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Information Formulation of the UDU Kalman Filter
Christopher D’Souza and Renato Zanetti

Abstract

A new information formulation of the Kalman filter is presented where the information matrix is parameterized as the product
of an upper triangular matrix, a diagonal matrix, and the transpose of the triangular matrix (UDU factorization). The UDU
factorization of the Kalman filter is known for its numerical stability, this work extends the technique to the information filter. A
distinct characteristic of the new algorithm is that measurements can be processed as vectors, while the classic UDU factorization
requires scalar measurement processing, i.e. a diagonal measurement noise covariance matrix.

I. INTRODUCTION

The UDU formulation of the Kalman Filter has been used in aerospace engineering applications for several decades. Thornton
[1], Bierman and Thornton [2] and Bierman [3] introduced an elegant formulation where the covariance matrix P is replaced
by two factors: a diagonal matrix D and an upper triangular matrix U with ones on the main diagonal, such that P = UDUT .
Whereas the UDU factorization improves the computational stability and efficiency of large navigation filters, it was originally
used in a batch formulation [4]. However, this formulation lent itself to sequential implementations, well-suited for platforms
where both computational stability and numerical efficiency are at a premium. It serves as the backbone of the Orion Navigation
System [5].

Factorization of the covariance matrix in a Kalman filter [6] is almost as old as the filter itself. In 1963 James Potter
developed a square-root formulation of the Kalman filter to implement on the Apollo onboard computer [7]. The main driver
at the time was numerical precision, as computer words were only 8 bits long. Replacing the covariance by a square root
matrix S, such as P = SST , reduces the spread of the elements of P bringing them closer to 1, doubling the numerical
precision of the stored variable. Potter’s algorithm requires the computation of scalar square roots (one per measurement). At
the time, the Apollo Kalman filter was designed without any process noise, because computations required for inclusion of
the process noise required too many computations [8]. A very desirable by-product of this factorization is that the symmetry
and semi-positive definiteness of the covariance are insured by construction, and does not need to be checked or enforced to
correct for numerical and round-off errors. It should be noted that this Apollo factorization was not a triangular square root
matrix.

An alternative square root covariance factorization is the Cholesky factorization [9], [10]. The Cholesky method is very
similar to Potter’s but computes the square root of the covariance matrix with a Cholesky decomposition (S is a triangular
matrix) [11]. Another relevant covariance factorization work is that proposed by Oshman and Bar-Itzhack [12], which utilizes
the spectral decomposition of the covariance matrix.

The UDU factorization is not a square root filter; the numerical precision of the stored variable does not increase due to
the factorization. For example, if P is diagonal, U = I and D = P ; therefore the full range of values in P are preserved in
this factorization. However, the UDU formulation of the Kalman filter has great numerical stability properties [3]; it insures
symmetry of the covariance by construction, and it requires a trivial check and correction to ensure semi-positive definiteness
(it suffices to enforce that the diagonal elements of D remain non-negative). The UDU formulation is free from square root
operations, making it computationally cheaper than the Cholesky approach. For these reasons the UDU has endured as one of
the preferred practical implementation of Kalman filters in aerospace applications.

While the UDU factorization is well known, it has never been applied to the information formulation of the Kalman filter
[13], [14], [15]. In this formulation the inverse of the covariance matrix, known as the information matrix, is carried in the
recursive algorithm rather than the covariance matrix itself. The information formulation is a popular approach in several
situations. In particular, the Square Root Information Filter (SRIF) [16], [17], [18], [3], [19], [20] is a go-to Kalman filter
factorization method used in orbit determination packages such as Monte because of its great stability and accuracy. In this
work we introduce the UDU Information Filter, a never developed before algorithm with two key properties that make it a very
desirable implementation of a recursive estimator: i. unlike the regular UDU filter, measurements do not need to be processed
as scalars, i.e. the measurement noise covariance matrix R does not need to be diagonal or diagonalized, and ii. unlike the
regular information formulation the state estimation error covariance matrix does not actually need to be inverted.
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II. BACKGROUND

