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This work proposes a batch solution to the problem of estimating fixed angular velocity us-

ing orientation measurements. Provided that the angular velocity remains constant with time,

we show that the orientation quaternion belongs to a constant plane of rotation as time evolves.

Motivated by this fundamental property, we are able to determine the angular velocity’s di-

rection by estimating the quaternion plane of rotation. Under the small angle assumption on

the attitude measurement noise, the plane of rotation is estimated by minimizing a constrained

Total Least Squares cost function, and our algorithm produces a unique optimizing solution

through a batch approach (no need for iterations). The angular velocity magnitude is esti-

mated by projecting the measured quaternions onto the estimated plane of rotation, and then

computing the least squares evolution of the quaternion angle in the plane. We perform a

Monte Carlo analysis of the proposed algorithm, validating our method and comparing it with

a Multiplicative Extended Kalman Filter, which is a traditional method in the literature.

I. Introduction
This paper presents a batch solution to the problem of angular velocity estimation using a time-sequence of

orientation measurements in terms of the Euler quaternion parameterization. Our approach is motivated by the constant

translational velocity estimation problem, whose solution is well known and has well-understood statistical properties

[1]. Surprisingly, the rotational counterpart is significantly more challenging and has not yet been solved in a batch

estimation sense (to the best of our knowledge). Based on reasonable assumptions for the quaternion noise measurement

model, we derive a simple two-step algorithm that establishes a closed-form solution for the constant angular velocity

estimation problem without the need to use iterative algorithms.
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The problem of estimating the angular velocity under pure spin is a specialized case to the general problem of

estimating the angular velocity for a tumbling body. However, the understanding of the pure spin problem aids solving

the generalized case assuming that the tumbling motion can be approximated to pure spin throughout a sufficiently

short-duration finite sequence of measurements. This kinematic approach can be particularly useful when estimating

the angular velocity of a non-cooperative target whose inertia properties and external torques are unknown.

The lack of precise knowledge of the rigid-body’s inertia matrix and torque vector also poses a major challenge to

standard angular velocity estimation techniques. Many of the existing angular velocity estimators [2, 3] rely on the

knowledge of the target’s specific inertia and torque parameters. An exception can be made for the derivative approach

described in Ref. [4], but as the author acknowledges, the angular velocity estimator can produce considerable error due

to the presence of measurement noise. In Ref. [5], the authors present the Pseudolinear Kalman Filter (PSELIKA),

which does not depend on knowledge of inertia matrix or input torques. However, PSELIKA is developed with the

goal of “simplicity rather than accuracy” [5], serving as a relatively coarse angular velocity estimator for control loop

damping purposes.

In Ref. [6], generalizations to Wahba’s problem are proposed by accepting sequential vector measurements instead

of the traditional simultaneous ones (see Ref. [7] and the references therein). These generalizations implicate the need to

estimate for initial orientation and angular velocity (not only orientation, as in Wahba’s problem). The work of Ref. [6]

proposes the following problems:

• First Generalized Wahba’s Problem (FGWP) - The system is in pure spin with known spin-axis but unknown

spin rate. The author presents a closed-form solution to this problem based on two measurements. The work of

Ref. [8] uses semidefinite optimization to solve FGWP for more than two measurements.

• Second Generalized Wahba’s Problem (SGWP) - The system is tumbling (torque-free) with known inertia matrix.

This system is shown to be observable with at least three vector measurements, but no solution is provided by

Ref. [6]. A solution to the three-vector measurement problem is provided in Ref. [9] and a numerical solution is

provided in Ref. [10] for four measurements or more.

An alternative solution to the pure spin angular velocity estimation problem is to use methods based on the

Multiplicative Extended Kalman Filter (MEKF)[11–13], since these rely on kinematics only. These methods should

usually converge if properly initialized and iterated through a backward smoothing process [14]. Iterated nonlinear

programming methods present the drawback that these might converge to local minima, unless proven otherwise.

Our batch solution in this paper departs from filtering-based ones in that no iterations are necessary for the proposed

algorithm.

The primary contribution of this work is the Quaternion Regression Algorithm (QuateRA). Instead of solving the

problem through well-stablished filtering approaches[11–13], we solve the problem through a geometrical standpoint.

We provide an alternative to an attitude EKF by introducing an attitude regression algorithm. QuateRA builds upon the
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work of Ref. [15], and it is a batch solver (does not require iterations), even though the problem is nonlinear. QuateRA

uses a sequence of orientation measurements to determine the system’s axis of rotation (AOR) through a Singular Value

Decomposition (SVD) procedure, and then it uses the AOR to estimate for the angular velocity magnitude (AVM). We

develop QuateRA’s AOR estimation with use of the Total Least Squares (TLS) cost function, and we are able to provide

a solution under mild assumptions on the measurement noise. In fact, the AOR estimation algorithm herein presented

shares important similarities with the problem of averaging quaternions [16, 17], but instead of finding an average

quaternion, we search for an average quaternion plane. The quaternion average is actually a particular solution to our

algorithm. In the current work, we also discuss some asymptotic statistical properties involving QuateRA, apart from

validating those results with Monte Carlo simulations.

QuateRA’s AOR estimation was first introduced by Ref. [15], and experimental validation was presented in Ref. [18].

Ref. [19] used QuateRA’s AOR estimate in conjunction with a modified MEKF to estimate the relative angular velocity

of a non-cooperative target. The current work departs from our earlier contributions in the following aspects:

• The previous works used QuateRA’s AOR estimation based on heuristics, instead of being a solution that formally

minimizes a cost function. In the current work, we start from a constrained version of TLS (the constraints are a

direct consequence of the quaternion unit-norm condition), and reach the same solution suggested by Ref. [15]

under the assumption of small angle approximation for the quaternion measurement noise.

• None our rpreviously reported results in this field (Refs. [15, 18, 19]) analyzed the statistical properties of QuateRA.

In the current work, we explore the strong consistency properties of QuateRA, and we derive covariance matrices

for the angular velocity estimation. We also present Monte Carlo analysis to endorse the derived statistical

properties.

• When estimating the AVM, Ref. [15] suggested the use of performing “dirty” derivatives on the most recently

measured quaternions. In contrast, the work of [18] showed that one can often obtain better results by pre-filtering

the measured quaternions before employing the derivative. The AVM estimation in Ref. [19] is performed by using

a modified MEKF. The AVM estimation suggested by Ref. [15] is actually biased under mild measurement noise,

while the solutions presented in Refs. [18] and [19] remedy the bias problem, but introduce tuning parameters. In

contrast, this work reprojects the measured quaternions onto the plane of rotation estimated by QuateRA, and

calculates the AVM as an average quaternion displacement over time.

The remainder of this paper is organized as follows: Section II introduces the rotational attitude kinematics,

describing some notations and parametrizations, as well as the assumed measurement model. Section III presents the

estimation problem formulation, introducing the optimization cost function and constraints of the problem. Section IV

presents QuateRA, and Section V introduces a Monte Carlo analysis of QuateRA, comparing it with an MEKF

formulation, and a solution using a nonlinear solver for the same problem. Finally, Section VI presents conclusions for

this work.
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II. Attitude Kinematics and Measurement Model

A. Attitude Kinematics

We adopt the notation q�
�
to represent the relative orientation quaternion between frames � and �. A quaternion is

written in the form:

q�� =


@�
�B

q�
�E

 ,
where q�

�E
and @�

�B
are the vector and scalar components of the quaternion q�

�
, respectively. Also, quaternions satisfy

the norm constraint




q��



 = 1.

We denote the quaternion inverse rotation as (q�
�
)−1 = q�

�
, which is given by:

q�� =


@�
�B

−q�
�E

 .
The quaternion composition rule is denoted as:

q�� = q�� ⊗ q��,

in which:

q��⊗ =


@�
�B

−(q�
�E
))

q�
�E

@�
�B

O − [q�
�E×]

 , (1)

where O is the 3×3 identity matrix, and [v×] is the skew-symmetric cross product matrix associated with a vector v ∈ R3.

