .

These transformed sigma-points are then used to approximate the nonlinear transformation of the

mean and the covariance via

x̂−k =

N∑
i=1

wiXi,k (1)

P−k =

N∑
i=1

wi(Xi,k − x̂−k )(Xi,k − x̂−k )T . (2)

While the effect of the process noise does not appear directly in these equations, it is captured

through the propagated sigma points Xi,k.

B. Update

Using the propagated mean and covariance at time tk, a new set of sigma points is created.

Again, the first step is to define an augmented state

z̃T
k =

[
xT
k vT

k

]
and generate sigma points, along with their associated weights w̃i, with the mean and covariance

m̃k =

x̂+
k

0

 P̃ aug
k =

P−k O

O Rk

 .
In this case, the set of sigma points for the augmented state is denoted by the Ñ values of Z̃i,k

where there is no restriction that N = Ñ ; that is, the update step may employ a different number of
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sigma points than the propagation step. Similarly, there is no requirement that the weights of the

sigma points in the update step are the same as the weights of the sigma points in the propagation

step. Each of the sigma points is partitioned as

Z̃T
i,k =

[
XT

i,k VT
i,k

]
,

and the measurement-transformed sigma points are given by

Yi,k = h(Xi,k,Vi,k) .

The expected value of the measurement, the measurement covariance, and the cross-covariance are

found in terms of the transformed sigma-points as

ŷ−k =

Ñ∑
i=1

w̃iYi,k (3)

Pyy,k =

Ñ∑
i=1

w̃i(Yi,k − ŷ−k )(Yi,k − ŷ−)T (4)

Pxy,k =

Ñ∑
i=1

w̃i(Xi,k − x̂−k )(Yi,k − ŷ−)T . (5)

The Kalman gain is Kk = Pxy,k P
−1
yy,k, and the associated updated state estimate and covariance

are

x̂+
k = x̂−k +Kk (yk − ŷ−k ) (6)

P+
k = P−k −Kk Pyy,k K

T
k . (7)

C. Remarks

A few remarks regarding the nature of the UKF algorithm are in order. Firstly, it should be

noted that sigma point generation relies on adding a deviation to the mean, where the deviation is

generated from the covariance matrix. For states that utilize the quaternion description of attitude,

this must be modified since the simple addition of a deviation to the quaternion will not, in general,

result in a quaternion. Furthermore, the process of computing the propagated mean and covariance,

Eqs. (1) and (2), relies on an averaging step and subtraction steps. Once again, when the state

contains a quaternion, the averaging and subtraction steps need to be modified. Secondly, when

considering the update stage of the UKF, vector subtraction is again utilized in Eq. (6). For
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situations in which unit vector measurements are to be processed, subtracting unit vectors will not

yield a measurement residual which is also a unit vector. Therefore, when considering unit vector

observations, the measurement update process of the UKF needs to be modified as well as the

sample expectation calculations of Eqs. (3)–(5). All of these needed modifications may be grouped

together as the removal of additivity within the UKF in favor of multiplicative steps.

III. Attitude Filter

In this section, we propose a novel attitude UKF; as is often done, a three-dimensional pa-

rameterization of the attitude is used to represent the estimation error. The proposed filter uses

twice the Gibbs vector to represent the attitude error (denoted as δg). The attitude covariance is

obtained from this three-dimensional quantity. In developing the filtering equations, the nature of

rotations is preserved by never adding or subtracting three-dimensional attitude parameterizations

nor unit-vector direction measurements. The LMMSE estimate for nonlinear systems, of which

the UKF is an approximation, seeks the estimate that minimizes the average of the square of the

estimation error, which is usually defined as the Euclidean distance. The additive nature of the

UKF described above is a direct result of the choice of the Euclidean distance. In this work, we

minimize the error (defined as twice the Gibbs vector), obtaining the minimum mean-square Gibbs

error attitude estimate rather than minimum Euclidean error estimate.