The well-known Kalman filter measurement update equations are given by

x̂k = x̄k +Kk(yk −Hkx̄k) (1)

Pk = P̄k − P̄kH
T
k (HkP̄kH

T
k +Rk)−1HkP̄k

= (I −KkHk) P̄k (2)

Kk = P̄kH
T
k (HkP̄kH

T
k +Rk)−1 = PkH

T
k R

−1
k (3)

where the bar represents the a priori value, Kk is the n×m Kalman gain, x ∈ <n is the state vector, Pk is the n×n estimation
error covariance matrix, y ∈ <m is the measurement vector defined as

yk = Hkxk + ηk (4)

where ηk is a zero mean, white sequence with covariance matrix Rk. The propagation equations are

x̄k+1 = Φ(tk+1, tk)x̂k (5)

P̄k+1 = Φ(tk+1, tk)PkΦ(tk+1, tk)T +GkQkG
T
k

= ΦkPkΦT
k +GkQkG

T
k (6)

where Φ(tk+1, tk) (which we will denote as Φk) is the state n× n transition matrix from tk to tk+1, Qk is the p× p process
noise covariance matrix, and Gk is the n× p process noise shaping matrix.

The UDU factorization implements the above equations by replacing the covariance matrix Pk with an upper triangular
matrix with ones on the diagonal (Uk) and a diagonal matrix Dk, such that

Pk = UkDkU
T
k (7)

The UDU approach to propagate Uk and Dk forward in time makes use of the Modified Weighted Gram-Schmidt (MWGS)
orthogonalization algorithm that avoids loss of orthogonality due to round-off errors [21]. Measurements are processed one at
the time as scalars by noting that when Rk is diagonal the update in Eq. (2) is obtained by recursively processing one element
of yk at a time, using the corresponding row of Hk and diagonal element of Rk. The measurement residual covariance matrix
Wk = HkP̄kH

T
k +Rk thus becomes a scalar, and the quantity P̄kH

T
k = wk becomes a vector; thus each of the scalar updates

takes the form
Pk = P̄k −

1

Wk
wkw

T
k (8)

since matrix P̄k is updated with a rank one matrix ( 1
Wk

wkw
T
k ), we call this a rank one update, Agee and Turner [22] detailed

how to directly update the Uk and Dk factors due to a rank one update. The subtraction in Eq. (8) could cause some numerical
instabilities in Agee-Turner’s algorithm. Carlson [23] introduced an alternative rank-one update algorithm that, while less
generic, is more stable for the measurement update. Carlson’s rank-one update is not valid for generic values of wk and Wk,
but only when the update is done with the optimal Kalman gain.

An alternative formulation of the Kalman filter is the information formulation, where the covariance matrix P is replaced
by its inverse. The covariance update and Kalman gain are calculated as [13]

P−1
k = P̄−1

k +HT
k R

−1
k Hk (9)

Kk = PkH
T
k R

−1
k (10)

The information formulation is particularly useful when there is no prior information, i.e. P0 =∞, in this case the covariance
formulation of the KF is not defined, while the information formulation is, and starts from P−1

0 = O. In the covariance
formulation, the m×m measurement residual covariance matrix Wk = HkP̄kH

T
k +Rk is inverted to process the measurement,

while in the information formulation the n× n covariance matrix is inverted in the time propagation step. In situations when
m > n, therefore, the information formulation could be computationally cheaper, although measurements are often processed
one at the time as scalars. Processing measurements as scalars is only possible when Rk is diagonal, otherwise the additional
steps of a change of variables to diagonalize Rk is required.