The matrix q�
�
⊗ is a 4D rotation matrix, implying orthogonality, i.e., it satisfies q�

�
⊗ (q�

�
⊗)) = (q�

�
⊗)) q�

�
⊗ = O4.

Also, we denote the identity quaternion:

q� , (q��)
−1 ⊗ q�� = q�� ⊗ (q

�
�)
−1 =

[
1 0 0 0

])
(2)

Given a vector v ∈ R3, then we define v⊗ ∈ R4×4 as:

v⊗ ,


0 −v)

v −[v×]

 .
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With some slight abuse of notation, we define the composition of a quaternion q ∈ S3 with a vector v ∈ R3 as:

q ⊗ v , q ⊗


0

v

 .
Alternatively, v� can be calculated from v� using the expression v� = I�

�
v�, where I�

�
is the direction cosine

matrix respective to q�
�
:

I�� = O − 2@��B [q
�
�E×] + 2[q��E×]

2. (3)

Denote 8�
�/� ∈ R

3 as the angular velocity of frame � w.r.t. frame � expressed in frame �. Then, the rotational

kinematics for q�
�
is given by:

¤q�� =
1
2
8�
�/� ⊗ q��. (4)

For an angular velocity 8�
�/�, we denote its magnitude Ω�/� and its direction −→8�

�/�, such that:

Ω�/� ,





8��/�



 , −→8�
�/� ,

8�
�/�

Ω�/�
.

Assuming a constant angular velocity 8�
�/� throughout a period ΔC = C 5 − C0, then the solution to the kinematic

differential equation in Eq. 4 is given by q�
�
(C 5 ) = L(8�

�/�) · q
�
�
(C0), where:

L

(
8�
�/�

)
= exp

[
ΔC
2 8�

�/�⊗
]
= cos

Ω�/�ΔC

2
· O + sin

Ω�/�ΔC

2
· −→8�

�/� ⊗ . (5)

Using the subscript � to denote inertial frame and $ for the frame of the object of interest, the remainder of this

paper will denote q8 , q$
�
(C8), 8 , 8$

$/� ,
−→8 , −→8$

$/� , and Ω , Ω$/� .

B. Measurement Model

In this section, we present the assumed measurement model for the problem. The assumptions and derivations

herein presented are crucial for posing and solving the AOR optimal estimation within QuateRA.

We employ the quaternion measurement model given by:

q̄8 = q8 ⊗ q#8 , (6)
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where q8 =
[
@B8 q)

E8

])
is the true quaternion and q#8 is the noise quaternion:

q#8 ,


cos \82

e#8 sin \8
2

 , (7)

in which \8 and e#8 are independent random variables. We assume that \8 is Gaussian (Although it might be unrealistic

to assume that angles are distributed as Gaussian, Ref. [20] has shown that this is a reasonable approximation for

double-precision machines as long as f\ ≤ 22 deg) such that \8 ∼ N(0, f2
\
), and e#8 ∈ S2 is a unit-norm random

vector uniformly distributed∗ in S2 = {x ∈ R3 : | |x | | = 1} and has the characteristics E[e#8] = 0 and E[e#8e)# 8] =
1
3 O

(see Appendix A).

Assuming that all q#8 , 8 ∈ {1, · · · , =} are idependent and identically distributed, we define the quantities -# and

V# as the mean and covariance for the noise quaternion, respectively:

-# , E

[
q#8

]
= E


cos \82

e#8 sin \8
2

 =

E

[
cos \82

]
E

[
e#8 sin \8

2

] =

E

[
cos \82

]
E

[
e#8

]
E

[
sin \8

2

] = E
[
cos \82

] 
1

0


V# , E

[(
q#8 − -#

) (
q#8 − -#

)) ]
= E

[
q#8q

)
# 8

]
− -# -)#

=


E

[
cos2 \8

2

]
− E2

[
cos \82

]
E

[
e)
# 8

cos \82 sin \8
2

]
E

[
e#8 cos \82 sin \8

2

]
E

[
e#8e

)
# 8

]
E

[
sin2 \:

2

] =

E

[
cos2 \8

2

]
− E2

[
cos \82

]
0

0 1
3E

[
sin2 \8

2

]
O3


The expected values above can be calculated according with Ref. [20]: E

[
cos \82

]
= 4−f

2
\
/8, E

[
cos2 \8

2

]
=

1
2

(
1 + 4−f2

\
/2

)
, and E

[
sin2 \8

2

]
= 1

2

(
1 − 4−f2

\
/2

)
. Defining f2

B , E

[
cos2 \8

2

]
−E2

[
cos \82

]
= 1

2

(
1 + 4−f2

\
/2

)
−4−f2

\
/4

and f2
E ,

1
3E

[
sin2 \8

2

]
= 1

2

(
1 − 4−f2

\
/2

)
, then the noise covariance matrix takes the form:

V# =


f2
B 0

0 f2
E O3

 . (8)

∗The reader should note that this is a simplification, given that it is not always true that the angle randomness is as likely in any direction. For
instance, star trackers tend to have different noise characteristics in the boresight direction w.r.t. the ones perpendicular to it.
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We define the covariance for the measured quaternion as:

V@ , E

[(
q̄8 − E

[
q̄8

] ) (
q̄8 − E

[
q̄8

] )) ]
= E

[
q̄8 q̄

)
8

]
− E

[
q̄8

]
E

[
q̄8

])
=

(
q8⊗

)
E

[
q#8q

)
# 8

] (
q8⊗

))
−

(
q8⊗

)
-# -)#

(
q8⊗

))
=

(
q8⊗

) [
E

[
q#8q

)
# 8

]
− -# -)

#

] (
q8⊗

))
=

(
q8⊗

)
V#

(
q8⊗

))
.

If we make the notation relaxation q8 =

[
@B q)E

])
, and use Eqs. 1 and 8, we can further expand V@ as:

V@ =


f2
B @

2
B + f2

Eq
)
E qE f2

B @Bq
)
E − f2

E@Bq
)
E

f2
B @BqE − f2

E@BqE f2
B qEq

)
E − f2

E

(
@2
B O3 −

[
qE×

]2)
 .

Using the properties
[
qE×

]2
= qEq

)
E − q)E qE O3, and @2

B + q)E qE = 1, we have that:

V@ =


f2
E +

(
f2
B − f2

E

)
@2
B

(
f2
B − f2

E

)
@Bq

)
E(

f2
B − f2

E

)
@BqE f2

E O3 +
(
f2
B − f2

E

)
qEq

)
E

 = f
2
E O4 +

(
f2
B − f2

E

)
q8q

)
8 . (9)

Using the statistics above, if one desires to perform a quaternion measurement normalization, it is necessary

to decompose the covariance matrix in the form V@ = R@R
)
@ . There are multiple ways of proceeding with the

decomposition, but here we derive the square root decomposition, i.e., V@ = R@R@ , where R@ = R)@ . Starting from

Eq. 9, we add and subtract 2f2
Eq8q

)
8
and 2fEfBq8q)8 on the right-hand side of the equation:

V@ = f
2
E O4 − 2f2

Eq8q
)
8 + 2fEfBq8q)8 +

(
f2
B − 2fEfB + f2

E

)
q8q

)
8

= f2
E O4 − 2fE

(
fE − fB

)
q8q

)
8 +

(
fE − fB

)2
q8q

)
8 .

Defining f@ , fE − fB and using the property q8q
)
8
= q8q

)
8
q8q

)
8
then:

V@ = f
2
E O4 − 2fEf@q8q)8 + f2

@q8q
)
8 q8q

)
8 = f

2
E O4 − 2fEf@q8q)8 + f2

@

(
q8q

)
8

)2

=

(
fE O4 − f@q8q)8

)2
(10)

Therefore, the matrix square-root of V@ is given by R@ = fE O4 − f@q8q)8 , where f@ = fE − fB . The inverse of the
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square-root matrix is given by:

R−1
@ =

1
fBfE

(
fB O4 + f@q8q)8

)
.

Post-multiplying R−1
@ by q8 , we get that:

R−1
@ q8 =

1
fBfE

(
fBq8 + f@q8

)
=

fE

fBfE
q8 =

1
fB

q8 .