The proposed filter differs from that of Crassidis and Markley [9] both in the update and

propagation phases, as the following sections describe. All “k” time subscripts are omitted for the

remainder of the work for ease of notation. The development that follows only includes the attitude

in the state vector; adding other estimated quantities, such as a gyro bias, follows from a simple

extension of the resulting equations. The attitude state is the quaternion q̄ expressing the coordinate

transformation from the inertial frame to the body-fixed frame. The attitude error is, as previously

mentioned, twice the Gibbs vector representing the transformation from the estimated body frame

to the true body frame.
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A. Time Propagation

This portion of the algorithm calculates a propagated quaternion ˆ̄q and a propagated attitude

error covariance matrix P− that represent the estimates of how the attitude and its uncertainty

evolve with time between measurement updates. During the propagation phase, a set of propagated

sigma point quaternions ˆ̄qj , j = 1, 2, . . . ,K is obtained following the same procedure of [9]; however,

a different scheme is used to obtain the estimate. The desired estimate is the minimum mean-square

error (MMSE) estimate. For a discrete random vector X with possible outcomes denoted by xj and

probability mass function pj , the MMSE estimate x̂ minimizes

x̂ = min
x

∑
j

pj‖xj − x‖2. (8)

The solution of Eq. (8) is the mean of the random vector; that is,

x̂ =
∑
j

pjxj . (9)

Prior attitude UKF implementations took the three-dimensional attitude parameterizations of the

propagated sigma point quaternions and performed their algebraic mean, effectively providing an

estimate that minimizes the Euclidean distance between three-dimensional attitude errors. While

this approach undoubtedly performs in a more than satisfactory fashion, it is more desirable to

minimize an error defined as an attitude parameterization itself.

In this work, the attitude estimation error is defined as twice the Gibbs vector (δg, also known as

Rodrigues parameters). The goal is to obtain the attitude MMSE estimate, which means minimizing

the performance index

ˆ̄q = min
ˆ̄q

K∑
j=1

wj‖δĝ−j ‖
2 , (10)

where

q̄(δĝ−j ) = δq̄ = ˆ̄qj ⊗ ˆ̄q∗ , (11)

the asterisk represents the quaternion conjugate, and the quaternion multiplication ⊗ composes

quaternions in the same order as attitude matrices. Any other choice of attitude error representa-

tion will require a different performance index to be minimized and will produce a different estimate.
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Besides the aforementioned Euclidean distance, the easiest choice of attitude error would be to min-

imize the vector part of the quaternion error. Such a choice would produce an estimated quaternion

with a known solution obtained from solving a 4×4 eigenvalue problem [19]. The vector part of the

quaternion is not a complete attitude parameterization; hence, in this work, we prefer to minimize

an error that is physically a representation of attitude. Furthermore, the choice of the vector part of

the quaternion as an error metric would produce undesirable effects during the measurement update

phase of the algorithm, as detailed in the corresponding section of this paper.

The scaled Gibbs vector is given by

δg = 2δqv/δqs, (12)

where the subscripts v and s indicate the vector and scalar parts of the quaternion, respectively.

The propagated quaternion estimate ˆ̄q is obtained by solving Eq. (10) numerically with a simple

recursion. In all numerical simulations, a Newton-Raphson method is used and it always converges

in very few iterations. The initial guess is chosen as the average quaternion in terms of minimizing

the vector part of the quaternion error rather than the Gibbs vector, which is obtained by calculating

the unit eigenvector corresponding to the maximum eigenvalue of

M = 4

K∑
j=1

(
wj ˆ̄qj ˆ̄qT

j

)
− I4×4 ,

as shown in Ref. [19].

Particular care is also taken in computing the propagated attitude covariance. Once the esti-

mated quaternion ˆ̄q is obtained from solving the eigenvalue problem, attitude deviations from the

average quaternion are calculated for each sigma point with Eq. (11), and the three-dimensional de-

viations δĝ−j are then calculated with Eq. (12); no algebraic mean is ever performed. The propagated

covariance is given by

P− =

K∑
j=1

wj δĝ
−
j (δĝ−j )T . (13)

Notice that this covariance calculation is also different from [9] since that work computes three-

dimensional attitude deviations from the propagated mean quaternion and performs their algebraic

mean, hence adding and subtracting attitudes. A common theme of the proposed algorithm is that
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rotations and unit vector (direction) measurements are never averaged as if they were Euclidean

vectors.

