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I. Introduction

Bayesian stochastic estimation of nonlinear and non-Gaussian dynamical systems using sequential

Monte Carlo methods continues to receive considerable attention in the literature [1–3]. The Kalman fil-

ter provides an exact solution to the minimum mean-square error estimation problem for linear systems

corrupted by additive Gaussian noise [4]. However, in practice, the conditions for optimality of the Kalman

filter are easily and often violated. The extended Kalman filter (EKF) is a nonlinear (non-optimal) approxi-

mation of the optimal Kalman filter that can be applied to nonlinear systems using the same Kalman filtering

framework [5]. The possible divergence of the EKF estimates due to severe nonlinearities is a drawback of

this procedure. Other linear estimators of nonlinear systems include algorithms that rely on a set of deter-

ministic regression points [6], such as the quadrature Kalman filter [7], the unscented Kalman filter (UKF)

[8], and the cubature Kalman filter [9]. These algorithms employ the Gaussian approximation and statistical

linearization of the nonlinear functions through a set of regression points. However, these methodologies

are not always feasible for very high nonlinearities when the state’s probability density function (PDF) is

multimodal or very non-Gaussian.

The Gaussian sum filter (GSF) is a nonlinear estimator for nonlinear systems [10, 11]. It is able to

account for large deviations from Gaussianity and accommodate multi-modal distributions by approximating

the non-Gaussian PDF as a Gaussian Mixture Model (GMM). The GSF includes one linear estimator, such as

EKF or UKF, for each of the GMM components. The GSF works best when enough components are taken,
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each of which with a small enough covariance matrix such that the nonlinear functions can accurately be

linearized in the support of each of the components. Much recent research exists in improving the original

GSF algorithm to better adapt to, and account for, nonlinearities [12–18].

While GSFs approximate the PDFs as a sum of Gaussians, sequential Monte Carlo methods approximate

them by discretization using a finite number of random samples. Monte Carlo methods need to draw from the

actual distributions, which are often arduous to obtain; Sequential Importance Sampling (SIS) algorithms,

on the other hand, sample from an importance sampling distribution and adjust the weights of each sample

accordingly. Particle Filters are a family of SIS algorithms that include a resampling step to mitigate particle

(i.e. sample) degeneracy [19]. One of the most popular algorithms chooses the importance distribution as the

transition distribution, the so-called Bootstrap Particle filter (BPF) [20]. One possible drawback of the BPF is

that it does not directly account for the value of the measurement in the sampling distribution. The Auxiliary

Particle Filter mitigates this issue by using an auxiliary variable to account for the value of the measurement

in the importance distribution [21]. The resampling step is often critical for practical uses of the Particle

Filter and is usually done sampling from a discrete distribution. The Regularized Particle Filter draws from

a continuous distribution approximation of the PDF [1] by perturbing the particles after resampling to add

diversity to the state space. The approach presented in this work contains a new methodology that includes

both these improvements: it samples from a continuous distribution that incorporates the contributions of the

current measurement.

The particle filter approximates distributions as discrete, i.e. as weighted sum of Dirac deltas. Other ap-

proaches to discretize the PDF include deterministic Dirac mixtures with equal weights [22] and to combine

particle filters with Gaussian Mixture Models. In Refs. [23] and [24], the authors start from a GMM and at

each cycle they resample in a manner similar to a particle filter. Their resampling step is subject to a matrix

inequality constraint that insures the covariance of each of the resampled Gaussian components stays below

a desired tunable value.

Reference [25] starts from the Gaussian particle filter derived in [26] to build the Gaussian sum particle

filter (GSPF). The GSPF is basically a bank of Gaussian particle filters approximating the conditional distri-

butions by weighted Gaussian mixtures. Ref. [27] introduces the Particle Gaussian Mixture Filter (PGMF)

and employs an ensemble of randomly sampled states for the propagation of the conditional state probability
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density. The propagated ensemble is clustered to recover a Gaussian Mixture Model representation of the

propagated PDF. Finally, the posterior PDF can be obtained through a GSF update. This approach is some-

what reminiscent of the Regularized Particle Filter, which uses kernel density estimation as the clustering

algorithm.

In this paper we propose to always sample from the posterior distribution, never to combine the distri-

bution at the prior time with an importance distribution, as done in SIS. Therefore, the methodology and the

algorithms derived in this work are conceptually and practically very different from the GSPF and PGMF.

The proposed methodology is also different from the Regularized Particle Filter, since the regularized particle

filter employs kernel density estimation on the particles in order to resample from a continuous distribution.

In this work we calculate the posterior distribution directly, we do not approximate it via clustering or kernel

density estimator starting from samples. We do not utilize sequential importance sampling like in the GSPF.

Moreover, no particles propagation and clustering occurs like in the PGMF, rather an initial GMM is gener-

ated at each cycle and from it a posterior PDF is obtained. In addition to the main result, two modifications of

the baseline algorithm are proposed to further improve its accuracy. First, an importance sampling version of

the algorithm is developed. Then, in the second modification, the initial covariance of the GMM components

is not set to zero, but to a small value that removes the bias in the sample covariance.