Therefore, q8 is an eigenvector of R−1
@ , and the corresponding eigenvalue is given by _@ = 1/fB. Having that in

mind, if we perform a Taylor Expansion on Eq. 6 around \8 = 0, and pre-multiply by R−1
@ , we get that:

R−1
@ q̄8 = R−1

@ q8 ⊗ q#8 = R−1
@

(
q8⊗

) (
q� + mq#8m\8

���
0
\8 + m

2q#8
m\2
8

���
0
\2
8
+ · · ·

)
= R−1

@ q8 + R−1
@

(
q8⊗

) (
mq#8
m\8

���
0
\8 + m

2q#8
m\2
8

���
0
\2
8
+ · · ·

)
=

1
fB

q8 + R−1
@

(
q8⊗

) (
mq#8
m\8

���
0
\8 + m

2q#8
m\2
8

���
0
\2
8
+ · · ·

)
,

where q� is the identity quaternion defined in Eq. 2.

Therefore, if we consider only the 0-th order approximation for the measurement normalization performed by the

operation R−1
@ q̄: , then this operation is just a scaling operation on the true quaternion. In practice, it is impossible to

perform the measurement normalization R−1
@ q̄8 because R@ is a function of the true quaternion q8 (not the measured

one), which is unknown. Alternatively, if we make the practical approximation [21]:

V@ ≈
(
fE O4 − f@ q̄8 q̄)8

)2
=⇒ R−1

@ ≈
1

fBfE

(
fB O4 + f@ q̄8 q̄)8

)
, (11)

then the measurement normalization leads to R−1
@ q̄8 = _@ q̄8 .

III. Problem Formulation
This section poses the problem that we solve with QuateRA. Let q̄8 be a quaternion measurement at time C8 , and

assume that we have = measurements. We assume that the measured quaternions represent rotations relative to an

inertial frame, hence we pursue an angular velocity estimate that is relative to the same inertial frame (and expressed in
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the inertial frame). Defining q̂8 ∈ S3 as the quaternion estimate at time C8 , we want to minimize the cost function:

�!( =
1
2

=∑
8=1

(
q̂8 − q̄8

))
V−1
@

(
q̂8 − q̄8

)
=

1
2

=∑
8=1

(
q̂8 − q̄8

))
R−)@ R−1

@

(
q̂8 − q̄8

)
=

1
2

=∑
8=1

(
R−1
@ q̂8 − R−1

@ q̄8

)) (
R−1
@ q̂8 − R−1

@ q̄8

)
.

Making the practical approximations R−1
@ q̄8 ≈ _@ q̄8 and R−1

@ q̂8 ≈ _@ q̂8 , then:

�!( ≈
1
2
_2
@

=∑
8=1





q̂8 − q̄8





2

2
. (12)

Dropping the constant gain _@ from the cost function (as it shouldn’t impact the optimal solution), and using the

property q̄)
8
q̄8 = q̂)

8
q̂8 = 1, then �!( can be further simplified as:

�!( =
1
2

=∑
8=1





q̂8 − q̄8





2

2
=

1
2

=∑
8=1

(
q̂8 − q̄8

)) (
q̂8 − q̄8

)
=

1
2

=∑
8=1

(
2 − 2q̂)

8
q̄8

)
= = −

=∑
8=1

q̂)8 q̄8 . (13)

additionally, the optimal estimation problem has to be subject to the quaternion kinematic equation of Eq. 4:

¤q = 1
2
8 ⊗ q.

Assuming that 8 = Ω
−→8 is constant, the rotational kinematics is solved by using the state transition matrix of Eq. 5:

q(C) =
[
cos ΩΔC2 · O + sin ΩΔC

2 ·
−→8⊗

]
q0 = cos

ΩΔC

2
· q0 + sin

ΩΔC

2
· −→8 ⊗ q0, (14)

where ΔC , C − C0. In summary, we are searching for estimates of 8̂ = Ω̂
−̂→8 , and q̂8 satisfying:



min8̂,q̂8 �!( = = −
∑=
8=1 q̂

)
8
q̄8

B.C. q̂8+1 = cos Ω̂X82 · q̂8 + sin Ω̂X8
2 ·
−̂→8 ⊗ q̂8 , ∀ 8 ∈ {1, · · · , = − 1}

| |q̂8 | | = 1, ∀ 8 ∈ {1, · · · , =}

, (15)

where X8 , C8+1 − C8 .

As mentioned in the Introduction, QuateRA is a two step algorithm: it first estimates the AOR −̂→8 , and then uses its

knowledge to estimate for the AVM Ω̂. In order to estimate the AOR, QuateRA uses a geometric interpretation based on

the solution to the quaternion kinematic equation of Eq. 14.
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Defining the vectors u1 ∈ S3 = q0 and u2 ∈ S3 = −→8 ⊗ q0, we have that u)1 u2 = q0 · −→8 ⊗ ·q0. Since −→8⊗ is a

skew-symmetric matrix (see Eq. II.A) then u)1 u2 = 0, i.e., u1 ⊥ u2. Defining U(C) , ΩΔC
2 , we can write Eq. 14 as:

q(C) = cosU(C) · u1 + sinU(C) · u2. (16)

Clearly, any q(C) described by Eq. 16 is a linear combination of u1 and u2, for all C ∈ R. Hence, if we define the

4D hyperplane P(u1, u2) = span{u1, u2}, then q(C) ∈ P(u1, u2), ∀ C ∈ R. Thus, the optimally estimated quaternions

should belong to a single plane of rotation: q̂8 ∈ P(u1, u2), ∀8 ∈ {1, · · · , =}. In addition, we have that 8 = u2 ⊗ u−1
1 .

Therefore, if we have a sequence of measurements q̄8 , 8 ∈ {1, · · · , =}, with = ∈ N≥2, then we can estimate the axis

of rotation by finding the optimal hyperplane that fits the measured quaternions. Classically speaking, plane-fitting is a

Total Least Squares (TLS) problem [22]. We define q̂) !(
8

as the TLS best in-plane estimate for the i-th measurement.

Defining the matrices W̄ and Ŵ) !( as:

W̄ ,

[
q̄1 q̄2 · · · q̄=

]
, Ŵ) !( ,

[
q̂) !(1 q̂) !(2 · · · q̂) !(=

]
, (17)

then our plane-fitting problem can be cast in the following TLS form:



minû1 ,û2 ,q̂8 �) !( =





Ŵ) !( − W̄



2

�

B.C. q̂) !(
8
∈ P(û1, û2), ∀ 8 ∈ {1, · · · , =}

| |q̂) !(
8
| | = 1, ∀ 8 ∈ {1, · · · , =}

, (18)

where the | | · | |� denotes the Frobenius norm. Notice that the optimization problem of Eq. 18 is related to the classical

TLS problem, except for the unit norm constraint | |q̂) !(
8
| | = 1, and the fact that the solution is a 2D space (instead of a

vector). Hence, although we start from a TLS cost function for estimating the quaternion plane of rotation, the solution

is not related to the textbook solutions on TLS.

Once we solve the optimization problem of Eq. 18, we are able to obtain estimates for the axis of rotation −̂→8 , the

plane of rotation P(û1, û2), and the quaternion estimates q̂) !(
8
∈ P(û1, û2). Given those estimates, we recast the

10



optimization problem of Eq. 15 as:



minΩ̂,q̂8 �!( = = −
∑=
8=1 q̂

)
8
q̂) !(
8

B.C. q̂8+1 = cos Ω̂X82 · q̂8 + sin Ω̂X8
2 ·
−̂→8 ⊗ q̂8 , ∀ 8 ∈ {1, · · · , = − 1}

| |q̂8 | | = 1, ∀ 8 ∈ {1, · · · , =}

q̂8 ∈ P(û1, û2), ∀ 8 ∈ {1, · · · , =}

, (19)

In a nutshell, the problem of Eq. 18 is solved by taking the Singular Value Decomposition on ` , W̄W̄) , whose two

first left singular vectors determine the quaternion plane of rotation. The AOR direction is uniquely identified from

the plane of rotation. In order to solve the problem of Eq. 19, we observe that a unit quaternion q8 on a plane can be

uniquely identified by a single angle Φ8 . Hence, if we assume that this angle is evolving linearly as in Φ8 = Φ1 +ΩΔC,

we can perform least squares to solve for optimal Φ̂1 and Ω̂ that determine the quaternion evolution on that plane.

