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This paper presents a systematic generalization of the linear update structure as-

sociated with the extended Kalman �lter for high order polynomial estimation of non-

linear dynamical systems. The minimum mean-square error criterion is used as the

cost function to determine the optimal polynomial update during the estimation pro-

cess. The high order series representation is implemented e�ectively using di�erential

algebra techniques. Numerical examples show that the proposed algorithm, named

High Order Di�erential Algebra Kalman Filter, provides superior robustness and/or

mean-square error performance compared to linear estimators under the condition

considered.

I. Nomenclature

σr Position Standard Deviation

σv Velocity Standard Deviation

dX− Predicted State Deviation Vector

dX+ Updated State Deviation Vector

dX++ Zero-Mean Updated State Deviation Vector

dY Measurement Deviation Vector
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dY [2] Kronecker Square of the Measurement Deviation Vector

dY Augmented Measurement Deviation Vector

f [·] Process Model

h[·] Measurement Function

K Kalman Gain

P
[2]
XX State Covariance

P
[i]
X...X State i-th Central Moment

P
[i]−
X...X Predicted State i-th Central Moment

P
[i]+
X...X Updated State i-th Central Moment

P
[2]−
dY dY Measurement Covariance

P
[3]−
dY dY dY Measurement 3rd Central Moment

P
[4]−
dY dY dY dY Measurement 4rd Central Moment

P
[2]−
dYdY Augmented Measurement Covariance

Q[2] Covariance of the Process Noise

Q[i] Process Noise i-th Central Moment

r Spacecraft Position Vector

R[2] Covariance of the Measurement Noise

R[i] Measurement Noise i-th Central Moment

v Spacecraft Velocity Vector

V Process Noise Vector

W Measurement Noise Vector

x̂ Estimated State

x̂− Predicted State

x̂+ Updated State

X State Vector of the System

y Numerical Value of the Measurements

ŷ Predicted Measurement Mean

Y Measurement Vector
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II. Introduction

The optimal solution to the sequential stochastic Minimum Mean Square Error (MMSE) esti-

mation problem is well known: the optimal estimate is the conditional mean. The optimal solution

is obtained from the conditional probability density function which is calculated recursively with

Bayes's rule. For the linear/Gaussian case, the conditional distribution remains Gaussian at all times

and hence fully described by its mean and covariance matrix that can be calculated using Kalman's

technique [1, 2]. For practical nonlinear/non-Gassian problems, such as orbit determination [3], the

analytical solution is usually not available in closed form.

The most widely used nonlinear estimator is the extended Kalman �lter (EKF) [4]. The EKF

linearizes the estimation error around the most current estimate and applies the Kalman �lter

equations to this linearized system. It has been shown, however, that nonlinearities of the orbit

determination problem can make the linearization assumption insu�cient to represent the actual

uncertainty [5]. An alternative to linearization around the mean is stochastic linearization in the

so-called unscented Kalman �lter (UKF) [6, 7]. The UKF is typically more robust than the EKF

as it is able to better handle the e�ects of nonlinearities in the dynamics and in the measurements.

The UKF is a linear estimator, i.e. the estimate is a linear function of the current measurement.

In some cases, the uncertainty associated with orbital mechanics can be propagated analytically

[8]; however these analytical solutions usually do not include perturbations other than J2, nor

process noise or measurement updates. Park and Scheeres [9] use state transition tensors (STT)

to propagate mean and higher order central moments through arbitrary nonlinear dynamics. They

subsequently expand their work to create higher order Kalman �lters able to handle process noise

and measurement updates [10], however their �lter is a linear estimator, i.e. the state estimate is a

linear function of the current measurement. In Ref. [10] Park and Scheeres only update the mean and

covariance when a measurement becomes available, neglecting the contribution the measurement

update has on the higher order central moments. Majji, Turner, and Junkins [11], on the other

hand, introduce a tensorial mechanization that expands the work by Park and Scheeres to include
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measurement updates in all the higher order central moments. Valli et al. [12] e�ciently replicate

these results using di�erential algebra (DA) techniques.

The EKF, UKF, and the higher order �lter proposed by Majji et al. utilize a linear update, while

it is known that a nonlinear update provides better performance in the nonlinear/non-Gaussian case.

The globally optimal update is the conditional mean, which is given by some nonlinear function of

the measurement; closed-form calculation of this nonlinear function is usually not tractable. One

approach to approximate the optimal nonlinear update is breaking the estimation error distribution

in many smaller Gaussian components such that each is small enough to satisfy the linearization

assumption of an EKF; this is the basis of the Gaussian sum �lter [13, 14]. Another approach is

to approximate the nonlinear function with a Taylor series [4]. Truncating this series to �rst order

produces the EKF. Generally, the higher the order of the Taylor series the better the performance

of the �lter. Truncating the Taylor series to order N requires knowledge of the estimation error's

central moments up to order 2N . For example the EKF truncates to �rst order and requires

knowledge of the covariance. A second order �lter requires knowledge of central moments up to

order four. To avoid carrying third and fourth order central moments, the Gaussian second order

�lter (GSOF) [15] approximates them assuming the distribution is Gaussian and constructs them

from the covariance matrix.

Calculating the higher order gains is no trivial matter, although it is an operation that is required

only once. The GSOF avoids this operation all together by producing a linear update based on a

second order approximation of the posterior estimation error. To avoid these calculations, De Santis

et al. [16] use an augmented state to obtain a nonlinear update but preserving the linear update

structure. Their original work focuses on linear but non-Gaussian systems, and on approximations

of the optimal non-linear update as either quadratic [16] or polynomial [17]. While maintaining

the exact same structure as the traditional Kalman �lter, this approach takes the nonlinearity of

the measurement update into consideration by implicitly accounting for high order moments in the

estimation process. The augmented state is comprised of the high order raw moments. In the

presence of non-linear dynamics and measurements, these nonlinear functions are approximated via

the Carleman approximation [18], which requires the evaluation of Kronecker powers of the state
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and outputs of the systems. Every smooth map can be Carleman-approximated by a composition

of homomorphic maps. In a Kalman-�lter-type implementation, both the Kronecker powers of the

state and their covariance matrices need to be carried.

This work introduces a novel nonlinear recursive �lter, named "Higher Order Di�erential Al-

gebra Kalman Filter" (HODAKF) , that performs a polynomial update of arbitrary order N and

carries an arbitrary number of central moments M ≥ 2N . The polynomial-update coe�cients are

chosen to minimize the mean square estimation error and require knowledge of high order moments

of the distribution. The mean and central moments are propagated following the work of Park

and Scheeres [9]. The polynomial update is obtained using an augmented measurement approach;

however, unlike Ref. [18], the Carleman approximation is not made and hence the state vector is not

augmented and all the central moments are updated independently. The algorithm is numerically

tested in an orbit determination example.

III. Background

This work utilizes a di�erential algebra (DA) computer tool for the implementation of the

proposed nonlinear system. DA operates on Taylor polynomials with operations such as sums and

product of functions, as well as scalar products with real numbers; leading to the so-called truncated

power series algebra [19] [20]. Function operations such as composition, inversion (when it exists),

and explicit solutions of nonlinear systems of equations, and other common elementary functions

are also available [21] [22]. In addition to these algebraic operations, the DA framework is endowed

with di�erentiation and integration operators, thus completing the requisites of a di�erential algebra

structure.

The Taylor series coe�cients are obtained up to an arbitrary and speci�ed order c from a library

of known Taylor series for elementary functions; no numerical derivatives, e.g. �nite di�erences, are

used. For a more detailed explanation of Di�erential Algebra, refer to Refs. [23�25], and for a deeper

analysis of the computer environment used to implement the examples of this paper Refs. [26, 27].