The remainder of the paper is organized as follows. First the GSF and particle filter algorithms are

described. Then, the new algorithms are introduced in section III. In section IV, simulation results using the

proposed algorithm are presented followed by some concluding remarks on the methodology and results.

II. Preliminary Notions

The Gaussian Sum Filter (GSF) and Particle Filter (PF) are two common solutions to the nonlinear

Bayesian estimation problem and they are briefly reviewed in this section.

A. Gaussian Mixture Models and the Gaussian Sum Filter

Throughout this paper we consider general discrete-time nonlinear dynamics and measurements. The

dynamics is given by

xk+1 = fk(xk,νk) (1)
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where fk is some non-linear function and the process noise νk is a zero-mean, white sequence, independent

from the initial distribution of x0 and possessing covariance matrixQk. The measurement is

yk = hk(xk) + ηk (2)

the measurement noise ηk is a zero-mean, white sequence with covariance matrix Rk, independent from all

other random quantities.

The GSF approximates the conditional PDF by combining several Gaussian components having different

means and covariance matrices, and this approximation of the probability distribution is called a Gaussian

Mixture Model (GMM). The conditional PDF of xk|y1...yk is expressed as follows:

pxk
(xk) =

N∑
i=1

ω
(i)
k|k n(xk; µ

(i)
k|k,P

(i)
k|k) (3)

where n(x;µ,P ) represents the Gaussian pdf with mean µ and covariance P , and ω(i)
k|k, µ(i)

k|k and P (i)
k|k are

the weights, means, and covariance matrices of the i-th Gaussian component. The PDF’s normalization and

positivity properties lead to the following constraints on the weights

ω
(i)
k|k ≥ 0, ∀i

N∑
i=1

ω
(i)
k|k = 1 (4)

(it is actually possible to define some of the weights negative, but that type of GMM approximation is

not considered here.) Assuming the covariance matrices are “small” enough (such that linearization of the

dynamics and measurements holds in the domain of likely realization of each of the components), then each

of the components remains approximately Gaussian at all times and it is propagated and updated using the

conventional EKF equations. The time update equations are described as:

µ
(i)
k+1|k = fk

(
µ

(i)
k|k
)

(5)

P
(i)
k+1|k = F

(i)
k P k|kF

(i)T
k +G

(i)
k QkG

(i)T
k (6)

ω
(i)
k+1|k = ω

(i)
k|k (7)

where F (i)
k andG(i)

k are the Jacobian of the dynamics evaluated at the component’s mean xx = µ
(i)
k|k and at

νk = 0, respectively.
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The measurement update follows from Bayes’s rule and is given by

µ
(i)
k|k = µ

(i)
k|k−1 +K

(i)
k

(
yk − hk

(
µ

(i)
k|k−1

))
(8)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k

(
H

(i)
k P

(i)
k|k−1H

(i)T
k +Rk

)
K

(i)T
k (9)

K
(i)
k = P

(i)
k|k−1 H

(i)T
k

(
H

(i)
k P

(i)
k|k−1H

(i)T
k +Rk

)−1
(10)

ω
(i)
k|k =

ω
(i)
k|k−1 β

i
k∑N

i=1 ω
(i)
k|k−1 β

i
k

(11)

where

βi
k = n

(
yk; hk

(
x
(i)
k|k−1

)
, H

(i)
k P

(i)
k|k−1H

(i)T
k +Rk

)
(12)

where H(i)
k is the Jacobian of the measurement evaluated at the prior mean µ(i)

k|k−1. The weights are scaled

so that they add to one.

Lastly, the total mean µk|k and covariance matrix P k|k of the posterior GMM are given by

µk|k =

N∑
i=1

ω
(i)
k|k µ

(i)
k|k (13)

P k|k =

N∑
i=1

ω
(i)
k|k

(
P

(i)
k|k + µ

(i)
k|kµ

(i)T
k|k − µk|kµ

T
k|k

)
(14)

It is noted that the GMM approximation of the conditional PDF approaches to the true PDF under the

assumption that there are a sufficient number of Gaussian components and that each of them has covariance

matrix small enough such that the linearization of each component around its mean is representative of the

nonlinear dynamics and measurements.

B. The Particle Filter

Particle Filters (PF) are a subset of sequential Monte Carlo methods that use Sequential Importance

Sampling with Resempling (SISR). The PF approximates the continuous PDF as a discrete probability mass

function (PMF), therefore the PDF is composed by a weighted sum of Dirac delta functions [19].

pxk
(xk) ≈

N∑
i=1

ω
(i)
k|k δ(xk − x(i)

k|k) (15)

If it were feasible to compute the actual posterior distribution at the next time step pxk+1
(xk+1) starting

from pxk
(xk) and to sample from it; then we would use standard Monte Carlo techniques. However, since
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it is usually unfeasible to sample from the actual posterior distribution, an importance distribution is often

used instead. The Bootstrap particle filter uses the transition distribution as the importance distribution. With

capital letters we indicate the collection of all random vectors identified by the corresponding lower case

letter, up to and including the current time.