QuateRA’s algorithm is summarized in Section IV.D.

IV. The Quaternion Regression Algorithm
In this section, we develop the QuateRA algorithm. The remainder of this section is structured as follows:

Section IV.A derives the AOR estimation algorithm, while Section IV.B derives the AVM estimator. A method for

estimating the covariance matrix is given in Section IV.C. Section IV.D summarizes QuateRA into a few steps, and

Section IV.E presents some insights and analysis to the overall algorithm.

A. Estimation of the Axis of Rotation

In order to estimate the AOR, the goal is to find a plane P̂(û1, û2) = span{û1, û2} and a set of estimated quaternions

q̂8 ∈ P̂(û1, û2), 8 ∈ {1, · · · , =} that minimizes the TLS cost function:

�1 =
1
2





W̄ − Ŵ) !(



2

�

. (20)

In order to reduce heavy notation, the remainder of this subsection will denote Ŵ ≡ Ŵ) !( and q̂8 ≡ q̂) !(
8

.

Starting from the definition of W̄ in Eq. 17, we can derive the following property:

tr
(
W̄W̄)

)
= tr

(∑=
8=1 q̄8 q̄

)
8

)
=

=∑
8=1

tr
(
q̄8 q̄

)
8

)
=

=∑
8=1





q̄8



2
= = (21)
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From the Frobenius norm definition, we have that:

�1 =
1
2

tr
[(
W̄ − Ŵ

) (
W̄ − Ŵ

)) ]
=

1
2

tr
[
W̄W̄) − W̄Ŵ) − ŴW̄) + ŴŴ)

]
=

1
2

tr
(
W̄W̄)

)
− 1

2
tr

(
W̄Ŵ)

)
− 1

2
tr

(
ŴW̄)

)
+ 1

2
tr

(
ŴŴ)

)
. (22)

Using the trace property tr(GH) = tr(HG), and the property of Eq. 21, we have that:

�1 = = − tr
(
W̄Ŵ)

)
= = − tr

(∑=
8=1 q̄8 q̂

)
8

)
= = −

=∑
8=1

tr
(
q̄8 q̂

)
8

)
= = −

=∑
8=1

q̄)8 q̂8 . (23)

Minimizing the cost function of Eq. 23 is equivalent to maximizing the following cost function:

�2 =

:∑
8=1

q̄)8 q̂8 . (24)

Theorem 1 Given a quaternion q ∈ S3 and a plane spanned by the unit vectors u1 ∈ S3 and u2 ∈ S3 such that

u)1 u2 = 0. Denoting this plane as P(u1, u2), the quaternion q? ∈ S3 that belongs to the plane P(u1, u2) and minimizes

the cost function:

�0 =
1
2





q − q?





2

2
=

1
2





q − q?





2

�

(25)

is given by:

q? =
1√(

q) u1

)2
+

(
q) u2

)2

[(
q) u1

)
u1 +

(
q) u2

)
u2

]
(26)

Proof. The cost function of Eq. 25 can be written as:

�0 =
1
2





q − q?





2

2
=

1
2

(
q) q − 2q) q? + q)? q?

)
= 1 − q) q? . (27)

Minimizing the cost function of Eq. 27 is the same as maximizing the following cost function:

�1 = q) q? . (28)
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Every quaternion that belongs to the plane P(u1, u2) can be written as a linear combination of u1 and u2:

q? = 0u1 + 1u2. (29)

In order to satisfy the norm condition for | |q? | | = 1, the following holds:

| |q? | | = q)? q? = 0
2u)1 u1 + 201u)1 u2 + 12u)2 u2 = 0

2 + 12 = 1

Hence, the coefficients 0 and 1 from Eq. 29 are constrained such that 02 + 12 = 1. We rewrite the optimization

problem as:


max0,1 �1 = q) q? = 0q

) u1 + 1q) u2

B.C. 02 + 12 = 1.
(30)

Introducing the Lagrange multiplier _, the Lagragian related to the problem above is written as:

L = 0q) u1 + 1q) u2 +
1
2
_(02 + 12 − 1) =⇒


mL
m0

= q) u1 + _0

mL
m1
= q) u2 + _1

.

From the first-order necessary optimality conditions, we get that:

q) u1 + _0 = 0 =⇒ 0 = − q
) u1
_

, q) u2 + _1 = 0 =⇒ 1 = − q
) u2
_

. (31)

Substituting 0 and 1 from Eq. 31 into 02 + 12 = 1, we get that:

(q) u1)2
_2 + (q

) u2)2
_2 = 1 =⇒ _ = ±

√
(q) u1)2 + (q) u2)2. (32)

Therefore, we have that:

0 = − q
) u1
_

= ± 1√
(q) u1)2 + (q) u2)2

q) u1, 1 = − q
) u2
_

= ± 1√
(q) u1)2 + (q) u2)2

q) u2. (33)

We can notice that this problem has two extremum points: a maximizing solution and a minimizing one. By

13



inspecting the cost function in Eq. 30, the maximizing solution has to be the one given by:


0 = 1√

(q) u1)2+(q) u2)2
q) u1

1 = 1√
(q) u1)2+(q) u2)2

q) u2

=⇒ q? =
1√(

q) u1

)2
+

(
q) u2

)2

[(
q) u1

)
u1 +

(
q) u2

)
u2

]
.

�

Using Theorem 1, then q̂ can be written as a linear combination of the optimal plane vectors û1 and û2. Hence, the

cost function �2 from Eq. 24 can be written as:

�2 =

=∑
8=1

1√(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2
q̄)8

[(
q̄)
8
û1

)
û1 +

(
q̄)
8
û2

)
û2

]
=

=∑
8=1

1√(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2

[(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2]

=

=∑
8=1

√(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2
(34)

Note that in the total absence of measurement noise, and assuming û1 ∈ span{u1, u2}, û2 ∈ span{u1, u2} with

û)1 û2 = 0, the following holds:

√(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2
= 1, ∀ 8 ∈ {1, · · · , =}.

Defining the variable G ,
(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2
, the First order Taylor Expansion of

√
G around G = 1 is given by:

√
G ≈ 1

2
+ G

2
=⇒

√(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2
≈ 1

2
+ 1

2

(
q̄)
8
û1

)2
+ 1

2

(
q̄)
8
û2

)2

Therefore, under the small angle approximation for the measurement noise, we have that the cost function �2 can be

approximated to:

�2 ≈
=

2
+ 1

2

=∑
8=1

[(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2]
(35)

For simplicity of notation, we define a new cost function whose maximization is equivalent to the maximization of

14



Eq. 35:

� =

=∑
8=1

[(
q̄)
8
û1

)2
+

(
q̄)
8
û2

)2]
=

=∑
8=1

[
û)1 q̄8 q̄

)
8
û1 + û)2 q̄8 q̄

)
8
û2

]
= û)1

=∑
8=1

q̄8 q̄
)
8 û1 + û)2

=∑
8=1

q̄8 q̄
)
8 û2 (36)

= û)1 W̄W̄) û1 + û)2 W̄W̄) û2 (37)

Defining ¯̀ , W̄W̄) , the optimization problem can be stated in the following form:


max

û1∈S3 ,û2∈S3
û)1

¯̀ û1 + û)2 ¯̀ û2

s.t. û)1 û2 = 0
. (38)

The optimization problem of Eq. 38 does not admit a unique solution. This should be an obvious statement, since

there are infinitely many pairs of orthogonal vectors that define a plane. Still, this is not an issue for QuateRA, since

the axis of rotation direction can be uniquely determined from the hyperplane, regardless of which particular optimal

solution has been obtained for û1 and û2. Lemma 2 introduces a particular optimal solution to the problem above.