Remark In order to reduce computations, it is possible to utilize the quaternion average pro-

posed in [19] directly, as first done in [21], effectively producing the MMSE estimate where the error

is defined as twice the vector part of the quaternion. In this work, however, we consistently define

the error as the scaled Gibbs vector, which is a complete attitude parameterization.

B. Measurement Update

This proposed measurement update differs from [9] because a multiplicative measurement model

is used as well as a multiplicative residual. The measurement model is given by

y = T (η) T r , (14)

where η is a three-dimensional representation of the attitude error, for example a rotation vector,

T (η) represents the direction cosine matrix parameterization of η, T is the inertial-to-body coordi-

nate transformation matrix, and r is the true direction in the inertial frame. The classic additive

measurement model is given by

y = T r + v . (15)

The additive measurement model relies on linearization (for example, the large field-of-view model

from Cheng et al. [14] linearizes around the actual measurement). Therefore, for coarse sensors, a

multiplicative measurement model is more accurate in representing the actual error. Since both the

measurement y and the reference vector r are of unit length, it follows from Eq. (15) that

yTy = 1 = rTTTTr + 2vTTr + vTv = 1 + 2vTTr + vTv . (16)

Taking expected values in Eq. (16) and using the fact that r is deterministic,

2rT T E {v} = − trace E
{
vvT

}
. (17)

Eq. (17) implies that, for the classic additive measurement model of Eq. (15), the measurement

noise is either zero mean with zero covariance or not zero mean, i.e. the measurement is biased.
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Using the multiplicative measurement model in the UKF overcomes the bias in the measurement

error and allows an unbiased estimator to be obtained. Furthermore, one of the strengths of the

UKF is that it avoids linearization around the mean; it is, therefore, more consistent to utilize a

measurement model that also does not rely on linearization around the actual measurement.

The second feature of the proposed update methodology is a multiplicative residual; unit vectors

representing directions are not subtracted as if they were vectors in <3. The attitude update is given

by

δĝ+ = δĝ− + Kε , (18)

where ε is the multiplicative residual and, once again, the attitude error δg is twice the Gibbs vector

defined as

q̄(δg) = q̄⊗ ˆ̄q∗ , (19)

where q̄ is the true (unknown) inertial-to-body quaternion. From Eq. (19) it follows immediately

that δĝ− = 0; therefore, in fact, attitudes are never added together.

The residual expresses the “distance” between the actual measurement and the expected mea-

surement; the greater this distance, the greater the update. To be consistent with our approach, we

define the residual ε as the scaled Gibbs vector that expresses the rotation to take ŷ into y. There

are infinite such rotations, so the minimum one is chosen, which is to say that we choose the Gibbs

vector to be perpendicular to both ŷ and y, which yields

ε = 2
ŷ × y

1 + ŷ · y
, (20)

where y is the unit vector measurement, which is one realization of the random vector Y, and ŷ

is the “average” measurement. Using the same logic employed before, the “average” measurement

is the unit vector ŷ that minimizes the distance to all possible realizations of Y. The distance

is defined in terms of the Gibbs vector. Assuming a discrete distribution with possible outcomes

denoted by yj and probability mass function pj

ŷ = min
ŷ

∑
j

pj‖εj‖2 = min
ŷ

∑
j

pj
‖ŷ × yj‖2

(1 + ŷ · yj)2
subject to ‖ŷ‖ = 1 .
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The minimizing value of ŷ is obtained numerically with a simple recursion.

Notice that Eq. (18) can be re-written as

δĝ+ = δĝ− + K(z− ẑ) , (21)

where the auxiliary variable z is defined as z = 2(ŷ × y)/(1 + ŷ · y) and has zero mean, ẑ = 0.