This work utilizes the Kronecker product ⊗ and the function vect(M) that vectorizes matrixM

by placing all its columns on top of each other. Throughout the work, random vectors are denoted
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by an upper case, while their outcome are denoted with lower case letters. For example, Y is the

observed random vector and y is the outcome, i.e. the actual measured value.

Out of di�erent possible stochastic estimators (maximum likelihood, maximum a posteriori) this

work concentrates on Minimum Mean Square Error Estimation (MMSE) whose optimal solution is

the conditional mean [28], the conditional distribution and the MMSE solution can be computed

recursively when the measurement and process noise are white. Generally, the conditional covariance

of the state given the measurements and the total covariance of the estimation error are di�erent.

For jointly Gaussian random vectors X and Y however, the two coincide, which means that the

covariance of X conditioned on Y is not a function of Y , that is to say, it is the same regardless of

the outcome y of Y .

Computing the full nonlinear MMSE estimator (the conditional mean) is usually a computa-

tionally heavy endeavor, and it is fairly common to settle for the Linear Minimum Mean Square

Error Estimation (LMMSE) given by

X̂ = EX {X} −ΣXY Σ−1Y Y (Y − EY {Y }) (1)

where E {·} is the expectation operator, ΣXY is the joint covariance matrix of X and Y , and ΣY Y

is the covariance matrix of Y . Generally speaking, the LMMSE estimate cannot be calculated

recursively. However, for linear systems (either Gaussian or not) the LMMSE is the Kalman �lter

and it is recursive. Once again, the key assumption is that all noises are white and independent

from all other distributions.

IV. Polynomial MMSE Estimation

It is possible to expand the concept of Linear MMSE to higher order polynomials [17]. Any

polynomial function satis�es the conditions of the orthogonality principle, namely closure under

addition and scalar multiplication, hence it is possible to calculate an optimal polynomial update

using the orthogonality principle [29].

For LMMSE, knowledge of the �rst two moments (mean and covariance) is needed. In general,

for a polynomial update of order p, knowledge of the �rst 2p moments is needed. It is possible to use

the Kronecker product ⊗ to rewrite polynomial updates as linear ones, e.g. for a quadratic update
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(p = 2), we have that

g(Y ) = a+Kaug

 Y

Y ⊗ Y

 = a+KaugY aug (2)

where Y aug is an augmented measurement vector that includes both Y and its square, this approach

reduces the quadratic update to a Kalman-�lter-like update

X̂ = EX {X}+ ΣXY augΣ−1Y augY aug

(
Y aug − EY {Y aug}

)
(3)

unfortunately, for non-scalar measurements, the elements of the augmented measurement Y aug are

not unique, hence ΣY augY aug is not invertible. This is easily alleviated by removing the duplicate

elements from Y aug. Even when the dynamics and the measurement Y are linear, the system ceases

to be linear (Y ⊗ Y is quadratic in X), therefore it also ceases to be recursive. By applying the

equations recursively nevertheless, the result is a suboptimal estimate that is not the true quadratic

MMSE estimate.

For any vector v, de�ne v[2] = v ⊗ v . In the case of linear measurements

Y = HX +W (4)

Ref. [16] proposes to reinstate the linearity by also augmenting the state vector

Xaug =

 X

X ⊗X

 =

 X
X [2]

 (5)

hence

Y aug =

H O

O H ⊗H

Xaug +

 W

(HX)⊗W +W ⊗ (HX) +W [2]

 = HaugXaug +W aug (6)

and

EY {Y aug} = Haug EX {Xaug}+

 0

vect(R)

 (7)

ΣXaugY aug = P aug(Haug)T (8)

ΣY augY aug = HaugP aug(Haug)T +Raug (9)

P aug =

 ΣXX ΣXX[2]

ΣX[2]X ΣX[2]X[2]

 (10)
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where

W aug =

 W
W [2]

 (11)

Raug =

 R Raug
12

Raug
21 Raug

22

 (12)

Raug
21 = (H ⊗ I)

(
E {X} ⊗R

)
+ (I ⊗H)

(
R⊗ E {X}

)
+ E

{
W [2]WT

}
(13)

Raug
12 = (Raug

21 )T (14)

Raug
22 = (H ⊗ I)

(
E
{
XXT

}
⊗R

)
(H ⊗ I)T + (I ⊗H)

(
R⊗ E

{
XXT

})
(I ⊗H)T

+ E
{
W [2](W [2])T

}
− vect (R) vect (R)

T
(15)

To simplify the above equations, Ref. [16] assumes X to be zero mean. Therefore the algorithm

carries a propagated mean of X, together with an augmented estimate X̂ of the deviation from the

mean and its augmented covariance matrix. The following simpli�cations occur

Raug
21 = E

{
W [2]WT

}
(16)

Raug
22 = (H ⊗ I)

(
ΣXX ⊗R

)
(H ⊗ I)T + (I ⊗H)

(
R⊗ΣXX

)
(I ⊗H)T + ΣW [2]W [2]

= HΣXXH
T ⊗R+R⊗HΣXXH

T + ΣW [2]W [2] (17)

This quadratic update is not recursive because the standard Kalman �lter assumptions are

not met as the �R� matrix is a function of the �P � matrix. Furthermore, in the linear case the

recursive LMMSE uses E {X} only at initialization, after that the mean of X is replaced by x̂,

the LMMSE estimate, which is not the mean. It is therefore not clear that E {X} = 0 should

result in a simpli�cation of Eq. (13) at any step other than the very �rst. In computing the

measurement covariance with Eq. (15), Ref. [16] certainly replaces E
{
XXT

}
with the recursively

updated covariance of the LMMSE; not the un-updated covariance of X. It therefore seems that

Eq. (13) and Eq. (15) are treated di�erently in that E {X} is always the mean of the true state,

unchanged by the successive measurements being incorporated, while E
{
XXT

}
is the spread

around the true state which is updated and reduced as more measurements become available. Given

these observations, we propose a di�erent solution to this same problem.
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A. Suboptimal Recursive LMMSE

The optimal MMSE estimate is the conditional mean ofX|Y kY k−1...Y 1; in its recursive formu-

lation we start from the PDF of X|Y k−1...Y 1 and apply Bayes' rule to obtain X|Y kY k−1...Y 1. A

similar recursion holds exactly for LMMSE estimation of linear systems. It is common, however, to

use a similar approach in recursive LMMSE estimation for nonlinear problems (unscented Kalman

�lter [6, 7], quadrature Kalman �lter [30], cubature Kalman �lter [31], etc). This approach is a

suboptimal �lter, because the LMMSE is not recursive in the presence of nonlinear measurements

and/or nonlinear dynamics. To discuss this approach, we will once again assume a static estima-

tion problem; the conclusions drawn do not change when state dynamics are present in-between

measurements.

Let x̂0 = EX {X}. After the �rst measurement is incorporated, we have

X̂1 = x̂0 + ΣXY 1
Σ−1Y 1Y 1

(
Y 1 − EY 1

{Y 1}
)

(18)

E1 = X − X̂1 (19)

P 1 = EE1

{
E1E

T
1

}
= EXY 1

{
(X − X̂1)(X − X̂1)T

}
= ΣXX −ΣXY 1Σ

−1
Y 1Y 1

ΣT
XY 1

(20)

where the linear estimator X̂1 is a random vector and its outcome (the estimate) is

x̂1 = EX {X}+ ΣXY 1
Σ−1Y 1Y 1

(
y1 − EY 1

{Y 1}
)

(21)

where y1 is the actual measurement, i.e. the numerical value or the outcome of the random vector

Y 1 as read from the sensor.