III. THE UDU INFORMATION FILTER

A. The Measurement Update

Begin with factorizing the covariance P into an LDL form; that is, rather than using an upper triangular matrix we will use
a lower triangular matrix. We denote the diagonal matrix with ∆

Pk = Lk ∆k L
T
k and P k = Lk ∆k L

T

k (11)



3

and we define U and D as the inverses of LT and ∆, respectively

P−1
k = L−T

k ∆−1
k L−1

k = UkDk U
T
k (12)

P
−1

k = L
−T

k ∆
−1

k L
−1

k = UkDk U
T

k (13)

so that the measurement update (Eq. (9)) becomes

UkDkU
T
k = UkDkU

T

k +HT
k R

−1
k Hk (14)

We now factorize the m×m matrix Rk into LDL form as

Rk = LRk
∆Rk

LT
Rk

(15)

and

R−1
k = L−T

Rk
∆−1

Rk
L−1
Rk

= URk
DRk

UT
Rk

(16)

so that Eq. (14) becomes

UkDkU
T
k = UkDkU

T

k +HT
k URk

DRk
UT
Rk
Hk (17)

We now work on the term URk
H where we note that it is of dimension m× n so that it can be expressed as

UT
Rk
HR =


vT

1

vT
2
...

vT
m

 (18)

where each vi is an n× 1 vector.
The factor HT

k R
−1
k Hk can be expressed as

HT
k R

−1
k Hk = HT

k URk
DRk

UT
Rk
Hk

=


vT

1

vT
2
...

vT
m


T 

1/d1R
0 · · · 0

0 1/d2R
· · · 0

...
...

. . .
...

0 0 · · · 1/dmR



vT

1

vT
2
...

vT
m


=

m∑
i=1

1

diR
viv

T
i (19)

so that the measurement update equation is now

UkDkU
T
k = UkDkU

T

k +

m∑
i=1

1

diR
viv

T
i (20)

Thus it reduces to a series of m rank-one updates.
Notice that Eq. (20) is the update equation due to a vector measurement so that the need to process scalar measurements,

as in the covariance UDU formulation, is avoided in the proposed information UDU formulation. Rather than performing an
eigenvalue decomposition of Rk and a corresponding change of variables for yk, we simply perform the UDU factorization
of R−1

k .
As stated earlier, one of the benefits of using an information formulation is that if P0 is singular, this allows for an estimate

to be obtained [14]. When P0 is singular, x0 is not completely defined. To this end, ẑk and z̄k, which are directly related to
x̂k and x̄k, are defined as

ẑk
∆
= P−1

k x̂k , z̄k
∆
= P̄−1

k x̄k (21)

Premultiplying Eq. (1) by P−1
k , we get

ẑk = P−1
k (I −KkHk) x̄k + P−1

k Kkyk (22)
= z̄k +HT

k R
−1
k yk (23)
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B. The Time Update

Prior to propagation, the standard information formulation of the Kalman filter inverts the information matrix to obtain the
covariance, it then propagates the covariance with Eq. (6), and finally inverted the propagated covariance matrix to prepare
for the measurement update phase. We propose an algorithm that propagates the factors of the information matrix directly.
Starting from the covariance propagation Eq. (6), we factorize Qk via a UDU parameterization so that

Qk = UQk
∆Qk

UT
Qk

(24)

where ∆Qk
is a diagonal p× p matrix and define GQk

as

GQk

∆
= Gk UQk

(25)

so that P k becomes

P k+1 = Φk Pk ΦT
k +GQk

∆Qk
GT

Qk
(26)

Invoking the matrix inversion lemma

(Z +XAY )
−1

= Z−1 − Z−1X
(
A−1 + Y Z−1X

)−1
Y Z−1 (27)

and letting

Z = Φk Pk ΦT
k ; A = ∆Qk

; X = GQk
; Y = GT

Qk
(28)

and

Z−1 = Mk
∆
= Φ−T

k P−1
k Φ−1

k (29)

The inverse of the propagated covariance is

P
−1

k+1 = Mk −MkGQk

[
GT

k MkGQk
+ ∆−1

Qk

]−1

GT
Qk
Mk (30)

Defining

Gk
∆
= Φ−1

k GQk
DQk

= ∆−1
Qk

(31)

P−1
k+1 becomes

P
−1

k+1 = Φ−T
k

{
P−1
k −

P−1
k Gk

[
G

T

k P
−1
k Gk +DQk

]−1

G
T

k P
−1
k

}
Φ−1

k (32)

and defining Kk as

Kk
∆
= P−1

k Gk

[
G

T

k P
−1
k Gk +DQk

]−1

(33)