Therefore this approach effectively seeks the MMSE estimate of x given the measurement z. The

proposed update is rewritten in the standard UKF form utilizing the auxiliary variable z and all

the UKF properties still hold.

The sigma points are obtained from the augmented covariance

P aug =

P− O

O R

 , (22)

where P− is the a priori estimation error covariance and R is the measurement noise (η) covariance.

Because of the multiplicative measurement model of Eq. (14), R is chosen full-rank without any

approximation. Linearized additive measurement models, on the other hand, possess a rank-deficient

measurement error covariance. With the n× n matrix P aug defined above, the 2n+ 1 sigma points

are given by

X0 = 0 (23)

Xi =
√

(n+ κ) P aug
i (24)

Xi+n = −
√

(n+ κ) P aug
i , (25)

where i = 1, . . . , n and
√
Ai is the ith column of the matrix square root of A, which is defined such

that A = (
√
A)(
√
A)T. Along with the sigma points, weights are chosen as

w0 = κ/(n+ κ) wi = 0.5/(n+ κ) , (26)

where κ is a design parameter of the UKF. Once the sigma points are obtained, they are transformed

through the nonlinear measurement function as

Yi = h(Xi, r, ˆ̄q) , (27)

where

h(Xi, r, ˆ̄q) = T (Ni) T (δGi) T (ˆ̄q) r . (28)
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In Eq. (28), δGi and Ni are the elements that compose the input sigma points; that is,

XT
i =

[
δGT

i NT
i

]
.

The mean and covariance of the transformed variables are found via

ŷ = min
ξ

2n∑
i=0

wi
ξ × Yi

1 + ξ · Yi
, ‖ξ‖ = 1 Zi = 2

ŷ × Yi
1 + ŷ · Yi

(29)

Pzz =

2n∑
i=0

wi Zi ZT
i Pxz =

2n∑
i=0

wi δGi ZT
i . (30)

The updated state and covariance are obtained from Eq. (18) and

K = PxzP
†
zz (31)

P+ = P− −K Pzz K
T , (32)

where the pseudoinverse † provides the optimal estimate given the singular covariance Pzz. Finally,

the quaternion is updated as

ˆ̄q← q̄(δĝ+)⊗ ˆ̄q . (33)

Remark Once again, the system designer could choose to represent the error as twice the

vector part of the quaternion rather than the scaled Gibbs vector, effectively minimizing sin2 θ/2

rather than tan2 θ/2, where θ is the Euler angle. For most, if not all, spacecraft applications, this

alternative approach will work very well. However, the inherent constraint that each element of the

vector part of the quaternion must be less than one can create problems in the presence of large

attitude errors. A portion of the attitude sigma points are obtained as

Xi =
√

(n+ κ)P aug
i ,

and there is no guarantee that for very uncertain systems
√

(n+ κ) will not scale the components of

the attitude sigma points beyond unity. By choosing to represent attitude errors as Gibbs vectors,

not only do we employ a full attitude parameterization, but we take advantage that the Gibbs atti-

tude error is (almost) a one-to-one parameterization of attitude with the only exception/singularity

being the 180 degree error. In the context of generating sigma points, that singularity is actually

very helpful, because it prevents attitude sigma-points from wrapping around, allowing an extremely

robust UKF design even for extremely large attitude uncertainties.
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IV. Numerical Results

To demonstrate the validity of the proposed approach, we consider a satellite attitude tracking

problem in which the orbit is perfectly known, but the attitude is not. The satellite is taken to be

in near-geosynchronous orbit with Keplerian elements as shown in Table 1.