The recursion is obtained using the same LMMSE equations to process the second measurement

Y 2 by creating a new prior X1 centered at x̂1

X1 = x̂1 +E1 (22)

Notice that X1 is neither X nor, in general, X|Y 1. The approach taken is to create a recursive

algorithm by replacing the random vector X with one that includes the knowledge gained from the

linear inclusion of Y 1. However, X1 6= X|Y 1 (with the notable exception of the linear Gaussian

case). In this approach the mean of X1, i.e. x̂1, is taken as deterministic, while in reality x̂1 is a

function of the outcome of random vector Y 1 and hence stochastic. The spread of X1, i.e. E1, on
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the other hand, includes the randomness of Y 1.

EX1
{X1} = x̂1 (23)

ΣX1X1
= ΣE1E1

= P 1 = ΣXX −ΣXY 1
Σ−1Y 1Y 1

ΣT
XY 1

(24)

X̂2 = x̂1 + ΣX1Y 2
Σ−1Y 2Y 2

(
Y 2 − EY 2

{Y 2}
)

(25)

E2 = X − X̂2 (26)

P 2 = EE2

{
E2E

T
2

}
= EXY 1Y 2

{
(X − X̂2)(X − X̂2)T

}
= ΣX1X1 −ΣX1Y 2Σ

−1
Y 2Y 2

ΣT
X1Y 2

(27)

and so on for subsequent measurements.

Assuming all means and covariance matrices can be calculated exactly (which is usually not

possible for nonlinear systems), this approach produces a consistent estimator that reduces the mean-

squared estimation error (P k) with each subsequent measurement incorporated, but it performs

worse, in a MMSE sense, than processing all measurements at once with the optimal LMMSE. This

concept is exempli�ed in the following section.

For a general distribution and an arbitrary nonlinear measurement, it is usually impossible

to exactly calculate all mean and covariance matrices in the above equations. To overcome this

di�culty, di�erent linear estimators approximate them in di�erent ways. The extended Kalman

�lter (EKF) uses a �rst order Taylor series expansion centered at the current estimate while the

gaussian second order �lter approximates the same Taylor series to second order and calculates third

and fourth-order central moments ofX1 as if the distribution was Gaussian. The unscented Kalman

�lter (UKF) approximates the moments with a set of deterministic regression points and belongs to

the family of estimators that use statistical linear regression. Other linear �lters in the same family

as the UKF are the central di�erence �lter [32], the �rst and second order divided di�erence �lters

[33], the quadrature Kalman �lter [30] and the cubature Kalman �lter [31].

B. Example: Recursive LMMSE of non-linear measurement

De�ne two independent Gaussian random variables as Z ∼ N (mz, σ
2
zz) and W ∼ N (0, σ2

ww).

The notation N (m,σ2) indicates a Gaussian random variable with mean m and variance σ2. The

random variable to be estimated is X = Z +W , therefore X is Gaussian with mean mx = mz and
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variance σ2
xx = σ2

zz + σ2
ww. Suppose the observed random variable is Y = (X −W )3, therefore the

measurement is nonlinear andW is interpreted as measurement noise. Notice that Y = Z3 therefore

my = E
{
Z3
}

= m3
z + 3mz σ

2
zz (28)

σ2
yy = E

{
Y 2
}
−m2

y = E
{
Z6
}
− (m3

z + 3mz σ
2
zz)

2

= 9m4
zσ

2
zz + 36m2

zσ
4
zz + 15σ6

zz (29)

σ2
xy = E {XY } −mxmy = E

{
Z4 + Z3W

}
−mz(m

3
z + 3mz σ

2
zz)

= 3m2
zσ

2
zz + 3σ4

zz. (30)

the estimation error variance is

σ2
ee = Exy

{
(x− x̂)2

}
= σ2

xx −
σ4
xy

σ2
yy

=
18m2

zσ
2
zz + 6σ4

zz

9m4
z + 36m2

zσ
2
zz + 15σ4

zz

σ2
zz + σ2

ww. (31)

Let mz = 0, σ2
zz = 1, σ2

ww = 1 and make the measurement a vector:

Y =

Y1
Y2

 =

(X −W )3

X3 + V

 =

 Z3

Z3 + 3Z2w + 3ZW 2 +W 3 + V

 (32)

where V ∼ N (0, 1) is independent from X and from W .

E {Y } =

0

0

 (33)

P Y Y =

15 24

24 121

 (34)

PXY =

[
3 12

]
(35)

The LMMSE is

X̂ = mx + PXY P
−1
Y Y (Y − E {Y }) =

[
75 108

]
Y

1239
(36)

the estimation error variance is

σ2
ee = σ2

xx − σ2
x̂x̂ = 2− 1521

1239
= 0.7724 (37)
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If we process only Y1

X̂1 =
3

15
Y1 =

1

5
Y1 (38)

x̂1 =
1

5
y1 (39)

E1 = X − X̂1 = Z +W − 1

5
Z3 (40)

σ2
e1e1 = σ2

xx − σ2
x̂1x̂1

= 2− 15

25
=

7

5
(41)

E
{
E2

1

}
= σ2

e1e1 (42)

E
{
E3

1

}
= E

{
E5

1

}
= 0 (43)

E
{
E4

1

}
=

1024

125
(44)

E
{
E6

1

}
=

263397

625
(45)

we now process Y2, but we start from a prior distributed as X1 = x̂1 + E1. We take E {X1} = x̂1,

i.e. the mean is a function of the measurement outcome y1 and central moments to coincide with

the central moments of E1, indeed they are a function of both random variables X and Y1.

ŷ2 = E
{
X3

1 + V
}

= E
{

(x̂1 + E1)3 + V
}

= x̂31 + 3x̂21 E {E1}+ 3x̂1 E
{
E2

1

}
+ E

{
E3

1

}
+ E {V }

= x̂31 +
21

5
x̂1 (46)

σ2
x1y2 = E

{
X4

1 + V X1

}
− x̂1ŷ2 = E

{
x̂41 + 4x̂31e1 + 6x̂21e

2
1 + 4x̂1e

3
1 + e41 + V x̂1 + V e1

}
− (x̂41 +

21

5
x̂21)

= 6x̂21 E
{
e21
}

+ E
{
e41
}
− 21

5
x̂21 =

42

5
x̂21 +

1024

125
− 21

5
x̂21 =

21

5
x̂21 +

1024

125
(47)

σ2
y2y2 = E

{
X6

1 + 2V X3
1 + V 2

}
− ŷ22

= E
{
x̂61 + 6x̂51e1 + 15x̂41e

2
1 + 20x̂31e

3
1 + 15x̂21e

4
1 + 6x̂1e

5
1 + e61 + V 2

}
− x̂61 −

42

5
x̂41 −

212

25
x̂21

= 15x̂41 E
{
e21
}

+ 15x̂21 E
{
e41
}

+ E
{
e61
}

+ 1− 42

5
x̂41 −

212

25
x̂21 =

63

5
x̂41 +

2631

25
x̂21 +

263397

625
+ 1

(48)

and

X̂2 = x̂1 +
σ2
x1y2

σ2
y2y2

(Y2 − ŷ2) (49)

x̂2 = x̂1 +
σ2
x1y2

σ2
y2y2

(y2 − ŷ2) (50)

The predicted estimation error variance is

σ2
e2e2 = σ2

x1x1
−

(σ2
x1y2)2

σ2
y2y2

(51)
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the variance σ2
e2e2 is a function of x̂1 and hence of y1; which is typical of nonlinear systems in which

the evolution of the uncertainty is a function of the measurements' outcome history. For example,

in the EKF, the measurement Jacobians are evaluated at the estimated state which is a function of

the measurement history. The performance index is the mean-squared error EXY1Y2

{
E2

2

}
; we can

calculate its value performing Monte Carlo analysis and dispersing all random variables

E2 = X − X̂2 = X − X̂1 −
σ2
x1y2

σ2
y2y2

(Y2 − X̂3
1 +

21

5
X̂1) (52)

= X − X̂2 = X − 1

5
Y1 −

σ2
x1y2

σ2
y2y2

(Y2 −
1

125
Y 3
1 +

21

25
Y1) (53)

where again σ2
x1y2 and σ

2
y2y2 are also functions of Y1. From the Monte Carlo analysis we obtain that

σ2
e2e2 = EXY1Y2

{
E2

2

}
= 1.085 (54)

which is clearly suboptimal since is greater than the optimal LMMSE value of 0.7724 from Eq. (37).