Defining the quantity inside the brackets in Eq. (32) as P−1
k

P−1
k

∆
= P−1

k − P−1
k Gk

[
G

T

k P
−1
k Gk +DQk

]−1

G
T

k P
−1
k

=
[
I −KkG

T

k

]
P−1
k (34)

We notice Eq. (34) is an analog to Eq. (2) with

P−1
k → Pk Gk → HT

k DQk
→ Rk

P−1
k → P̄k Kk → Kk

and since DQk
is a diagonal p×p matrix, we can solve for the UDU factorization of P−1

k directly by using a Carlson Rank-One
Update [23] performed p times on

UkDkUT
k = UkDkU

T
k −

UkDkU
T
k Gk

[
G

T

k UkDkU
T
k Gk + ∆−1

Qk

]−1

G
T

k UkDkUk (35)

so that we can find the time-propagated UDU factors of P
−1

k as

P
−1

k+1 = Uk+1Dk+1U
T

k+1 = Φ−T
k UkDkUT

k Φ−1
k (36)
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Since this equation is equivalent to a covariance propagation without process noise, the MWGS orthogonalization algorithm
can be used to obtain the factors Uk+1 and Dk+1.

Notice that Φ−1
k does not necessarily need to be computed by a direct matrix inversion. Usually Φk is computed via

integration of a matrix differential equation or by series approximation. Similarly, Φ−1
k can be obtained directly by backwards

integration or by series approximation.
Beginning with Eq. (5) the time update for z̄k+1 is obtained as follows

P̄−1
k+1x̄k+1 = P̄−1

k+1Φk Pk P
−1
k x̂k (37)

which becomes

z̄k+1 = P̄−1
k+1Φk Pk ẑk (38)

substituting from Eqs. (32) and (34)

z̄k+1 = Φ−T
k

[
I −KkG

T

k

]
ẑk (39)

or

z̄k+1 = Φ−T (tk+1, tk)
[
I −KkG

T

k

]
ẑk (40)

The following table summarizes the UDU Information Filter. While Table I contains a compact notation for the covariance
time propagation and measurement update; in the actual algorithm the covariance factors Uk and Dk are individually propagated
and updated using the Rank-1 Update and the Modified Weighted Gram-Schmidt orthogonalization algorithms.

Initialization
State z0 = P−1(t0)x(t0)

Covariance U0D0UT
0 = P−1(t0)

Time Propagation
Truth xk+1 = Φkxk +Gkνk, νk ∼ n(0, Qk)

Process Noise UQk
∆Qk

UT
Qk

= Qk, Gk = Φ−1
k Gk UQk

Gain Kk = UkDkU
T
k Gk

[
G

T
k UkDkU

T
k Gk + ∆Qk

]−1

Covariance UkDkUT
k =

[
I −KkG

T
k

]
UkDkU

T
k (Rank-1 Update)

Uk+1Dk+1U
T
k+1 = Φ−T

k UkDkUT
k Φ−1

k (MWGS)

State zk+1 = Φ−T
k

[
I −KkG

T
k

]
ẑk

Measurement Update
Truth yk+1 = Hk+1xk + ηk+1, ηk+1 ∼ n(0, Rk+1)

Meas. Noise URk+1
DRk+1

UT
Rk+1

= R−1
k+1∑m

i=1
1

diR
viv

T
i = HT

k+1URk+1
DRk+1

UT
Rk+1

Hk+1

Covariance Uk+1Dk+1U
T
k+1 = Uk+1Dk+1U

T
k+1+

+
∑m

i=1(1/diR ) viv
T
i (Rank-1 Update)

State ẑk+1 = zk+1 +Hk+1R
−1
k+1yk+1

TABLE I
SUMMARY OF UDU INFORMATION FILTER EQUATIONS

C. An Efficient Algorithm to compute U−1

The algorithm proposed does not necessitate to invert the covariance matrix nor its U or L factor. However, in case the initial
covariance was provided, it might be convenient to factorize it first, and to efficiently invert its factors rather than inverting
the full covariance. In this section we compute the inverse in an efficient manner, taking advantage of the ‘1’s’ and ‘0’s’. It is
as follows: Given an n× n upper triangular ‘unit’ matrix U expressed as

U =



1 U1,2 U1,3 · · · U1,n−1 U1,n

0 1 U2,3 · · · U2,n−1 U2,n

0 0 1 · · · U3,n−1 U3,n

...
...