Xk = x0,x1, · · · ,xk, Y k = y1, · · · ,yk (16)

Then, the BPF importance distribution is given by

π(xk+1|Xk,Y k+1) = p(xk+1|xk) (17)

the sample x(i)
k+1 is obtained by first sampling ν(i)

k from the process noise. In this work the samples ν(i)
k are

drawn from a Gaussian distribution and x(i)
k+1 are obtained as follows:

x
(i)
k+1 = fk(x

(i)
k ,ν

(i)
k ) (18)

The importance weights are calculated as

ω
(i)
k+1 ∝ ω

(i)
k p(yk+1|x

(i)
k+1) = ω

(i)
k n

(
yk+1; hk

(
x
(i)
k+1

)
, Rk+1

)
(19)

Sample impoverishment is common in the BPF, and the weights update step is usually followed by a resam-

pling step.

III. Sequential Monte Carlo Filtering with Gaussian Mixture Sampling

At each time step, Sequential Monte Carlo methods in general, and Particle Filters in particular, ne-

cessitate to start from a good set of samples that accurately and sufficiently represent the true distribution.

Assuming such an initial set of samples exists, our goal is to approximate the distribution of xk|Y k using

sequential Monte Carlo methods. We will present one main algorithm and then show two small modifications

to it. In a Monte Carlo method, ideally we would want to sample from p(xk|Y k), and the first algorithm we

propose does exactly that.

We assume that we have a good representation of the distribution at the prior time, that is to say, we have

a set of of N i.i.d. samples x(i)
k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (20)
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the basic idea behind the proposed algorithm is that the Dirac delta function δ(xk − x̄k) is the limit as the

covariance matrix goes to zero of a Gaussian distribution with mean x̄(i)
k

δ(xk − x̄k) = n(xk; x̄k,O) (21)

A. Algorithm I - Sampling from a GMM Posterior

As mentioned above we start from N i.i.d. samples of p(xk−1|yk−1) and we interpret the discretized

distribution as a GMM

p(xk−1|Y k−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) =

N∑
i=1

1

N
n(xk−1;x

(i)
k−1,O) (22)

we can therefore propagate this distribution forward in time with the GSF equations to obtain

p(xk|Y k−1) ≈
N∑
i=1

1

N
n(xk;fk−1(x

(i)
k−1),G

(i)
k−1Qk−1G

(i)T
k−1) (23)

We can then process the measurement to obtain

p(xk|Y k) ≈
N∑
i=1

ω
(i)
k n(xk;µ

(i)
k ,P

(i)
k ) (24)

µ
(i)
k = fk−1

(
x
(i)
k−1
)

+Kk

(
yk − hk

(
fk−1

(
x
(i)
k−1
)))

(25)

P
(i)
k = G

(i)
k−1Qk−1G

(i)T
k−1 −K

(i)
k W

(i)
k K

(i)T
k (26)

K
(i)
k = G

(i)
k−1Qk−1G

(i)T
k−1 H

(i)T
k (W

(i)
k )−1 (27)

W
(i)
k = H

(i)
k G

(i)
k−1Qk−1G

(i)T
k−1H

(i)T
k +Rk (28)

G
(i)
k−1 =

∂fk−1
(
x,ν

)
∂ν

∣∣∣∣∣
ν=ν

(i)
k−1

(29)

H
(i)
k =

∂hk

(
x
)

∂x

∣∣∣∣∣
x=fk−1

(
x

(i)
k−1

) (30)

ω
(i)
k ∝ n

(
yk; hk

(
fk−1

(
x
(i)
k−1
))
, W

(i)
k

)
(31)

where the weights in Eq. (31) are normalized.

We can now sample from the GMM distribution in Eq. (24) to obtain N i.i.d. samples of p(xk|Y k);

from these samples we can construct a Bayesian estimate and we can use them as a starting point for the next

iteration.

To draw from a GMM we follow these steps:
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1. Draw N samples u(i) from a uniform distribution between 0 and 1

2. For each i, find the index `i (where the subscipt i is to reinforce the fact there is one index for each

value of i = 1...N ) such that
∑`i−1

j=1 ω(j) < u(i) ≤
∑`i

j=1 ω
(j), where we define

∑0
j=1 ω

(i) = 0

3. Draw x(i)
k from the Gaussian distribution n(xk; m

(`i)
k|k−1,P

(`i)
k|k−1)

Our approach of sampling from the GMM has two benefits. First, components with small weight are

unlikely to produce a sample, therefore the resampling step is effectively already included in the sampling

step. In the Bootstrap particle filter the process noise provides sample diversity after resampling. In a GMM

the sample diversity is obtained directly since the Gaussian components are continuous distributions that

already contain the contribution of the process noise. Other algorithms such as the regularized particle filter

need to perform additional steps starting from the discrete distribution to obtain a continuous distribution to

resample from. The second benefit of this algorithm is that, unlike the bootstrap particle filter, the GMM

distribution accounts for the value of the measurement yk. This approach is reminiscent of the auxiliary

particle filter, except that the full Bayes update is performed which allows us to directly sample rather than

doing importance sampling.