V. Nonlinear Updates with Polynomial Residuals

While the update procedure proposed in this paper can be expanded to polynomials of all orders,

the quadratic update is shown. Let's rewrite the quadratic update as

g(Y ) = a+BY +CY ⊗ Y (55)

where it is understood that the redundant components of Y ⊗ Y are eliminated. Without any loss

of generality we can rede�ne a, B, and C by adding and subtracting constants in order to obtain

a di�erent, but equivalent, family of quadratic estimators

g(Y ) = a+ E {X}+B(Y − E {Y }) +C
[
(Y − E {Y })⊗ (Y − E {Y })

]
(56)

the quantity dY = Y − E {Y } is usually referred to as the measurement residual. Similarly, we

de�ne state deviation from the mean as dX = X −E {X}. We know that the optimal values of the

estimator's coe�cients (denoted with an asterisk) satisfy the orthogonality principle

E
{(

dX − a∗ −B∗dY −C∗ (dY ⊗ dY )
)(
a+BdY +C (dY ⊗ dY )

)T}
= O, ∀a,B,C (57)
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therefore the optimal coe�cients are found solving the following linear system

a∗ +C∗ E {(dY ⊗ dY )} = 0 (58)

B∗P dY dY +C∗P dY [2]dY = P dXdY (59)

a∗pT +B∗P dY dY [2] +C∗P dY [2]dY [2] = P dXdY [2] (60)

with the following de�nition for p

p = vect (P dY dY ) (61)

where the redundant terms of (P dY dY ) are removed. This results in

a∗ = −C∗ p (62)

[
B∗ C∗

] P dY dY P dY [2]dY

P dY dY [2] P dY [2]dY [2] − ppT

 =

[
P dXdY P dXdY [2]

]
(63)

The optimal estimator is

X̂ = E {X}+B∗dY +C∗ dY [2] −C∗p (64)

and the posterior estimation error is

E = X − X̂ = X − g(Y ) = X −
(
E {X}+B∗dY +C∗ dY [2] −C∗p

)
(65)

= dX −B∗dY −C∗ (dY [2] − p) (66)

From the update functions shown above, we build the full �ltering algorithm. For our high-

order �lter, we take the same approach commonly used by linear estimators, i.e. we will apply

the measurements recursively, hence obtaining a consistent, but suboptimal, estimator (refer to the

discussions and the example in prior sections).

VI. High Order Di�erential Algebra Kalman Filter - HODAKF

The new �ltering technique is now proposed in details. In the following pages, the High Order

Di�erential Algebra Kalman Filter (HODAKF) is presented carefully, specifying how the innovative

algorithm works in the DA framework, with polynomial approximations.
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Consider a dynamic system where the state evolves according to a discrete-time nonlinear state

transition equation and where the only information about the system is a set of measurements,

related to the state vector, acquired at discrete times.

X(k + 1) = f [X(k)] + V (k) (67)

Y (k + 1) = h[X(k + 1)] +W (k + 1) (68)

Where f is the process model, X(k) is the n-dimensional state at time-step k, Y (k + 1) is the m-

dimensional vector of the actual measurement at time-step k+1, and h is the measurement function.

The process noise V and the measurement noiseW are potentially non-Gaussian zero-mean random

sequences which satisfy the conditions ∀ i, j > 0:

E {V (i)} = E {W (i)} = 0 (69)

E
{
V (i)V T (j)

}
= Q[2](i)δij (70)

E
{
W (i)W T (j)

}
= R[2](i)δij (71)

E
{
V (i)W T (j)

}
= 0 (72)

Di�erential Algebra (DA) expresses quantities such as the state vector and the measurement vector

in their Taylor series expansion up to any desired order. Therefore, the propagation function is

applied directly on each polynomial (one polynomial per component) of the state. The same holds

true for the measurement function.

Xi(k + 1) = f i[x̂(k|k)] +

c∑
r=1

1

r!

∑ ∂rf i[X(k|k)]

∂Xγ1
1 . . . ∂Xγr

n

δXγ1
1 (k) . . . δXγr

n (k) + V i(k) (73)

Y j(k + 1) = hj
[
f [x̂(k + 1|k)]

]
+

c∑
r=1

1

r!

∑ ∂rhj [X(k + 1)]

∂Xγ1
1 . . . ∂Xγr

n

δXγ1
1 (k) . . . δXγr

n (k) +W j(k) (74)

Where c is the arbitrary order of the expansion; the second summation is over all permutations

of γi ∈ {1, . . . , n} with i ∈ {1, . . . , r}. Hence, the summation of f i[X(k|k)] includes the higher-

order partials of the solution �ow, which maps the deviations from time k to time k + 1 and, in an

analogous way, the summation of hj [X(k+1)] includes the higher-order partials of the measurement

function. These functions are obtained by either integrating in the DA framework the equations

of motion or evaluating the measurement equation with DA. Therefore, each function needs to

15



be c-times di�erentiable: f ,h ∈ Cc. Our approach di�erers from how prior linear DA estimators

handled noise (both process and measurement) [34]. The in�uence of the noise is included directly

on the polynomial integration and evaluation rather than being added after the nonlinear function

evaluation: it gives the advantage of easily considering all cross-terms between estimation error and

noise. The noises are initialized as DA variables and included in an augmented state vector, leading

to the computation of polynomials with coe�cients also accounting for the noise and the state-noise

mixed terms. Equations (73) and (74) assume the following form:

Xi(k + 1) = f i[x̂(k|k)]+

+

c∑
r=1

1

r!

∑ ∂r (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγr

n ∂V
γ1
1 . . . ∂V γr

n

δXγ1
1 (k) . . . δXγr

n (k)δV γ1
1 (k) . . . δV γr

n (k) + V i(k)

(75)

Y j(k + 1) = hj
[
f [x̂(k + 1|k)]

]
+

+

c∑
r=1

1

r!

∑ ∂r (hj [X(k + 1)] +W j(k))

∂Xγ1
1 . . . ∂Xγr

n ∂W
γ1
1 . . . ∂W γr

m

δXγ1
1 (k) . . . δXγr

n (k)δW γ1
1 (k) . . . δW γr

m (k) +W j(k)

(76)

As a consequence, the �lter works with an augmented state vector comprising a total of 2n + m

DA variables; n associated with the actual state vector, n with the process noise, and m with the

measurement noise.

The presence of process noise and measurement noise is considered when computing the expected

value of the polynomials; high-order central moments of the noise contribute to the transformed

variable. The c-th order central moments of the noises are evaluated with the integral de�nition

Q
[c]
ij...q =

∫
V iV j . . .V q pV (V i,V j , . . . ,V q)dx (77)

R
[c]
ij...q =

∫
W iW j . . .W q pW (W i,W j , . . . ,W q)dx (78)

where pV () and pW () are the probability density function of the random processes.