Lemma 2 A solution to the optimization problem in Eq. 38 can be obtained from the Singular ValueDecomposition (SVD)

of ¯̀ = [̂�̂[̂) , where [̂ ∈ R4×4 =

[
û1 û2 û3 û4

]
contains the singular vectors of ¯̀ , and �̂ = diag

(
f̂1, f̂2, f̂3, f̂4

)
contains the singular values of ¯̀ , wherein f̂1 ≥ f̂2 ≥ f̂3 ≥ f̂4 ≥ 0. If f̂2 > f̂3, then û1 and û2 compose a solution

to the optimization problem in Eq. 38 and the optimal cost is given by �∗ (û1, û2) = f̂1 + f̂2, with f̂1 = û)1
¯̀ û1 and

f̂2 = û)2
¯̀ û2.

Proof. This follows from common knowledge in SVD, as the best-fit k-dimensional subspace for a matrix is the subspace

spanned by the first : singular vectors [23]. As we are looking for a 2-dimensional subspace that best approximates ¯̀ ,

then the solution to the optimization problem of Eq. 38 is given by the first two left singular vectors of ¯̀ . �

Having the optimal hyperplane estimate P̂(û1, û2), we still need to calculate the AOR −̂→8 that leads to rotation on

that plane. As previously observed in Eq. 14, the optimal hyperplane can be written as P̂(û1, û2) = P̂(û1,
−→8 ⊗ û1).

This implies that û2 =
−̂→8 ⊗ û1. Therefore, the optimal estimate for the AOR is given by:

−̂→8 = û2 ⊗ û−1
1 . (39)

An important observation is that −̂→8 is an ambiguous estimate of −→8 up to a sign error, i.e, it estimates the direction of
−→8 , but the sense might be wrong. This ambiguity is eliminated when estimating the AVM Ω, whose estimate Ω̂ will be

negative when −̂→8 is an estimate of −−→8 . In any case, the product 8̂ = Ω̂
−̂→8 is consistent with 8 = Ω

−→8 .
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Using the result from Theorem 1, the optimally estimated quaternions on the plane P̂(û1, û2) are given by:

q̂) !(8 =
1√(

q̄)
8
û1

)2
+

(
q̄)
8
û2

)2

[(
q̄)
8
û1

)
û1 +

(
q̄)
8
û2

)
û2

]
. (40)

B. Estimation of the Angular Velocity Magnitude

In this section, we use the estimated in-plane quaternions q̂) !(
8
∈ P(û1, û2) to solve the optimization problem of

Eq. 19, where @̂) !(
8

is given by Eq. 40.

We make the observation that a unit quaternion belonging to a plane P(û1, û2) can be fully specified simply by an

angle on that plane. We define the quaternion angle on P(û1, û2) as having a zero-angle when aligned with u1, and it

grows positive as the quaternion rotates from u1 towards u2. We make the definitions:

Φ̂8 = 2 · atan2
(
û)2 q̂8 , û)1 q̂8

)
, Φ̄8 = 2 · atan2

(
û)2 q̂

) !(
8

, û)1 q̂
) !(
8

)
, (41)

where Φ̄8 is the respective angle of the quaternion q̂) !(
8

, and Φ̂8 is the angle of the quaternion that we are estimating q̂8 .

If we define k8 , Φ̂8 − Φ̄8 , then we have that q̂)
8
q̂) !(
8

= cos |k |2 . Using Taylor series around the origin, we can

approximate q̂)
8
q̂) !(
8
≈ 1 − k2

8 . Hence, for sufficiently small k (i.e. low noise characteristics), the cost function of

Eq. 19 can be approximated as:

�!( = = −
=∑
8=1

q̂)8 q̂
) !(
8 ≈ = − = + 1

8

=∑
8=1

k2 =
1
8

=∑
8=1
(Φ̂8 − Φ̄8)2. (42)

If we assume the system model:

Φ8 = Φ1 +ΩΔC8 =
[
1 ΔC8

] 
Φ0

Ω

 ,
and the measurement model:

Φ̄8 = Φ8 + a8 ,

where a8 is the measurement noise such that E[a8] = 0, E[a8a 9 ] = 0, 8 ≠ 9 , and E[a2
8
] = %a , then we can use least
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squares to estimate for Φ̂0 and Ω̂:

ˆ̂ ,


Φ̂1

Ω̂

 =
(
N) N

)−1
N) �̂, (43)

where:

N ,


1 · · · 1

ΔC1 · · · ΔC=


)

, �̂ ,

[
Φ̂1 · · · Φ̂=

])
. (44)

Given that the measurement noise assumed to be uncorrelated between two measurements (E[a8a 9 ] = 0, 8 ≠ 9),

then the covariance matrix of the estimate ˆ̂ is given by cov[ ˆ̂ ] = %a
(
N) N

)−1
.

The optimally estimated quaternions q̂8 ∈ P(û1, û2) can be retrieved as:

q̂8+1 = cos
Ω̂X8

2
· q̂8 + sin

Ω̂X8

2
· −̂→8 ⊗ q̂8 , ∀ 8 ∈ {1, · · · , = − 1}. (45)

Note that the quaternion estimates in Eq. 45 satisfies all the constraints of the optimization problem in Eq. 19.

Theorem 3 below proves that the noise a8 is actually zero mean and that %a = 1
3f

2
\
, where f\ is the noise standard

deviation for the measurement noise as defined in Eqs. 6 and 7.

Theorem 3 Assume that q# =
[
cos \2 e)

#
sin \

2

])
is a noise quaternion, where \ is a zero-mean gaussian random

variable with E[\2] = f2
\
, and e# ∈ R2 is a unit vector uniformly distributed in the 3D sphere. Also, define a plane

P(q� , qE ) as the hyperplane spanned by the unit vectors q� (identity quaternion) and qE ,

[
0 v)

])
with v ∈ S2 such

that q)E q� = 0. Now, assume that q# ? ∈ P(q� , qE ) is the quaternion that belongs to P(q� , qE ) and is closest to q#

such as in Theorem 1. Then, if we assume the small angle approximation on \ = 0, the quaternion q# ? has the form:

q# ? =


cos Φ2

v sin Φ
2

 , (46)

where Φ has the approximate statistics E[Φ] = 0, and f2
Φ
, E[Φ2] = 1

3f
2
\
.
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Proof. According with Theorem 1, q# ? is given by:

q̂# ? =
1√(

q)
#
q�

)2
+

(
q)
#
qE

)2

[(
q)
#
q�

)
q� +

(
q)
#
qE

)
qE

]
=

1√(
q)
#
q�

)2
+

(
q)
#
qE

)2


q)
#
q�

v · q)
#
qE

 (47)

Comparing Eq. 47 with Eq. 46, we get that:

cos
Φ

2
=

q)
#
q�√(

q)
#
q�

)2
+

(
q)
#
qE

)2
(48)

From the definition of the identity quaternion (Eq. 2), we get that q)
#
q� = cos \2 . In addition, we have that

q)
#
qE = e)

#
v sin \

2 . Defining W as the angle between the vectors e)
#
and v, then we can define cos W , e)

#
v. Given that

e# is uniformly distributed in a 3D sphere, then Appendix A shows that cos W ∼ U[−1, 1]. Therefore, we have that

q)
#
qE = cos W sin \

2 . Plugging these values into Eq. 48, and performing Taylor series expansion on both sides around

Φ = 0 and \ = 0, we get to:

cos
Φ

2
=

cos \2√
cos2 \

2 + cos2 W sin2 \
2

(Taylor Series on both sides)

1 − Φ
2

8
≈ 1 − cos2 W

\2

8
(49)

Inspecting Eq. 49, we can approximate Φ ≈ \ · cos W. Therefore, we have that E[Φ] = E[\]E[cos W] = 0 and

E[Φ2] = E[\2]E[cos2 W] = 1
3f

2
\
. �

C. Covariance Estimate

This section presents a covariance estimate for the estimated angular velocity through a Fisher Information approach.

We compute how much information is added to the estimates when a new orientation measurement is processed. We

base our Information propagation on the MEKF equations derived in Appendix B.