Our proposed approach provides very good performance if:

1. The process noise covariance is not large enough such that the linearization of the measure-

ment function h(x) is invalid in a region around fk−1
(
x
(i)
k−1,0

)
whose spread is consistent with

G
(i)
k−1Qk−1G

(i)T
k−1

2. The number of samples we start from is sufficient to accurately approximate the distribution at the

prior time: p(xk−1|Y k−1) ≈
∑N

i=1
1
N n(xk−1;x

(i)
k−1,O)

This second assumption is common to all particle filters. If one of these two assumptions fail, the same

algorithm proposed here can be used with the following mitigation strategies: 1) expressing the process

noise itself as a GMM such that each component has a small enough covariance and 2) drawing more points

from p(xk−1|Y k−1) as a starting point of the algorithm. However, at the cost of more computations, it is

possible to mitigate these two issues in alternative ways as presented in the following two subsections.
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B. Algorithm II - Importance Sampling from a GMM Posterior

If the distribution at the prior time is accurate, but we have reason to believe our GMM approximation

of the distribution at the current time in Eq. (24) is not as accurate, it is possible to draw from the GMM

in Eq. (24) as an importance distribution rather than as the true posterior. When drawing samples x(i)
k from

an importance distribution π(xk|Y k) it is necessary to compute the true probability density p(x(i)
k |Y k) in

order to compute the importance weights. Therefore, we still need good knowledge of p(x(i)
k−1|Y k−1). Al-

gorithm II proposed in this subsection provides a good methodology when we have enough samples x(i)
k−1 to

accurately represent p(x(i)
k−1|Y k−1), but the GMM approximation of p(xk|Y k) is not sufficiently accurate.

This situation can occur when the linearization assumption taken by each of the components of the GMM is

not accurate, such as when the nonlinearities of the measurement function hk(xk) are significant in a region

around fk−1(x
(i)
k−1,0) spanned by the likely realizations of the component.

Assume the following approximation of the true posterior is more accurate than Eq. (24):

p(x
(i)
k |Y k) ∝ p(yk|x

(i)
k )

∫
p(x

(i)
k |xk−1) p(xk−1|Y k−1) dxk−1 (32)

≈ p(yk|x
(i)
k )

N∑
j=1

p(x
(i)
k |x

(j)
k−1) p(x

(j)
k−1|Y k−1) (33)

= n
(
yk; hk

(
x
(i)
k

)
,Rk

) N∑
j=1

ζ
(j)
k−1 n

(
x
(i)
k ; fk−1

(
x
(j)
k−1
)
,G

(j)
k−1Qk−1G

(j)T
k−1

)
(34)

where the prior distribution p(x(j)
k−1|Y k−1) no longer has all weights equal to 1/N :

p(x
(j)
k−1|Y k−1) =

N∑
j=1

ζ
(j)
k−1 n

(
x
(i)
k ; x

(j)
k−1,O

)
(35)

then we can use Eq. (24) as the importance density

π(xk|Y k) =

N∑
i=1

ω
(i)
k n

(
xk;µ

(i)
k ,P

(i)
k

)
(36)

where ω(i)
k are the weights of the i-th Gaussian component as defined in Eq. (31). The importance weights

are calculated as

ξ
(i)
k =

p(x
(i)
k |Y k)

π(x
(i)
k |Y k)

(37)

ζ
(i)
k =

ξ
(i)
k∑N

i=1 ξ
(i)
k

(38)

The posterior density is therefore approximated as

p(xk|Y k) ≈
N∑
i=1

ζ
(i)
k δ(xk − x(i)

k ) =

N∑
i=1

ζ
(i)
k n(xk;x

(i)
k ,O) (39)
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notice that at the start of each iteration the initial weights ζ(i)k of the GMM are not 1/N as in Algorithm 1.

For largeN , Algorithm II can be significantly more computationally expensive than Algorithm I because

of the summation in Eq. (35) that is performed for each sample. In other words, Algorithm II has complexity

of orderN2. Therefore in situations where the process noise covariance is large, expressing the process noise

itself as a GMM and using Algorithm I is possibly preferable from a computational standpoint.

The pre-update error covariance matrix G(i)
k−1Qk−1G

(i)T
k−1 being too small or not full rank could lead to

particle impoverishment issues (all particle filters suffer from this problem). To overcome this, the following

algorithm which uses nonzero initial covariances is proposed.

C. Algorithm III - Estimation with Non-Zero Initial Covariance

A better GMM approximation of p(xk−1|Y k−1) than Eq. (22) can be obtained by choosing nonzero

covariances P (i)
k−1 for each of the components

p(xk−1|Y k−1) ≈
N∑
i=1

1

N
n(xk−1;x

(i)
k−1,P

(i)
k−1) (40)

Calculation of optimal values of P (i)
k−1 (for example minimizing the L2 norm of the difference between

PDFs) is often infeasible or computationally expensive; a very simple alternative approach is to remove the

bias in the sample covariance as described in this section.