A. Prediction

Starting from the knowledge of the state estimate x̂(k) and its central moments up to a selected

order c; P
[2]
XX , P

[3]
XXX , P

[4]
XXXX , . . . , P

[c]
X...X , the prediction part of the Kalman �lter is described

in this section.
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It is now possible to predict the state mean using Equation (75) for each state component:

x̂−i (k + 1) = E {f i[X(k)] + V i(k)} = (79)

= f i[x̂(k|k)] +

c∑
r=1

1

r!

∑ ∂r (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγr

n ∂V
γ1
1 . . . ∂V γr

n

E {δXγ1
1 (k) . . . δXγr

n (k)δV γ1
1 (k) . . . δV γr

n (k)} (80)

= f i[x̂(k|k)] +

n∑
ρ=1

n∑
σ=1

1

2!

∑ ∂2 (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγ2

n

P [2]
ρσ+

+

n∑
ρ=1

n∑
σ=1

1

2!

∑ ∂2 (f i[X(k|k)] + V i(k))

∂V γ1
1 . . . ∂V γ2

n

Q[2]
ρσ+

+

n∑
ρ=1

n∑
σ=1

n∑
τ=1

1

3!

∑ ∂3 (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγ3

n

P [3]
ρστ+

+

n∑
ρ=1

n∑
σ=1

n∑
τ=1

1

3!

∑ ∂3 (f i[X(k|k)] + V i(k))

∂V γ1
1 . . . ∂V γ3

n

Q[3]
ρστ+

+

n∑
ρ=1

n∑
σ=1

n∑
τ=1

n∑
υ=1

1

4!

∑ ∂4 (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγ4

n

P [4]
ρστυ+

+

n∑
ρ=1

n∑
σ=1

n∑
τ=1

n∑
υ=1

1

4!

∑ ∂4 (f i[X(k|k)] + V i(k))

∂V γ1
1 . . . ∂V γ4

n

Q[4]
ρστυ+

+

n∑
ρ=1

n∑
σ=1

n∑
τ=1

n∑
υ=1

1

4!

∑ ∂4 (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγ2

n ∂V
γ1
1 . . . ∂V γ2

n

(
P [2]Q[2]

)
ρστυ

+

...
...

+

n∑
ρ=1

· · ·
n∑
ω=1

1

c!

∑ ∂c (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγc

n

P [c]
ρ...ω+

+

n∑
ρ=1

· · ·
n∑
ω=1

1

c!

∑ ∂c (f i[X(k|k)] + V i(k))

∂V γ1
1 . . . ∂V γc

n

Q[c]
ρ...ω+

+
∑
α,β

n∑
ρ=1

· · ·
n∑
ω=1

1

c!

∑ ∂c (f i[X(k|k)] + V i(k))

∂Xγ1
1 . . . ∂Xγα

n ∂V γ1
1 . . . ∂V γβ

n

(
P [α]Q[β]

)
ρ...ω

(81)

= eval(f i[X(k)] + V i(k),P
[2]
XX(k),P

[3]
XXX(k),P

[4]
XXXX(k), . . .

. . . ,P
[c]
X...X(k),Q[2](k),Q[3](k),Q[4](k), . . .Q[c](k)) (82)

where in Equation (81), the last summation in α and β considers all the possible combinations

such that α + β = c, with α,β 6= 1. From now on, for the sake of brevity, the expected value
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of polynomial evaluations will be denoted as eval(), as de�ned in Equation (82). The �rst input

to eval() is the polynomial function to be evaluated at the speci�c values given by the subsequent

inputs. In the evaluation of the predicted mean, the contribution of the noise is equal to zero, since

the propagation equation is linear with respect to the noise: f i[X(k)] + V i(k) and the noise is

assumed to have zero mean. Therefore, Equation (82) can be expressed as:

x̂−i (k + 1) = eval(f i[X(k)] + V i(k),P
[2]
XX(k),P

[3]
XXX(k),P

[4]
XXXX(k), . . . ,P

[c]
X...X(k)) (83)

Calculation of high-order moments, on the other hand, are strongly a�ected by the in�uence of the

noise and the eval() function de�ned above correctly evaluates the expected value so long as the

input central moments are provided up to the requested order (Equation (90)).

The predicted state covariance is evaluated considering the deviation of the propagated state

polynomials with respect to the estimated mean.

P
[2]−
XX,ij(k + 1) = E

{
[f i[X(k)]− x̂−i + V i(k)][f j [X(k)]− x̂−j + V j(k)]

}
(84)

=

c∑
r=1

c∑
s=1

1

r!s!

∑ ∂r(f i[X(k|k)] + V i)

∂Xγ1
1 . . . ∂Xγr

n ∂V
γ1
1 . . . ∂V γr

n

∑ ∂s(f j [X(k|k)] + V j)

∂Xξ1
1 . . . ∂Xξs

n ∂V
ξ1
1 . . . ∂V ξs

n

·

E
{
δXγ1

1 (k) . . . δXγr
n (k)δV γ1

1 (k) . . . δV γr
n (k)δXξ1

1 (k) . . . δXξs
n (k)δV ξ1

1 (k) . . . δV ξs
n (k)

}
− δx̂−i δx̂

−
j

(85)

Where ξi ∈ {1, . . . , n} and δx̂−i = f i[x̂(k|k)]− x̂−i . De�ning the state deviation vector such as

dX−i = f i[X(k)]− x̂−i + V i(k) (86)

equation (85) can be then written using the eval() function

P
[2]−
XX,ij = eval(dX−i dX−j ,P

[2]
XX , . . . ,P

[2c]
X...X ,Q

[2]) (87)

where it must be noted that, since the polynomial to be evaluated is the product of two polynomials,

the order of the function to be evaluated is 2c. The evaluation of the covariance requires a multipli-

cation between two c-th order polynomials, therefore the expansion order of the series doubles. The

pursuit of the �lter is to estimate correctly up to the second moment, thus the precise evaluation

of moments up to order 2c must be implemented. The prediction of these moments is performed
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through to the eval() function;

P
[3]−
XXX,ijk = eval(dX−i dX−j dX−k ,P

[2]
XX , . . . ,P

[3c]
X...X ,Q

[2],Q[3]) (88)

P
[4]−
XXXX,ijkl = eval(dX−i , dX

−
j dX−k dX−l ,P

[2]
XX , . . . ,P

[4c]
X...X ,Q

[2],Q[3],Q[4]) (89)

...

P
[2c]−
X...X,i...q = eval(dX−i . . . dX−q ,P

[2]
XX , . . . ,P

[2c2]
X...X ,Q

[2], . . . ,Q[2c]) (90)

notice that to calculate the central moment of X− of order q, it is necessary to input the central

moments of X up to order qc. As a consequence, it is only possible to calculate all the moments

exactly when c = 1. Notice also that the following identities hold: P
[2]−
XX = P

[2]−
dXdX , P

[3]−
XXX =

P
[3]−
dXdXdX , P

[4]−
XXXX = P

[4]−
dXdXdXdX , . . . .

It is clear that, for c > 1, the analytic evaluation of central moments of the transformed variable

requires knowledge of all central moments without limit of the original variable. In this work, we

only evaluate exactly the �rst 2c central moments, while the required central moments of order

higher than that are approximated. The approximation varies depending whether the moment is of

odd or even order. An odd moment of order between (2c+ 1) and 2c2 is approximated such that its

only non-zero terms are those where all indexes are the same, e.g. for a �fth order central moment

P
[5]−
XXXXX,iiiii. Even-order moments, on the other hand, are approximated with non-zero terms

corresponding to all permutation in which all indexes appear an even number of times, e.g. for a

sixth-order moment P
[6]−
XXXXXX,iijjkk.