Assuming that the attitude error is in the Gibbs vector format (see Eq. 64), we define the estimation error vector as

^ =

[
Xg) X8)

])
, where X8 , 8̂−8. Each orientation measurement has the error covariance ' = 1

3f
2
\
O3. Defining

the covariance matrix V- = E[^^) ], the related Fisher information matrix is given by I = V−1
-
.
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Assuming that one orientation measurement has been already processed, the information matrix can be initialized as:

I1 =
©­­­«
X−1 03

03 03

ª®®®¬ . (50)

The information for all subsequent measurement updates can be processed iteratively as:

I:+1 = �): I:�: + N:XN
)
: , ∀ : ∈ {1, · · · , = − 1}, (51)

where N: =

[
O3 03

]
, G3 [:] , 4−�X: , X: , C:+1 − C: , and:

G =


−[8×] O3

03 03

 .
Finally, the estimated final covariance matrix is given by V̂- = I

−1
= .

D. Algorithm Summary

In this section, we summarize the algorithm steps for QuateRA.

1) Construct the measurement matrix W̄ as in Eq. 17 and calculate ¯̀ = W̄W̄) .

2) Compute the SVD ¯̀ = [̂�̂[̂) . The plane of rotation is defined by the first two columns of [̂ =[
û1 û2 û3 û4

]
.

3) The optimal axis of rotation is defined as in Eq. 39: 8̂ = û2 ⊗ û−1
1 .

4) Compute the optimally estimated quaternions q̂8 , 8 ∈ {1, · · · , =} on the plane P̂(û1, û2) using Eq. 40.

5) For each quaternion q̂8 on the plane P̂(û1, û2), compute the quaternion angle within the plane Φ̂8 using Eq. 41.

6) Estimate the angular velocity Ω̂ and its associated covariance using Eqs. 43 and 44. Note that the angles Φ̄ need

to be unwrapped before performing the least squares estimation.

7) Initialize the Fisher information matrix as in Eq. 50, and update through Eq. 51. Compute the final covariance as

V̂- = I
−1
= .

E. QuateRA Analysis

In this section, we provide some critical analysis and insights about the derivation of QuateRA.

We have converted the initial optimization problem of Eq. 15 into two subproblems: one that estimates the AOR by

estimating the quaternion plane of rotation (Eq. 18), and then we use the plane of rotation knowledge to estimate for the

AVM (Eq. 19). The items below provide a critical view on our derivations and solutions:

19



• When estimating the plane of rotation, we employ a TLS cost function. Classical formulations of TLS leads to

strongly consistent estimates, i.e., the TLS estimate converges to the true value (with probability 1) as the number

of measurements = tend to infinity [21, 24], meaning that it is asymptotically unbiased. Monte Carlo analysis

suggest that the bias of classical TLS is statistically negligible when signal-to-noise ratio is high, and = is large

[22].

• Although we have employed the TLS cost function, the optimization problem is not a classical TLS problem, as

we constrain the optimized variables to be unit norm. Hence, we cannot affirm that all TLS statistical properties

are transferred to QuateRA.

• The Least Squares estimate of the AVM | |
| | assumes that the velocity direction −→8 is precisely known. However,

as already mentioned, TLS can provide a biased estimate −̄→v = u1, which can also implicate on a biased estimation

of | |
| |.

• Many portions of our derivations assume sufficiently small measurement noise. This implicates that QuateRA

might not be a reasonable estimator for problems with too large orientation measurement noise.

Given the concerns above, Section V presents a Monte Carlo analysis of QuateRA, comparing its results with a

Multiplicative Extended Kalman Filter. The Monte Carlo results indicate that QuateRA carry the strong consistency

property of classical TLS, and it even outperforms MEKF in some situations, specially for situations with large angular

velocities and low sampling frequency. On the other hand, MEKF seems to be a slightly better estimator for high

sampling frequencies and small angular velocities. Note, however, that the average discrepancy between QuateRA and

MEKF disappear as the number of measurements increase.

A few important remarks that should be noted on QuateRA are highlighted below:

• When = = 2, QuateRA computes the solution that leads to �!( = 0, i.e., = = 2 leads to a perfect fit of the data.

• It doesn’t matter if W̄ is constructed with q8 or −q8 . Plane-fitting is agnostic to the quaternion direction, and the

AVM estimation is not affected as long as the angles are unwrapped prior to solving the LS problem.

• The quaternion averaging problem described in Ref. [17] is a special solution for the problem herein presented.

Note the similarity between the cost function in Eq. 36 with respect to Eq. 12 within Ref. [17] when all the weights

are unity. This implies that û1 has the geometric meaning of an average quaternion among all the measurements.

V. QuateRA Monte Carlo Analysis
This section provides a Monte Carlo analysis of QuateRA, endorsing the statistical properties derived in the previous

sections, as well as providing a comparison with an MEKF (see Appendix B for referencing the used formulation). We

perform extensive simulations for multiple values of = (number of measurements) and f\ (standard deviation for the

angle in the noise quaternion).
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In all simulations, we used an angular velocity with direction −→8 = 1√
14

[
1 2 3

])
. The standard deviation for the

measurement noise are chosen as f\ = 1°, f\ = 2°, f\ = 3°, f\ = 4°, and f\ = 5° (large values, when compared

to star-tracker technology. The analysis of this section would be quite uninteresting for f\ values expected for Star

Trackers, since QuateRA’s performance would not change much as a function of the number of measurements =). The

number of measurements range from = = 5 to = = 50 in increments of 5. Each Monte Carlo result is obtained after

="� = 10000 executions. We denote −→8⊥ ∈ S2 as an arbitrary unit vector perpendicular to −→8 , i.e., −→8)−→8⊥ = 0.

In order to evaluate the AOR estimation, we calculate the mean and standard deviation of the estimated AOR −̂→8

along −→8⊥. Defining −̂→8
)

8 as the estimation of −→8 at the 8Cℎ Monte Carlo trial, and 48⊥ , −̂→8
)

8
−→8⊥ as the respective

projected error, then the mean `⊥ and variance f2
⊥ for 48⊥ is calculated as:

`⊥ ,
1

="�

="�∑
8=1

48⊥, f2
⊥ ,

1
="� − 1

="�∑
8=1

(
48⊥ − `⊥

)2
. (52)

A sample mean around `⊥ = 0 indicates that the AOR is an unbiased estimator. The standard deviation has to

belong to the range 0 < f⊥ ≤ 1/
√

3 ≈ 0.5774, where f⊥ → 1/
√

3 indicates that the estimator is obtaining solutions

uniformly distributed in the unit sphere (see Appendix A). In our experience, the AOR estimator provides acceptable

estimates when f⊥ ≤ 0.1.

In order to evaluate the AVM estimation, we define the AVM error as 48Ω , Ω̂8 − Ω, where Ω̂8 is the estimated

AVM for the 8Cℎ Monte Carlo execution. We calculate the mean `Ω and variance f2
Ω
of 48Ω as:

`Ω ,
1

="�

="�∑
8=1

48Ω, f2
Ω ,

1
="� − 1

="�∑
8=1

(
48Ω − `Ω

)2
. (53)

First, we evaluate QuateRA’s performance in a degenerate scenario. We start with measurements taken at 10hz,

with an AVM of Ω = 0.1rad/s. Notice that when the measurement is as high as 5◦ = 0.0873rad and the number of

measurements are as low as = = 5, the change in orientation throughout that period is of 0.05rad, and hence the signal to

noise ratio is extremely low for accurately estimating the angular velocity. Figure 1 presents the Monte Carlo results for

the AOR estimation, indicating that the estimator is asymptotically unbiased and that the standard deviations decrease

as the number of measurements increase. Figure 2 shows that the mean error `Ω converges to zero as the number

of measurements = increase. The standard deviation also decreases as = increases. One should be aware that these

solutions only make sense if the AOR make sense, i.e., if f⊥ is small enough.

Given the estimate error for the i-th Monte Carlo execution as 848 = 8̂ − 8, we compute the sample standard

deviation on 848 , defined as 2l =
[
2lG 2lH 2lI

])
. We compare 2l with the standard deviations estimated in
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Fig. 1 Sample Mean and Standard Deviation of the projection of the estimated AOR along a direction perpen-
dicular to the true AOR. Measurements taken at 10Hz, with an AVM of Ω = 0.1rad/s. Results are shown as a
function of the number of measurements (x axis) and the standard deviations f\ (different plots).