Table 1 Satellite Orbit

Type Value Units

Semi-Major axis 43000 km

Eccentricity 0.03 nd

Inclination 3 deg

RAAN 0 deg

Argument of Periapsis 0 deg

Mean Anomaly 0 deg

To generate a true attitude profile, we take the rotational dynamics to be

˙̄q =
1

2
ω̄ ⊗ q̄

ω̇ = J−1
(∑

m− ω × Jω
)
,

where ω̄ is the pure quaternion formed from the angular velocity vector ω, J is the moment of

inertia of the spacecraft, and
∑

m represents the summation of all active moments in the body

frame. The active moments are assumed to be zero in this work. The computation of the moment

of inertia depends upon the mass distribution of the object. In this work, the object is assumed to

be a hexagonal prism, as shown in Figure 1. This is an 8-plate model with the body-frame unit

(a) 3D view (b) End view

Fig. 1 Satellite hexagonal prism flat plate model.

vectors defined by the unit vector triad {b1,b2,b3}. Additionally, the plate normal, denoted for the
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kth plate by ub
n,k, is depicted in Figure 1. The area, Ak, and position from the object center, rbp,k,

of each plate are fully determined by specifying the side length, a, and the prism height, h. The

distance of the side from the center, d, can be determined from the length of the side, a. The size

parameters are chosen so as to represent a typical spacecraft size; the values used, along with the

total mass of the object, are presented in Table 2. Based upon the mass, side length, prism height,

and the distance from the center to the side, the moment of inertia can be found to be a diagonal

matrix of the form

J =


Ixx 0 0

0 Iyy 0

0 0 Izz

 ,
where the elements of J are given by

Ixx = Iyy = m

(
a2

6
+
d2

3
+
h2

12

)
Izz = m

(
a2

6
+
d2

3

)
.

The resulting inertia values are also summarized in Table 2.

Table 2 Satellite Geometry and Characteristics

Type Value Units

Length of side 2 m

Height of side 4 m

Distance of side from center 1.7 m

Mass 2688 kg

Ixx and Iyy Inertia 8100 kg m2

Izz Inertia 4500 kg m2

The proposed algorithm is tested with a case where most existing linear filters for attitude fail

to provide a consistent estimate. It is assumed that the initial attitude has a mean orientation given

by the identity quaternion and that the initial mean angular velocity is taken to be zero. True

values are generated by sampling a Gaussian error distribution with a standard deviation of 50◦

in attitude and 0.1◦/s in angular velocity. The equations of motion are applied to generate a true

attitude and angular velocity profile.

The satellite is equipped with a three-axis rate-integrating gyro that provides incremental angu-

lar changes at 100 Hz. The gyro measurements are generated by integrating the true angular velocity
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signal at the 100 Hz frequency and then subjecting the true integrated signal to a zero-mean bias

and a zero-mean white-noise sequence. The statistics of the gyro bias and noise are given in Table 3.

In addition to the gyro, the satellite is equipped with a sun sensor and an Earth sensor operating at

1 Hz, which provide unit vector measurements that point to the sun and Earth, respectively. The

pointing vectors are generated based on the specified (known) orbit and the uncertain attitude; that

is, the unit vector measurement for each of the sensors follows Eq. (14) and is computed as

y = T (η) T r , (34)

where r is the reference vector in the inertial (i) frame, T is the true inertial-to-body direction

cosine matrix (DCM), and T (η) is the DCM parameterization of the three-dimensional attitude

measurement error η, which is taken to be zero mean. The measurement error η has covariance

σ2I3×3, where the standard deviation, σ, is specified for each sensor in Table 3.

Table 3 Sensor Specifications

Type 1σ Error Units

Gyro Noise 1 deg/
√
s

Initial Gyro Bias 1 deg/s

Sun Sensor Error 50 deg

Earth Sensor Error 50 deg

The proposed attitude filter is initialized with a starting estimated quaternion equal to the

identity quaternion and the estimated bias equal to zero. The UKF parameter is set to κ = 0 to

avoid any issues with a lack of positive definiteness in the filter’s covariance matrix that sometimes

plague UKF designs that choose κ = 3−n when n > 3 and large covariances. The resulting attitude

and gyro bias estimation performance is summarized in Figures 2 and 3, where the gray line shows

the estimation error while the black lines show the predicted 3σ error standard deviation. It can

be seen that the filter is capable of providing a consistent estimate and reducing the estimation

error to below 100◦ (3σ) given the very erratic measurements. Typical of highly nonlinear and

highly uncertain systems (the measurement noise can easily jump by more than 90◦), the predicted

covariance is highly dependent on the value of the estimated measurement (and hence on the value

of the estimated state). Different measurement sequences produce different values of the estimated

state and of the estimated covariance.
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Fig. 2 Attitude estimation error - single run