The state of the system and the central moments up to order 2c are propagated forward in time

with the eval() function. The next step of the algorithm is to re-de�ne the polynomial inside the

DA framework by re-centering the Taylor series expansion around the predicted mean x̂−. Through

this shift, the time propagation step is completed and the predicted moments P
[i]−
X...X are the central

moments of the propagated state. The next step is to incorporate the measurement, which is done

by de�ning the following prior distribution of the state

X(k + 1) = x̂−(k + 1) + dX−(k + 1) (91)

where the central moments of X and dX− coincide and are given by P
[2]−
XX ,P

[3]−
XXX ,P

[4]−
XXXX , . . .

and the mean of X(k + 1) coincides with x̂−(k + 1).
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B. Update

The time prediction step is followed by the measurement update. We start by evaluating the

predicted measurement mean and its covariance.

ŷi = eval(hi[X(k + 1)] +W i(k + 1),P
[2]−
XX , . . . ,P

[c]−
X...X) (92)

dY i = hi[X(k + 1)]− ŷi +W i(k + 1) (93)

where in Equation (92) the in�uence of the noise moments is null since they appear linearly.

As previously seen, the quadratic update requires augmenting the measurements with their

second power by using the Kronecker product. By working with deviations it is possible to avoid

the computation of the predicted mean-square of the measurements. The quadratic deviation vector

is given by

dY [2] = dY ⊗ dY (94)

De�ning the augmented measurement deviation vector as

dY =

 dY

dY [2] − vect (P
[2]−
dY dY )

 (95)

the augmented measurement covariance matrix can be calculated block-wise:

P dYdY =

 P
[2]−
dY dY P

[2]−
dY dY [2]

P
[2]−
dY [2]dY

P
[2]−
dY [2]dY [2]

 (96)

where all the redundant components from the Kronecker product are removed such that P dYdY is

not singular. In Equation (95), the presence of P
[2]−
dY dY keeps the mean of dY null. To obtain the

three distinct blocks we start from:

P
[2]−
dY dY ,ij = eval(dY i dY j ,P

[2]−
XX , . . . ,P

[2c]−
X...X ,R

[2]) (97)

P
[3]−
dY dY dY ,ijk = eval(dY i dY j dY k,P

[2]−
XX , . . . ,P

[3c]−
X...X ,R

[2],R[3]) (98)

P
[4]−
dY dY dY dY ,ijkl = eval(dY i dY j dY k dY l,P

[2]−
XX , . . . ,P

[4c]−
X...X ,R

[2],R[3],R[4]) (99)

Since the quadratic update requires working with the covariance of the square of the measurements,

the following quantity is needed

P
[2]−
dY [2]dY [2] = P

[4]−
dY dY dY dY − vect (P

[2]−
dY dY ) vect (P

[2]−
dY dY )

T
(100)

20



Working with deviations simpli�es the expression of the o�-diagonal block of the covariance matrix

of dY [2]

P
[2]−
dY dY [2] =

(
P

[2]−
dY [2]dY

)T
= P

[3]−
dY dY dY (101)

with the understanding the the 3D array P
[3]−
dY dY dY is re-written as a matrix.

The cross-covariance between the state with the square of the measurement is evaluated as a

third order moment because of the equality P
[2]−
XdY [2] = P

[3]−
XdY dY .

P
[2]−
XdY ,ij = eval(dX−i dY j ,P

[2]−
XX , . . . ,P

[2c]−
X...X) (102)

P
[3]−
XdY dY ,ijk = eval(dX−i dY j dY k,P

[2]−
XX , . . . ,P

[3c]−
X...X) (103)

There are no joint contributions to the central moments from process and measurement noises

because the two are assumed independent from one another. The augmented state-measurement

cross covariance matrix is computed block-wise.

PXdY =

[
P

[2]−
XdY P

[2]−
XdY [2]

]
(104)

Where, again, P
[2]−
XdY = P

[2]−
dXdY and P

[2]−
XdY [2] = P

[2]−
dXdY [2] . The redundant components from the

Kronecker product are again removed to be consistent with the dimensions of P dYdY .

From these quantities it is now possible to solve Eq. (63) to obtain the Kalman gain associated

with the augmented measurement, dY.

K = P xdY P
−1
dYdY (105)

The residual is de�ned as

dy = y − ŷ (106)

where y is the actual numerical value of the measurement read from the sensor (the outcome of

random vector Y ). It is now possible to evaluate the optimal state estimate,

x̂+ = x̂− +K

 dy

dy[2] − vect (P
[2]−
dY dY )

 (107)

and the updated estimation error,

dX+ = dX− −KdY (108)
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Since the update is quadratic, the updated state deviation vector is no longer a polynomial of order

c, as dX−, but of order 2c. Since K is deterministic, from equation (153) it follows that the mean

of dX+ is zero. Roundo� errors may result in the mean of dX+ being slightly di�erent from zero;

this inaccuracy can be easily removed by subtracting the calculated mean from the polynomial.

The updated central moments are calculated with eval() and the new state deviation vector

dX+. Notice that in the evaluation of the covariance matrix, by squaring the polynomial dX+, the

order of the Taylor series expansion increases to 4 times the initial �lter order c. Consequently, the

computation of the updated version of moment 2c-th requires, as input, state moments up to order

4c2-th; however, moments of order greater than 2c2-th are neglected.

P
[2]+
XX,ij = eval(dX+

i dX+
j ,P

[2]−
XX , . . . ,P

[4c]−
X...X ,R

[2],R[3],R[4]) (109)

P
[3]+
XXX,ijk = eval(dX+

i dX+
j dX+

k ,P
[2]−
XX , . . . ,P

[6c]−
X...X , ,R

[2],R[3],R[4],R[5],R[6]) (110)

P
[4]+
XXXX,ijkl = eval(dX+

i dX+
j dX+

k dX+
l ,P

[2]−
XX , . . . ,P

[8c]−
X...X ,R

[2], . . . ,R[8]) (111)

...

P
[2c]+
X...X,i...q = eval(dX+

i . . . dX+
q ,P

[2]−
XX , . . . ,P

[2c2]−
X...X ,R

[2], . . . ,R[2c]) (112)

As done in the propagation portion of the �lter, only central moments up to order 2c2 are calculated

exactly with eval(). The remaining moments from order (2c+1)-th to order 2c2-th are approximated

in an analogous way as described in the prediction step.

VII. Numerical Examples

For the remainder of this paper, the high order �lters are denoted as �HODAKF� followed by

two numbers: the �rst number indicates the order of the �lter (the order of the Taylor series at

which functions are approximated); the second number indicates the order of the update (1 for

linear update and 2 for quadratic update). When a statement or a conclusion is valid for any order,

the number is left generic and replaced by �N� (e.g. HODAKF-N-2 stands for a quadratic update

and any Taylor series truncation order).
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A. Simple Non-Gaussian Noise Example

The performance of the proposed methodology is �rst assessed with a linear problem with non-

Gaussian process and measurement noise. The chosen example is the one proposed by De Santis

and Germani [16], with a simple linear discrete-time scalar system:

xk+1 = axk + fk x̄ = 0 (113)

yk = cxk + gk (114)

with a = 0.6, c = 0.8. The noises fk and gk are independent zero-mean random sequences with

distribution described in Table 1. This example has been used as a test base to have a quick

fk -1 3 9 gk 1 -3 -9

P (fk) 15/18 2/18 1/18 P (gk) 15/18 2/18 1/18

Table 1 Random sequences distribution

visualization of the advantages of a quadratic update. The HODAKF-N-N is compared with the

classical Kalman �lter. In a linear example such this one, the selection of the order of the �lter has

no in�uence of the results because the system is linear and therefore perfectly modeled. Therefore,

the HODAKF-N-1 reduces to the Kalman �lter, but with the added capability of estimating higher

order central moments. The initial condition is set with a perfect knowledge of the starting point,

i.e. null initial error and null moments. A single run for the example is displayed in Figure 1, the

�gure shows n = 50 steps. Figure 1 shoes that HODAKF-N-2 (blue line) follows better the true

state of the system (black line) under the in�uence of this non-Gaussian noise than the Kalman

�lter (red line). This improvement is especially marked when a noise peak occurs. HODAKF-N-2

has a signi�cantly smaller error standard deviation, as shown in Figure 2.