Section IV.C, denoted as 2̂l =
[
2̂lG 2̂lH 2̂lI

])
. We compare both in a Percent Deviation sense:

%�fG , 100 · 2̂lG − 2lG
2lG

, %�fH , 100 ·
2̂lH − 2lH

2lH
, (54)

%�fI , 100 · 2̂lI − 2lI
2lI

.

Figure 3 shows how the covariance estimates are biased for a small number of measurements, but the bias diminishes

as the number of measurements increase.

QuateRA’s performance is improved drastically (compared to the example from before) in a scenario for which

measurements are taken at 1Hz, still with an AVM of Ω = 0.1rad/s. We can see that both the bias and the standard

deviations (Figures 4 and 5) are reduced compared with the previous scenario, and the estimated covariance is very

close to the sample covariance (Figure 6). Our reasoning for improvement is based upon the fact that TLS can provide

better planar estimates when the quaternion measurements are more sparsely distributed along the plane, whereas the

previous scenario had many quaternions close to each other, making it harder to determine the plane of rotation from the

given measurements.

In order to compare QuateRA with the MEKF, we will analyze varying values for sampling frequency XC and

angular velocity magnitude. We compare both estimators by evaluating the Least Squares cost function of Eq. 15

�!( = = − ∑
q̂)
8
q̄8 . In order to obtain the MEKF quaternion estimates q̂, we first execute the MEKF algorithm
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Fig. 2 Sample Mean and Standard Deviation of the estimated AVM error for measurements taken at 10Hz,
and an AVM of Ω = 0.1rad/s. Results are shown as a function of the number of measurements (x axis) and the
standard deviations f\ (different plots).

- processing all orientation measurements - and then we use the estimated angular velocity to propagate the final

orientation backwards in time to obtain previous orientations (smoothing procedure). We compare Quatera with MEKF

as a percent deviation:

%� (%) = 100 · �!( ("� �) − �!( (&D0C4'�)
�!( ("� �)

, (55)

where MEKF outperforms QuateRA when %� (%) < 0 and QuateRA ourperforms MEKF otherwise.

Table 1 presents the average percent deviation for 3C = 0.1s and Ω = 0.1rad. We notice that MEKF outperforms

QuateRA most of the time for this scenario. The performance between both is quite similar when the number of

measurements is in the range = ≥ 25. Table 2 presents the percent deviation for 3C = 1s and Ω = 0.1rad, and we notice

that there is no clear winner when comparing both in this scenario. In contrast, QuateRA outperforms MEKF largely

when 3C = 1s and Ω = 1rad, as shown in Table 3. We attribute the poor performance of MEKF in this last scenario due

to the fact that MEKF is just a first order filter, and its performance degrades when nonlinearities become dominant

when measurements are taken sparsely.

Finally, QuateRA is compared with a solution obtained from a batch nonlinear solver for the optimization problem

of Eq. 15. In order to perform a fair comparison, the optimization problem is initialized in two ways:

• First, we provide an initial guess given by the exact true value of the angular velocity and initial orientation.

• Second, we provide an initialization assuming the approximations ¤q ≈ q̄2−q̄1
C2−C1 and ¤q ≈ 1

28 ⊗ q̄1. We then initialize
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Fig. 3 Percentual deviation of the average estimated standard deviation for 2̂l w.r.t. the sample standard
deviation 2l , assuming sampling frequency of 10Hz, and an AVM of Ω = 0.1rad/s. Results are shown as a
function of the number of measurements (x axis) and the measurement noise standard deviations f\ (different
plots).

the nonlinear solver with the estimates 8̂ = 2 q̄2−q̄1
C2−C1 ⊗ q̄−1

1 and q̂1 = q̄1.

We have used Matlab’s [25] function fmincon [26] using the interior-point algorithm with constraint tolerance of

10−6, maximum of 1000 iterations and optimality tolerance of 10−6. Again, we perform 10000 Monte Carlo executions

for the same scenarios as in the previous comparison: first with 3C = 0.1s and Ω = 0.1rad, then 3C = 1s and Ω = 0.1rad,

and 3C = 1s and Ω = 1rad.

Again, we use a Percent Deviation as a metric of comparison between QuateRA and Fmincon. The following

expression is used:

%� (%) = 100 · �!( (�<8=2>=) − �!( (&D0C4'�)
�!( (�<8=2>=)

, (56)

where Fmincon outperforms QuateRA when %� (%) < 0 and QuateRA ourperforms Fmincon otherwise. In principle,

Fmincon should always outperform QuateRA, and this analysis helps us in understanding how far is QuateRA from

the optimal solution. Note that the analysis hereinafter is done only for Fmincon’s converged solutions, and the

non-converged ones are discarded.

Tables 4-6 show the number of times that Fmincon converged for each scenario over 10000 executions with perfect

initial guesses. We see that Fmincon always had trouble to converge when the number of input measurements were

= = 5. When = ≠ 5, we see some variability for the number of convergences depending on the scenario for the sampling

frequency and angular velocity. This hints at the idea that a nonlinear optimizer won’t always converge, and we see a

particular case in which it converged only 67% of the time.
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Fig. 4 Sample Mean and Standard Deviation of the projection of the estimated AOR along a direction perpen-
dicular to the true AOR. Measurements taken at 1Hz, with an AVM of Ω = 0.1rad/s. Results are shown as a
function of the number of measurements (x axis) and the standard deviations f\ (different plots).

Tables 7-9 show the percent deviation between both methods. Just as in the comparison with the MEKF, QuateRA

is slightly outperformed when = is low, 3C = 0.1s and Ω = 0.1rad. As for the remaining scenarios (Tables 14 and 15),

QuateRA seems to perform just as good as Fmincon, indicating that QuateRA is close to the optimal solution for these

explored cases.

Tables 10-12 show the number of times that Fmincon converged for each scenario when the optimizer is initialized

with an initial guess that is not the true values for the angular velocity and initial orientation. Again, Fmincon always

had trouble to converge when the number of input measurements were = = 5. When = ≠ 5, we see that the optimizer

converged more often with the given initial values, where the worst case converged only 83.8% of the time. Although

the convergence rate for non-perfect initialization is higher than when perfectly initialized, it seems that many of the

converged solutions actually converge to a local minimum that is not close to the global solution.

Tables 13-15 show the percent deviation between both methods. Just as in the previous comparisons, QuateRA is

slightly outperformed when = is low, 3C = 0.1s and Ω = 0.1rad. On the other hand, the results in Tables 14 and 15

show that QuateRA largely outperforms Fmincon for large number of input measurements (and performs similarly for a

low number of measurements). The reason for that is because Fmincon converges to a local minimum, showing how a

nonlinear optimizer is susceptible to perform poorly if not well initialized for the problem at hand.
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Fig. 5 Sample Mean and Standard Deviation of the estimated AVM error for measurements taken at 10Hz,
and an AVM of Ω = 0.1rad/s. Results are shown as a function of the number of measurements (x axis) and the
standard deviations f\ (different plots).

VI. Conclusions
This work presented a batch estimation procedure for the determination of a constant angular velocity from quaternion

measurements. In the constant angular velocity scenario, we show that the orientation quaternion evolves without

departing from a fixed plane of rotation. With this insight, we are able to estimate the axis of rotation. Given the plane

of rotation, the quaternions can be reprojected onto this plane, being parametrized as a single evolving angle on the

plane. The angular velocity magnitude is then estimated from the evolution of the quaternion angle on the plane.

As we show in our Monte Carlo section, the performance of the Quaternion Regression Algorithm (QuateRA) is

a function of = and the expected amplitude of the measurement noise. Our results indicate asymptotic unbiasedness

of QuateRA, and we are able to accurately determine the standard deviation of the angular velocity estimation for

sufficiently large sample sets. We show that QuateRA performs very close to a Multiplicative Extended Kalman Filter

(MEKF), even outperforming the latter when nonlinearities are dominant (as is tipically the case with large angular

rates), as MEKF is a first order estimator.