When all the weights are the same, the covariance matrix of the GMM distribution is given by

PGMM
k−1 =

1

N

(
N∑
i=1

P
(i)
k−1 + x

(i)
k−1x

(i)T
k−1

)
− µk−1 µ

T
k−1 (41)

µk−1 =
1

N

N∑
i=1

x
(i)
k−1 (42)

when P (i)
k−1 = O this reduces to

PBIAS
k−1 =

1

N

N∑
i=1

(
x
(i)
k−1 − µk−1

) (
x
(i)
k−1 − µ

T
k−1

)T
=

1

N

(
N∑
i=1

x
(i)
k−1 x

(i)T
k−1

)
− µk−1 µ

T
k−1 (43)

which is a biased estimator of the covariance matrix since it is, on average, too small. An unbiased estimator

of the covariance matrix is

PUMB
k−1 =

1

N − 1

N∑
i=1

(
x
(i)
k−1 − µk−1

) (
x
(i)
k−1 − µ

T
k−1

)T
(44)
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A very simple method to choose a nonzero value for the covariance matrix of the components in Eq. (40) is

to choose P (i)
k−1 such that the GMM covariance matrix is unbiased

1

N

(
N∑
i=1

P
(i)
k−1 + x

(i)
k−1x

(i)T
k−1

)
− µk−1 µ

T
k−1

=
1

N − 1

N∑
i=1

(
x
(i)
k−1 − µk−1

) (
x
(i)
k−1 − µ

T
k−1

)T
(45)

assuming all samples have the same covariance matrix, the solution to this equation is given by

P
(i)
k−1 =

1

N(N − 1)

N∑
j=1

(
x
(j)
k−1 − µk−1

) (
x
(j)
k−1 − µ

T
k−1

)T
=

1

N
PUMB

k−1 ∀i (46)

For example, if we have a scalar state with umbiased sample variance of PUMB
k−1 = 1 and we choose to draw

100 samples, each of the 100 components of the GMM will have standard deviation σ(i)
k−1 =

√
P

(i)
k−1 = 0.1.

The remainder of the algorithm is similar to Algorithm I

p(xk|Y k) ≈
N∑
i=1

ω
(i)
k n(xk;µ

(i)
k ,P

(i)
k ) (47)

µ
(i)
k = fk−1

(
x
(i)
k−1
)

+Kk

(
yk − hk

(
fk−1

(
x
(i)
k−1
)))

(48)

P
(i)
k = F

(i)
k−1P

(i)
k−1F

(i)
k−1 +G

(j)
k−1Qk−1G

(j)T
k−1 −K

(i)
k W

(i)
k K

(i)T
k (49)

K
(i)
k = (F

(i)
k−1P

(i)
k−1F

(i)
k−1 +G

(j)
k−1Qk−1G

(j)T
k−1 )H

(i)T
k (W

(i)
k )−1 (50)

W
(i)
k = H

(i)
k (F

(i)
k−1P

(i)
k−1F

(i)
k−1 +G

(j)
k−1Qk−1G

(j)T
k−1 )H

(i)T
k +Rk (51)

F
(i)
k−1 =

∂fk−1
(
x,ν

)
∂x

∣∣∣∣∣
x=x

(i)
k−1

(52)

G
(i)
k−1 =

∂fk−1
(
x,ν

)
∂ν

∣∣∣∣∣
ν=ν

(i)
k−1

(53)

H
(i)
k =

∂hk

(
x
)

∂x

∣∣∣∣∣
x=fk−1

(
x

(i)
k−1

) (54)

ω
(i)
k ∝ n

(
yk; hk

(
fk−1

(
x
(i)
k−1
))
, W

(i)
k

)
(55)

the weights in Eq. (55) are normalized and we can now sample from this GMM distribution to obtain N i.i.d.

samples of p(xk|Y k).

In Algorithm III, we calculate the actual posterior distribution as a GMM and sample directly from

it. Moreover, the covariance matrix of the components P (i)
k−1 is calculated, which makes Algorithm III

11



practically and conceptually different from regularized particle filter in that the covariance is not merely used

for particle resampling.

IV. Numerical Results

In order to evaluate the algorithms proposed in this paper, four different examples are considered: a

simple motivating example, the univariate nonstationary growth model (used in [20, 25, 28]), a Lorenz96

system (used in [27, 29]), and the blind tricyclist problem (used in [23, 24, 30]).

A. Single Step Example

Consider the following simple motivating example. A bivariate normal random vector x0 is distributed

as

x0 ∼ n (x0; µ0, P 0) = n

x0;

−3

0

 ,
7.2 0

0 21.6


 (56)

and evolves as

x1 = x0 + ν (57)

where

ν ∼ n (ν; 0, Q) = n

ν;

0

0

 ,
0.2 0

0 0.2


 (58)

a measurement is available and given by

y = ‖x1‖+ η (59)

where

η ∼ n (η; 0, R) = n (η; 0, 0.01) (60)

we start fromN = 300 independently drawn samples of x0 and we apply the Bootstrap Particle Filter (BPF),

the Auxiliary Particle Filter (APF), Algorithm 1 (A1) and Algorithm 3 (A3) from this paper.