Fig. 3 Gyro bias estimation error - single run

To further investigate the performance of the filter and to demonstrate the consistency of the

filter’s covariance, a Monte Carlo simulation consisting of 100 runs is considered. On each run of
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the Monte Carlo simulation, a new true attitude and angular velocity profile is created by sampling

the Gaussian distribution assumed for the initial attitude uncertainty and angular velocity uncer-

tainty. Each run of the Monte Carlo simulation is also characterized by a different true gyro bias.

At each time step of each simulation, the noises for the gyro measurements and the pointing vec-

tor measurements are re-sampled according to the statistics provided in Table 3. While unscented

transformations provide exact mean and covariance random variable transformations of linear func-

tions, they are an approximation for nonlinear functions and some tuning is sometimes required.

In highly nonlinear systems (either nonlinearity is significant in a small interval around the mean,

or the uncertainty is large such that the nonlinearity is overall significant in the large domain of

interest), tuning is used to achieve the desired performance of the filter. In UKF implementations

one usually tweaks the two values of κ independently for both the propagation and update phases

in order to spread the sigma points the desired amount and obtain good performance. We choose

an alternative approach. As previously noted, a negative value of κ can create non-positive definite

posterior covariances; we therefore chose to utilize 2n sigma points by setting κ = 0. The tuning of

the spread of the sigma points is therefore achieved in a similar fashion as EKFs are usually tuned:

by tweaking the noise covariance matrices. The process noise and measurement noise are therefore

altered so that the Monte Carlo statistics are brought into agreement with the filter statistics. As

such, the process and measurement noise covariances are parameterized as

Qfilter = fqQtrue Rfilter = frRtrue ,

and it is found that fq = 2 and fr = 1.22 yield excellent performance. The results of a single filter

run are compared against the sample covariance results from the Monte Carlo simulation in Figures

4 and 5, where the single filter run 3σ curves are plotted in black and the sample covariance 3σ

curves are plotted as gray dashed lines. The figures show a very good match between the sample

covariances and the predicted covariance of the filter, demonstrating the filter is performing as

expected. In order to show the performance of every Monte Carlo run, Figure 6 shows the absolute

value of the attitude error scaled by the filter’s predicted standard deviation for each Monte Carlo

simulation (gray lines) and the root-sum-square (RSS) of these quantities (black line). From Figure

6, it can be seen that the RSS is very close to one, further indicating that the filter is correctly
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Fig. 4 Attitude estimation error - Monte Carlo

Fig. 5 Gyro bias estimation error - Monte Carlo

predicting its performance.
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Fig. 6 Normalized attitude estimation error

V. Conclusions

This work presents a novel unit-vector quaternion unscented filter with multiplicative residual

and multiplicative measurement error models. The proposed algorithm treats all attitude errors

consistently as Gibbs vectors and consistently with the nature of rotations; no additions, subtrac-

tions, or algebraic averages are ever performed. The work develops an algorithm that does not

rely on linearization nor small angle assumptions. Previous attitude unscented Kalman filter works

relied on an additive measurement model that requires linearization during the update phase of the

algorithm. During propagation, the various quaternions obtained from the propagated sigma points

are transformed into three-dimensional attitude deviations and simply averaged together. Such an

average is only valid for small angles, whereas the proposed algorithm averages the quaternions

taking in full consideration the inherent non-Euclidean nature of the rotation group. Similar steps

are taken to produce a linear minimum mean square Gibbs attitude error estimator when processing

unit vector measurements. While the Gibbs vector is singular for rotations of 180 degrees, it pos-

sesses very desirable properties to represent errors. Because of the aforementioned characteristics,

the proposed algorithm is robust to very large attitude estimation errors, as shown in simulations.
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