...
. . .

...
...

0 0 0 · · · 1 Un−1,n

0 0 0 · · · 0 1


(41)
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the inverse is also an n× n upper triangular ‘unit’ matrix V (so that det (V ) = 1) which is

V = U−1 =



1 V1,2 V1,3 · · · V1,n−1 V1,n

0 1 V2,3 · · · V2,n−1 V2,n

0 0 1 · · · V3,n−1 V3,n

...
...

...
. . .

...
...

0 0 0 · · · 1 Vn−1,n

0 0 0 · · · 0 1


(42)

since

U V = I (43)

and the ij-th element of UV is given by
j∑

k=i

Ui,kVk,j = Ui,iVi,j + Ui,jVj,j +

j−1∑
k=i+1

Ui,kVk,j = Vi,j + Ui,j +

j−1∑
k=i+1

Ui,kVk,j (44)

we can solve for the elements of V as

j = n, · · · , 2, i = j − 1, · · · , 1

Vi,j = −

[
Ui,j +

j−1∑
k=i+1

Ui,kVk,j

]
(45)

IV. A NUMERICAL EXAMPLE

In this section we show the performance of the algorithm in linear, time-varying example with correlated measurement noise
covariance matrix R. The system is given by

xk+1 = Φkxk + νk (46)
yk = Hkxk + ηk (47)

Φk =

[
I Ak

Bk I

]
(48)

Ak =

[
tk − tk−1 0

0 tk − tk−1

]
(49)

Bk = 0.1

[
sin(tk)− sin(tk−1) −

(
cos(tk)− cos(tk−1)

)
0 sin(tk)− sin(tk−1)

]
(50)

Hk =

[
1 0 0 0
0 1 0 0

]
(51)

where I is the identity matrix tk − tk−1 = 1 second, νk is a zero mean, Gaussian white sequence with covariance matrix
Qk = 0.01 I , and ηk is a zero mean, Gaussian white sequence with covariance matrix Rk

Rk =

[
2.96 2.8
2.8 2.96

]
(52)

The initial estimate is unbiased, and the initial estimation error is Gaussian with covariance P0 = I . Fig. 1 shows the result
of a single run and the 3σ predicted standard deviations from a straight formulation of a Kalman filter. In order to show
the equivalence between the Kalman filter (KF) and the UDU information approach (UDUI), Fig. 2 shows the norm of the
difference between the two state estimates

εx = ‖x̂KF − x̂UDUI‖

while Fig. 3 compares the Kalman filter covariance PKF with the UDU factorization of the Information matrix P−1
UDUI =

UDUT by plotting the following quantity:
εP = ‖PKF P−1

UDUI − I‖

The figures show that the proposed algorithm results closely match the Kalman filter hence validating the proposed algorithm
as its UDU information formulation. The growth of the error in Figs. 2 and 3 is due to the accumulation of round-off errors in
the algorithms. It is known [3] that numerical errors accumulate faster in the full covariance formulation of the Kalman filter
than in the UDU’s.
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Fig. 1. Estimation Error and 3σ predicted standard deviations

Fig. 2. Norm of the State Error (‖x̂KF − x̂UDUI‖)

Fig. 3. Norm of the Covariance error (‖PKF P−1
UDUI − I‖)

V. CONCLUSIONS

A new algorithmic mechanization of the classic Kalman filter is presented, the new algorithm combines the information
formulation with the UDU factorization. While the covariance formulation of the Kalman filter is usually employed, the
information formulation has distinct advantages in some applications, for example when no initial condition is available.
The UDU factorization is a widely adopted technique to produce a numerically stable and accurate algorithm to keep the
covariance matrix symmetric and positive definite. A numerical example confirms the equivalency between the Kalman filter
and the proposed algorithm.
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