For the BPF we draw N independent samples from η, and update the weights as

w
(i)
BPF ∝ n(ν(i); 0,Q) n(‖x(i)

0 + ν(i)‖; 0, R) (61)

12



the effective number of particles is calculated as

NBPF
eff =

1∑N
i=1(w

(i)
BPF )2

(62)

and x(i),BPF
1 = x

(i)
0 + ν(i) with associated weight w(i)

BPF . After resampling, many resampled Bootstrap

particles x̃(i),BPF
1 will coincide and all particles will have equal weight 1/N .

For the APF resampling of the initial state is performed

x0 ≈
n∑

i=1

w
(i)
APF δ(x0 − x(i)

0 ) (63)

where

w
(i)
APF ∝ n(‖x(i)

0 + ν(i)‖; 0, R) (64)

the effective number of particles is calculated as

NAPF
eff =

1∑N
i=1(w

(i)
APF )2

(65)

and x(i),APF
1 = x̃

(i)
0 + ν(i) with associated weight 1/N where x̃(i)

0 are resampled particles. Notice that

because of ν(i), all particles x(i),APF
1 are distinct from one another.

For A1 and A3 (jointly denoted as AN) we use the weights described in Eq. (31) and Eq. (55), and we

calculate the effective number of particles as

NAN
eff =

1∑N
i=1

(
ω
(i)
AN

)2 (66)

After sampling from the GMM, all sampled particles x(i),AN
1 are distinct from one another and have weight

1/N .

Performing 100 random experiments for each of the four filters, we obtain the average number of effec-

tive particles,the root mean square error (RMSE) and the Cramer-Rao lower bound (CRLB) [30, 31] values

given in Table 1. The results show that starting from the same initial 300 particles the proposed method-

ologies produce the most sample diversity and best accuracy among the filters. Notice that none of the

algorithms in Table 1 (new or existing) approach the Cramer-Rao lower bound, this is true for the following

examples as well. This is due to the complex nonlinear nature of the examples chosen.

13



Ex. 1 Effective Particles RMSE

BPF (300) 9.8370 1.8215

APF (300) 12.4878 1.7847

A1 (300) 56.3863 1.6333

A3 (300) 62.0461 1.6228

CRLB 0.1999

Table 1 Results of Example 1: Number of Effective Particles

B. Univariate Nonstationary Growth Model

Consider the discrete time highly nonlinear scalar dynamic system and measurement model given by

[20, 25, 28]:

xk =
1

2
xk−1 + 25

xk−1
1 + x2k−1

+ 8 cos
(
1.2(k − 1)

)
+ νk−1 (67)

yk =
x2k
20

+ ηk (68)

where the process noise, νk−1, and the measurement noise, ηk, are assumed to be independent zero mean

Gaussian random variables with variances Q = 1 and R = 1, respectively.

This model is highly nonlinear and bimodal. The cosine term in the dynamic equation varies with time

k. The likelihood has a bimodal nature which makes the states more difficult to estimate. In this example, a

Monte Carlo analysis is performed with 200 simulations, each simulation has a time span k = [0, 50]. The

estimation performance of the EKF, UKF, Bootstrap PF (BPF) and the three algorithms proposed here (A1,

A2, A3) are compared based on RMSE, effective sample size (ESS), and noncredibility index (NCI) [32].

The RMSE for each Monte Carlo simulation is calculated from the true and estimated states at each time k.

The ESS is the effective number of particles calculated as in the previous example. The NCI is defined as

NCIk =
1

M

M∑
j=1

[
10 log10

(
(xj

k − µ
j
k)T(P j

k)−1(xj
k − µ

j
k)
)
− 10 log10

(
(xj

k − µ
j
k)TΣ−1k (xj

k − µ
j
k)
)]
(69)

where M is the number of Monte Carlo simulations, xj
k are the true states, µj

k are the estimated states,

P j
k are the filter’s error covariance matrix of the j-th Monte Carlo run computed with Eq. (14), and Σk is

the ensemble error covariance matrix of the estimates at time k computed from the Monte Carlo samples.
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The NCI quantifies the difference between the ideal error covariance matrix Σk and the estimated error

covariance matrix P k. The NCI metric is a geometric average of 10 times the logarithm of the normalized

estimation error squared (NEES) ratio; it is a balanced measure of the consistency of the estimators. When

the difference between Σk and P k is small, the NCI value should be zero or nearly zero at all times [32].

The Root Mean Square of the RMSEs, the Monte Carlo averaged ESS, and the NCI from the 200 Monte

Carlo runs are shown in Table 2. A total of 100 particles are used in both the BPF and the new algorithms

proposed here.

Fig. 1 shows the RMSE and the CRLB of the 200 simulation, the RMSE for each is calculated over a

time span of [0, 50]. The RMSE values of each filter are listed in Table 2. Our three proposed algorithms

have comparable RMSEs. The best performance is obtained with A3, which starts each iteration from a

GMM with non-zero covariance. The RMSEs of the EKF and UKF are higher than that of any sample-based

filters. Moreover, the proposed algorithms have better performance than the BPF given the same number of

particles, 100.