Table 2 shows the accuracy and the consistency of the estimated covariance against the ensem-

ble statistics from a Monte Carlo analysis of 5000 runs. The table shows that for this linear/non-

Gaussian problem a quadratic estimator, HODAKF-N-2, achieves a 40% reduction of the estimation

error covariance. Additionally, Table 2 shows that HODAKF-N-N is able to estimate central mo-

ments other than the covariance, up to order 2c (3rd and 4th in this example). Due to the linear

dynamics/measurement, all linear update �lters (EKF, UKF, HODAKF-N-1) reduce to the classical
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Fig. 1 HODAKF-N-2 vs Kalman Filter

Kalman Filter. √∑
(xi − x̄)2
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√
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(xi − x̄)3
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√
P

[3]
XXX

4
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(xi − x̄)4

N
4

√
P

[4]
XXXX

KALMAN 2.0924 2.0968 2.4712 0a 3.2101 2.7595a

HODAKF-N-1 2.0924 2.0968 2.4712 2.4768 3.2101 3.2161

HODAKF-N-2 1.2681 1.2728 1.9096 1.9144 2.7277 2.7510

a Approximated from the variance assuming a Gaussian distribution

Table 2 Comparison of 5000 Monte Carlo runs vs. Predicted Central Moments.

Figure 2 shows that HODAKF-N-2 settles to a standard deviation steady state level which is

lower when compared to the linear update (Kalman �lter and HODAKF-N-1). The consistency

of the estimators is shown through Monte Carlo analysis. The continuous lines depict the �lter's

prediction of the estimation error standard deviations, while the dashed lines are the estimation

error standard deviations calculated from the the 5000 samples of the Monte Carlo analysis. Overlap

between the two indicates consistency.
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Fig. 2 Error Standard Deviation: Kalman and HODAKF-N-1 (red) vs. HODAKF-N-2 (blue).

Continuous lines are the �lters' predictions while dashed lines are the Monte Carlo ensemble

values.

B. Orbit Determination Example

In this example the performance of the �lter is applied to the orbit determination problem. The

equations of motion governing the system are these associated to the Keplerian dynamics, where r

is the position vector of the spacecraft and µ is the Earth gravitational parameter.

r̈ = − µ
r3
r (115)

The initial conditions and uncertainty values used in this example follow those from Refs. [12, 34].

The problem is normalized to be non-dimensional with length scaled by the orbit semi-major axis,

a = 8788 km, and time scaled by the orbital period

√
a3

µ
. The true initial condition for the

simulation is the following:

x0 =

r0
v0

 =



−0.68787

−0.39713

0.28448

−0.51330

0.98266

0.37611



(116)
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For the purpose of this example, range and bearing angles are taken with respect of the center

of the planet:

y1 = r + η1 (117)

y2 = arctan2
(
x2, x1

)
+ η2 (118)

y3 = arcsin
(x3
r

)
+ η3 (119)

where ηi, i = 1, 2, 3, is the measurement noise, assumed to be Gaussian and arctan2 is the two

argument arctangent function that returns an angle in (−π π]. The standard deviation of the error

is assumed to be 0.1 m in range and 0.1 arcsec for the angles. The �rst 4c central moments of the

moment noise are (where c is the selected �lter order)

R
[2]
ij =


σ2
ν,ij if i = j

0 otherwise

(120)

R
[3]
ijk = 0 ∀ i, j, k (121)

R
[4]
ijkl =



3σ4
ν,ijkl if i = j = k

σ2
ν,ijσ

2
ν,kl if i = j ∧ k = l

0 otherwise

(122)

R
[5]
ijklm = 0 ∀ i, j, k, l,m (123)

...

and so on.

The initial error covariance matrix is assumed diagonal, the value of the standard deviation

for the position vector components is 0.01, while the standard deviation for the velocity vector

components is 10−4. Thus,

σr = 10−2a (124)

σv = 10−4
√
µ

a
(125)

Each Monte Carlo run is initialized with the same true initial state given by Equation (116), while
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the initial �lter's estimate is dispersed such that the initial estimation error is Gaussian with zero

mean and standard deviation given by Equations (124) and (125).

Since the initial uncertainty is assumed Gaussian, the high order central moments are evaluated

with the same formulas shown in Equations (120) - (123), and associating σr to indexes 1, 2, 3 and

σv to indexes 4, 5, 6. For the computer implementation in DACE [27, 34, 35] (Di�erential Algebra

Core Engine) all high order moments are expressed using their vectorization representation, that is

to say, rather than expressing the c-th order moment of the state as a c-dimensional array they are

represented as vectors. The table shows that, except for the �rst two indexes, each additional odd

term row position column position order c

P
[5]
ijklp in2 + kn + l jn + p odd

P
[6]
ijklpq jn2 + ln + p in2 + kn + q even

P
[c]
ijth...pq in(c−1)/2 + tn(c−1)/2−1 · · · + p jn(c−1)/2−1 + hn(c−1)/2−2 + · · · + q odd

P
[c]
ijth...pq jnc/2 + hnc/2−1 + . . . n + p inc/2 + tnc/2−1 · · · + q even

Table 3 High order moments representation

dimension adds a column of matrices while each even dimension adds a matrix of column vectors.

The approximated central moments, (those of order 2c + 1 up to 2c2), are stored as column

vectors. Odd moments are represented as an n-dimensional vector, while even central moments of

order p (with 2c < p ≤ 2c2) are represented as np/2-dimensional vectors given by the diagonal of

the corresponding matrices calculated using the indexes from Table 3.

The �lter performance is shown if Figure 3 for HODAKF-2-1 and Figure 4 for HODAKF-2-2.

The left columns represent the position error in the 3 components, while the right columns are the

velocity errors. The error is evaluated as the di�erence between the estimated state and the true

state. The two �gures show the results for a duration of two orbits, with a total of 24 equally spaced

observations per orbit. The initial uncertainty is beyond the scale depicted in the �gure, which

shows the convergence of the error and the error covariance (shown with ±3σ values). A Monte

Carlo analysis with 100 runs is performed and it can be noted that the �lter's predicted covariance

(blue continuous line) is consistent with the sample covariance from Monte Carlo (blue dashed

line). Moreover, the Figures depict the ability of HODAKF-2-N to correctly estimate high order
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Fig. 3 Simulation results for HODAKF-2-1 with n = 100 samples.

moments. In each graph, the continuous magenta line represents the estimated 4th central moment

expressed as
4

√
P

[4]
XXXX of the corresponding state component, while the dashed magenta line is

the 4th central moment evaluated from the Monte Carlo analysis, as a mean among all the single

runs:
4

√∑
(xi − x̄)4

N
. It can be noted that HODAKF-2-2 has a more consistent prediction of the

4th central moment with respect to HODAKF-2-1 since the dashed magenta lines and the continue

ones perfectly overlap. Figure 5 shows the EKF results under the same simulation conditions. The

estimated covariance is three orders of magnitude smaller with respect to the sample one: the EKF

is not consistent and the �lter diverges. Figure 6 shows the simulation results when the UKF is

used. The �lter converges and the estimated covariance is consistent with the sample covariance.