The consistency test result of each estimator represented by the absolute NCI value is depicted in Fig.

2. In this figure, the NCI values of our proposed algorithms are smaller than those of other estimators.

Fig. 3 describes the ESS which indicates sample diversity of particle filters. In the figure, the Monte Carlo

simulations show that the proposed methodologies produce significantly higher effective number of particles

than the BPF. The proposed A3 method performs best in both ESS while A2 is slightly more consistent.

Ex. 2 RMSE ESS NCI

A1 (100) 22.6558 78.0530 5.3895

A2 (100) 22.4748 77.6704 4.1806

A3 (100) 22.3328 79.0343 4.1823

BPF (100) 23.5081 60.2690 6.0290

EKF 71.7314 17.2206

UKF 50.2221 10.3616

CRLB 1.7258

Table 2 Results of Example 2: RMSE for 200 Monte Carlo Simulations
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C. Lorenz96 system

In this example, the Bootstrap PF and the here proposed Algorithm 1 and Algorithm 3 are applied to a

Lorenz96 system [27, 29]. The Lorenz96 dynamical system is expressed as follows:

ẋi(t) = xi−1(t)
(
xi+1(t)− xi−2(t)

)
− xi(t) + F + νi(t) (70)

yk = H X(tk) + ηk, Hi,j =


1, j = 2i− 1

0, otherwise
, for i = 1, · · · , 20, j = 1, · · · , 40 (71)

where xi(t), i = 1, 2, · · · , 40, are the components of the 40th-dimensional vector X(t). In the dynamics

equation the following conventions are used x−1 = xN−1, x0 = xN , and x1 = xN+1. The term F

represents a constant external forcing and is set to 8, which causes chaotic behavior in the system. The

dynamics is propagated for 10 seconds at 20 Hz while the discrete measurements are available at 1 Hz,

tk = 1, 2, · · · , 200. Fourth order Runge-Kutta integration is used with a step size of 0.05 sec, and the

process noise is held constant over each 0.05 second interval with zero correlation between the intervals.

The measurements are linear and measure only the components of the state vector that have odd indices.

It is assumed that the process noise and measurement noise are uncorrelated, white, zero mean, and with

covariance matrices given by Q = 10−2 and R = 10−2I20×20, respectively [27]. The initial state of the

system is assumed multivariate Gaussian distribution with µ0 = F [1, 1, · · · , 1]T and P0 = 10−3I40×40.
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Fig. 4 shows the CRLB and the performance of 100 Monte Carlo simulations with 2000 particles for

the Lorenz96 system. The time averaged value of RMSE of the three algorithms and the CRLB are shown

in Table 3. For such large system, A2 is not recommended because of high computation time and is omitted

from this example. The results show that the performance of A3 is better than the A1. Moreover, the BPF

is found to provide significantly inferior performance. In order to compare the consistency of the filters, the

absolute NCI value is computed and compared in Fig. 5. This figure indicates that the performance of A1

and A3 are comparable. On the other hand, the absolute NCI value of the BPF is greater than that of A1

and A3 over time. The time averaged ESS for the 100 Monte Carlo simulations are shown in Fig. 6. The

effective number of particles for the BPF is small since it does not directly account for the latest information

of the measurement. On the other hand, A1 and A3 provide good diversity and number of effective particles.

The quantitative results representing the consistency and ESS of the filters are listed in Table 3. A3 has the

best performance in terms of accuracy, consistency, and ESS.

D. The Blind Tricyclist Problem

In this last example, Algorithm 3 is tested on the blind tricyclist problem presented in Ref. [30], and its

performance is compared to that of an EKF and Regularized Particle Filter (RPF). The blind tricyclist is a

challenging nonlinear estimation problem with seven states consisting of unknown planar position, heading
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angle, and four observation parameters. Unlike the previous examples, in this problem the process noise does

not enter the dynamics linearly. Moreover, the process noise covariance matrix is not full rank because three

states do not have process noise. Therefore, most particle filters will fail to produce particle diversity, while

A3 and RPF are suitable and applied to this problem. The dynamics are propagated for 141 seconds at 2

Hz with the two known inputs corrupted by additive Gaussian noise. Two relative bearing measurements are
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Ex. 3 RMSE ESS NCI

A1 (2000) 20.3819 1248.5274 0.4160

A3 (2000) 20.1415 1338.7312 0.3920

BPF (2000) 28.7860 229.0955 22.7186

CRLB 1.8377

Table 3 Results of Example 3: RMSE for 100 Monte Carlo Simulations

available every 3 seconds out-of-phase at 180 ◦ E.g., the rider gets relative bearing measurements from two

shouting friends: the first friend shouts out at sample times 0.5, 3.5, 6,5, etc., while the second friend shouts

out at sample times 2, 5, 8, etc.