Figure 7 shows the simulation results when the DAHO-2 �lter is used [12].
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Fig. 4 Simulation results for HODAKF-2-2 with n = 100 samples.

Figure 8 summarizes the performance of all �lters with their velocity standard deviations cal-

culated from the diagonal terms of the velocity covariance matrices as:

σv =
√
σ2
vx + σ2

vy + σ2
vz (126)

Time zero in the �gures is apogee, which explains the initial increase in the velocity standard

deviation. The overall trace of the covariance matrix is monotonically decreasing until steady

state is reached. The red line in Figure 8 is HODAKF-2-1. This line represents the covariance

behavior of a liner update �lter when second order terms of measurement and dynamics are taken

into consideration. HODAKF-2-1 has the same accuracy level of Valli's DAHO-2, as the two lines

overlap. The only di�erence between the two is that HODAKF-2-1 is also able to estimate higher
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Fig. 5 Simulation results for EKF with n = 100 samples.

order central moments. The green line represents HODAKF-1-1 and DAHO-1 which are nothing

but the Extended Kalman Filter. While it seems the EKF performs better, what is shown is

the predicted error by the �lter, since the EKF was shown to diverge, the actual EKF error is

considerably larger than all other �lters. The UKF is shown in magenta, it too is a linear �lter

that accounts for the linearities in the measurement and dynamics. In this particular example, the

UKF is shown to converge faster than the other linear �lters HODAKF-2-1 and DAHO-2. Finally,

the black line shows the improvement in convergence using HODAKF-2-2 which posses a quadratic

update. During the initial steps, the �lter is able to decrease the state uncertainty faster than the

linear �lters. Through the quadratic update, the measurement information is better fused with the

state prediction to produce superior performance. After convergence, once the uncertainty is low,

the performance of the linear update matches that of the quadratic update. This fact is further
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Fig. 6 Simulation results for UKF with n = 100 samples.

exacerbated in the next example where only angular measurements are used. Finally, a last example

is presented where the steady state performance of the linear estimators is considerably worse than

that of the quadratic estimator.
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Fig. 7 Simulation results for DAHO-2 with n = 100 samples.

Fig. 8 Covariance comparison among di�erent �lters.
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C. Angles-Only Orbit Determination

The orbit determination problem is now analyzed when the sensors provide only angular mea-

surements and no range. A Monte Carlo analysis (100 runs) is performed with the four �lters

mentioned in the previous section. Figure 9 summarizes on the left the position error calculated as

σr =
√
σ2
rx + σ2

ry + σ2
rz (127)

and on the right the velocity error calculated with Equation (126). The errors are shown on a

logarithmic scale for one orbit with 24 observations. Two di�erent standard deviations for each

�lter are reported: the continuous lines represent the predicted standard deviation of the �lter at

the end of each update step, while the dashed lines represent the e�ective standard deviation of

the Monte Carlo runs, calculated among all the samples at each time step. The EKF, red lines,

diverges again, and the e�ective error level of the simulation settles two orders of magnitude over

the predicted one, proving again the inconsistency of the �lter. By looking at the green lines it

can be noted how the UKF is also too con�dent on its own estimate: the predicted lines remain

below the e�ective ones all the way until the very end. Both HODAKF-2-2 and DAHO-2 however,

provide consistent estimates by matching the estimated and sample covariances. The two �lters

behaves similarly and, after a short transient, consistency is assessed. As before, HODAKF-2-2

converges faster than DAHO-2 and is also able to estimate the skewness and kurtosis of the error's

distribution. In the next example we show a situation in which the quadratic update is not only

superior in convergence rate, but also in steady-state performance.
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Fig. 9 Position and velocity covariance comparison among di�erent �lters. Angles measure-

ments only.

D. Non-Symmetric Initial Conditions

Starting the state estimation problem with a Gaussian initial distribution uncertainties helps

�lters that rely (directly or indirectly) on the Gaussian assumption of the distribution, such as the

UKF. However, the actual shape of the probability density in an orbit determination problem often

resembles more a lens than a Gaussian bell. In this example the initial distribution of the state is

that depicted by Figure 10.

Figure 10 shows the distribution of independent samples in position (left) and velocity (right) of

the spacecraft being tracked a the initial simulation time. DAHO-2 and UKF approximate the initial

pdf as Gaussian, and are initialized with the mean and covariance of the samples. HODAKF-2-2 is

initialized with the additional knowledge of the third and fourth central moment of the distribution,

which are calculated from samples.

The performance of the �lters is shown in Figure 12 for HODAKF-2-2 and in Figure 11 for the

UKF. The Monte Carlo simulation for DAHO-2 behaves similarly to the UKF, thus its graph has

been omitted. By comparing the two �gures, it can be noted how the UKF is not able to correctly
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Fig. 10 Skewed initial distribution for position and velocity.

Fig. 11 Simulation results for UKF with n = 100 samples with a skewed initial condition.

predict the uncertainties of the state. By relying on the Gaussian assumption the UKF diverges and
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Fig. 12 Simulation results for HODAKF-2-2 with n = 100 samples with a skewed initial

condition.

the e�ective error levels of the states are one order of magnitude bigger with respect to HODAKF-

2-2. HODAKF-2-2 has more knowledge of the distribution and is able to use it to produce a better

estimated. After few steps of transient behavior, the HODAKF-2-2 settles to steady state values

and is able to predict its covariance (blue lines) and kurtosis (magenta lines).

Figure 13 compares the performance of the �lters. Figure 13 shows the e�ective standard

deviation, dashed lines, calculated form the samples runs, and the predicted standard deviation,

continuous lines, estimated from the �lters both for position (left) and velocity (right). Both the

DAHO-2 and the UKF diverge and the e�ective covariance sets one order of magnitude over the

predicted one: the two �lters behave similarly and fail to achieve consistency. HODAKF-2-2, on

the other hand, provides a more precise estimate and the �lter converges. Through knowledge of
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Fig. 13 Position and velocity covariance comparison among di�erent �lters. Skewed initial

conditions.

higher order moments, HODAKF can perform a higher order update that improves the accuracy

of the �lter, making it robust to asymmetric pdfs. It should be noticed, however, that the extra

performance comes at the cost of additional computations.

VIII. Conclusions

The high order di�erential algebra Kalman �lter has been presented. The classic linear Kalman

update is replaced by a polynomial update up to arbitrary order. Higher order Taylor series ex-

pansions of measurement and dynamic functions provide robustness against nonlinearities, as also

done by other algorithms that improve over the classic extended Kalman �lter (EKF) by directly

or indirectly retaining higher-than-linear terms of the Taylor series. This work also proposes to

perform the measurement update as a polynomial function, rather than as a linear function of the

measurement. A polynomial update is shown to perform better than a linear one in terms of mean

square error (MSE), especially in terms of convergence rate when the �lter starts from high initial

estimation errors. The high order approximation is also shown to provide more consistent covariance

prediction over linear methods such as the EKF and the unscented Kalman �lter (UKF) in highly
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nonlinear, highly non-Gaussian systems.

The minimum MSE solution is theoretically known (the expectation of the state conditioned

on the measurement) and is typically a nonlinear function of the measurement. Several simulated

examples show that the proposed algorithm is able to outperform linear estimators both in terms

of convergence and, especially, in terms of MSE performance. Simulated examples show that the

proposed technique is able to handle system nonlinearities shown to make algorithms such the EKF

and UKF diverge or, at a minimum, be inconsistent. The numerical examples also show that a

nonlinear update results in a faster convergence rate.
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