Fig. 7 displays the time history of the position’s RMSE magnitude of the CRLB and 100 Monte Carlo

simulations of an EKF, A3 with 3000 and 10000 particles, and RPF with 3000 and 10000 particles. Since the

process noise is only related to the planar position and heading states, the process noise covariance matrix

G
(i)
k−1Qk−1G

(i)T
k−1 is not full rank. Therefore, A1 and A2 cannot be successfully applied to this problem,

neither are BPF and APF. In addition, since the tricycle heading angle and the merry-go-round phase angles

can cause a 2π cycle ambiguity, a 2π relative unwrapping operation is performed. The RPF resampling is

done whenever the number of effective particles is smaller than a resampling threshold N̂eff , chosen as 400

and 5000 for 3000 and 10000 particles, respectively [24]. The results indicate that the performances of both

the A3s with 3000 and 10000 mixture elements are better than those of the RPFs for the first 100 sec but they

become comparable after that. The reason is that RPF implemented here uses an Epanechnikov kernel density

estimator, which is optimal for Gaussian distributions. After 100 seconds of simulation time, when the total

uncertainty of the problem reduces, the distribution looks “more” Gaussian and the RPF performs really well.

However, when the PDF differs substantially from Gaussian, the Epanechnikov kernel density estimator and

hence the RPF perform noticeably worse than A3. If the posterior density was known, an optimal kernel

estimator could be found to produce excellent results. Generally speaking, however, the shape of the posterior

distribution is unknown and thus A3 does a better job of representing the distribution, as the consistency test

below clearly shows. Ref. [30] details the reason why RPF with 10000 particles performs worse than the

RPF with 3000 particles: “First, the increase from 3000 to 10,000 particles might be insufficient to ensure
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improvement in a 100-run Monte Carlo simulation. Also, the RPF regularization?s dithering might have

interfered with the PF?s accuracy convergence in the limit of a large number of particles.”

The RMSE of A3 and RPF lie a bit lower than the CRLB during the first 5 sec of the run, which is

theoretically impossible but allowable since a finite number of Monte Carlo simulations is conducted [23].

This figure also shows that the performance of the EKF is inferior to that of A3 and RPF. The quantitative

RMSE results for position is listed in Table 4. The RMSE value of the A3 with 3000 particles is 3.97%

smaller than that of the RPF with 3000 particles and the RMSE value of the A3 with 10000 particles is

27.87% smaller than that of the RPF with 10000 particles.

Fig. 8 shows the absoulte NCI value of each estimator. The absolute value of NCI of all filters increases

as time passes. This is because the process noise covariance matrix G(i)
k−1Qk−1G

(i)T
k−1 is rank-deficient.

It is well known that small process noise can causes degeneracy in particle filters, thus degrading their

performance [19]. The figure shows that the RPF with 3000 particles does suffer from degeneracy. Even

with 3000 particles, the absolute value of NCI of A3 shows that the filter is performing in a very satisfactory

fashon. The time averaged absolute NCI value to the total samples of 100 cases is listed in Table 4, where n/a

indicates degeneracy. The average computation time per filtering run in MATLAB on a 3.5-GHz, four-core

Ubuntu operation system is also presented in Table 4. The absolute NCI value of the A3 is smaller than that

of the EKF and RPF with the same number of particles. In addition, compared to the RPF, the A3 reduces

the mean computation time by 5.65% and 19.72% with 3000 and 10000 particles, respectively. Therefore,

the performance in terms of accuracy, consistency, and mean computation time of the proposed algorithm is

conspicuously better than that of the EKF and RPF.

V. Conclusions

In this paper, a new sequential Monte Carlo algorithm is proposed that samples from a Gaussian Mixture

Model (GMM) approximation of the posterior distribution. Each sample of the distribution at the prior time

is treated as a Gaussian component with a collapsed zero covariance matrix. Process noise is responsible

for generating propagated components with non-singular covariance matrix, and the Gaussian Sum Filter

algorithm is used to calculate the posterior distribution. It is shown that the proposed algorithm improves

over the accuracy, consistency, and effective number of particles of the Bootstrap and Regularized Particle
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Filters in the numerical examples considered.

Two small modifications of the baseline algorithm are also proposed to further improve its accuracy.

First, an importance sampling version of the algorithm is developed. At the cost of more computations,

this modified approach slightly improves over the baseline algorithm. In the second modification, the initial

covariance of the GMM components is not set to zero, but to a small value that removes the bias in the sample
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Ex. 4 RMSE NCI Computation time (sec/sim.)

EKF 21.2319 28.3933 0.0205

A3 (3000) 11.0344 2.1958 41.3793

A3 (10000) 10.8863 2.6238 170.2232

RPF (3000) 11.4904 n/a 43.8562

RPF (10000) 15.0916 5.3220 212.0285

CRLB 3.9161

Table 4 Results of Example 4: RMSE for 100 Monte Carlo Simulations

covariance, this approach is necessary, for example, when the process noise is not sufficient to produce non-

singular covariance matrices for the components. All the proposed algorithms have better performance than

the conventional Bootstrap Particle Filter in all tests performed.
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