When compared with a nonlinear optimization solver, QuateRA performs very close to Fmincon when the latter is

initialized with the exact truth values. When Fmincon is initialized with an educated guess (but not necessarily truth

values), QuateRA outperforms Fmincon specially for large measurement sample sets.

Our earlier contributions have also demonstrated the application of preliminary versions of QuateRA for estimating

a non-constant angular velocity. These works introduced tuning parameters for adapting the size of the sliding window

and for tuning the Angular Velocity Magnityde (AVM) estimator. In contrast, the current work presents a method for
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Fig. 6 Percentual deviation of the average estimated standard deviation for 2̂l w.r.t. the sample standard
deviation 2l , assuming sampling frequency of 10Hz, and an AVM of Ω = 0.1rad/s. Results are shown as a
function of the number of measurements (x axis) and the measurement noise standard deviations f\ (different
plots).

estimating the AVM that is free of tuning parameters, and it does produce a covariance estimate for the estimate (provided

a sufficiently large sample set). These contributions are relevant for the overall problem of estimating a time-varying

Axis of Rotation (AOR) without the need for heuristic tuning. In the case of non-constant angular velocity with unknown

torques and inertia matrix, filtering techniques as an MEKF are not appropriate solutions because the dynamics are not

fully modeled. On the other hand, a self-tuning algorithm such as a QuateRA-based sliding window with statistically

adaptive window size can figure out how many measurements can be taken without breaking the assumption that the

angular velocity is approximately constant. Hence, QuateRA is applicable not only for constant angular velocity (or

even the pure-spin case), but also in the presence of unmodeled attitude dynamics (large uncertainties in the inertial

properties and possible presence of unknown external disturbance torques).

An interesting path of future work would be to determine a covariance estimate associated with the estimated AOR.

Classically, it is possible to estimate asymptotic covariances for TLS solutions provided that the solution is unique.

As shown in Section IV, the TLS solution for this problem is not unique (still, the estimate of the angular velocity

direction is unique) and we cannot determine the covariance of û1 and û2 using classical methods in TLS. Since the

AOR estimate is determined from û1 and û2, computing the covariance of the estimated AOR is not trivial. Therefore,

establishing the AOR covariance would be a meaningful contribution for future work.

Another interesting path for future research would be to expand QuateRA for non-constant measurement covariance

over multiple measurements. Additionally, we have assumed that the axis of the noise quaternion is distributed in a

uniform spherical distribution, whereas this is not always true in practice. For instance, star trackers typically have

different covariances associated with the roll, pitch and yaw directions. Hence, it would also be meaningful to adapt
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QuateRA to accommodate for a more accurate measurement model.

VII. Appendices

A. Statistics of the Spherical Uniform Distribution
In this section we prove that if e ∈ S2 is a unit vector uniformly distributed in the 3-D unit sphere, then: E[e] = 0

and E[ee) ] = 1
3 O.

Assume a unit radius sphere and a cylinder of radius A = 1 and height ℎ = 2. According with Archimedes’ Hat-Box

Theorem [27], if we slice both the cylinder and the sphere at the same height as shown on Fig. 7, then the lateral surface

area of the spherical segment ((1) is equal to the lateral surface area of the cylindrical segment ((2).

S1 S2

Fig. 7 Illustration of Archimedes’ Hat-Box Theorem.

More specifically, the surface area ( of the cylinder parametrized with radius A = 1 and height ℎ = 2 is the same

as the unit-radius sphere, i.e, ( = 4c. A commonly used method [28] to generate uniformly distributed samples on a

sphere e ∈ S2 is to uniformly sample a point in the cylinder through a height value I ∼ U[−1, 1], and an angle value

q ∼ U[−c, c], and then map it to the sphere through the transformation:

e =



√
1 − I2 cos(q)
√

1 − I2 sin(q)

I


. (57)

The transformation of Eq. 57 guarantees that areas in the cylinder are preserved in the sphere after the projection.

Therefore, if a random variable is uniformly distributed in the prior space (cylindrical space), then it should still be

uniformly distributed in the posterior space (spherical space).
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Denoting %I (G) and %q (G) as the probability distributions of the scalar variables I and q respectively, then:

E[I] =
∫ 1

−1
G%I (G) 3G =

1
2

∫ 1

−1
G 3G =

1
4
G2

���1
−1
= 0

E[I2] =
∫ 1

−1
G2%I (G) 3G =

1
2

∫ 1

−1
G2 3G =

1
6
G3

���1
−1
=

1
3

E[1 − I2] = 1 − 1
3
=

2
3

E[cos q] =
∫ c

−c
cos G%q (G) 3G =

1
2c

∫ c

−c
cos G 3G =

1
2c

sin G
���c
−c
= 0

E[sin q] =
∫ c

−c
sin G%q (G) 3G =

1
2c

∫ c

−c
sin G 3G = − 1

2c
cos G

���c
−c
= 0

E[cos q sin q] =
∫ c

−c
cos G sin G%q (G) 3G =

1
2c

∫ c

−c
cos G sin G 3G = − 1

4c
2>B2G

���c
−c
= 0

E[cos2 q] =
∫ c

−c
cos2 G%q (G) 3G =

1
2c

∫ c

−c
cos2 G 3G =

1
8c
(2G + sin 2G)

���c
−c
=

1
2

E[sin2 q] =
∫ c

−c
sin2 G%q (G) 3G =

1
2c

∫ c

−c
sin2 G 3G =

1
8c
(2G − sin 2G)

���c
−c
=

1
2

Therefore, given that I and q are independently distributed, we have that:

E[e] =



E[
√

1 − I2 cos(q)]

E[
√

1 − I2 sin(q)]

E[I]


=



E[
√

1 − I2]E[cos(q)]

E[
√

1 − I2]E[sin(q)]

E[I]


=



0

0

0


. (58)

Also, we have that:

E[ee) ] = E





(1 − I2) cos2 q (1 − I2) cos q sin q (1 − I2)I cos q

(1 − I2) cos q sin q (1 − I2) sin2 q (1 − I2)I sin q

(1 − I2)I cos q (1 − I2)I sin q I2




=

1
3
O. (59)

B. Multiplicative Extended Kalman Filter Formulation
We present the Multiplicative Extended Kalman Filter (MEKF) formulation for the problem in hand. The filter

herein presented is based on the formulations in [11] and [13]. However, our equations differ from the works cited since

we do not have gyroscope measurements, and we do not estimate the gyroscope measurement bias. In addition, the

assumption that the angular velocity is constant implies no process noise in the dynamics propagation.
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We define the reference trajectory kinematics:

¤q' =
1
2
8' ⊗ q', (60)

where q' ,

[
@'B q)

'E

])
is the reference quaternion and 8' is the reference angular velocity of the reference attitude.

The true attitude q can be represented as:

q = Xq ⊗ q', (61)

where Xq ,

[
X@B Xq)E

])
represents the rotation from q' to the true rotation.

Differentiating Eq. 61, we get:

¤q = X ¤q ⊗ q' + Xq ⊗ ¤q' =⇒ 1
2
8 ⊗ q = X ¤q ⊗ q' +

1
2
Xq ⊗ 8' ⊗ q' . (62)

Post-multiplying Eq. 62 by q−1
'

and isolating X ¤q, we get:

X ¤q = 1
2

(
8 ⊗ q ⊗ q−1

'
− Xq ⊗ 8'

)
=

1
2

(
8 ⊗ Xq − Xq ⊗ 8'

)
=

1
2

©­­­«

0 −8

8 −[8×]



X@B

XqE

 −

X@B −Xq)E

XqE X@B O − [XqE×]




0

8'


ª®®®¬ (63)

After some algebraic manipulations, we get that:

X ¤qB =
(
8' − 8

))
XqE , X ¤qE =

(
8 − 8'

)
XqB −

(
8 + 8'

)
× XqE .

We define the scaled attitude error Gibbs vector:

Xg , 2
XqE
XqB

, (64)

The Gibbs vector associated with the noise quaternion of Eq. 7 is given by:

g# : = 2e# : tan
\:

2
. (65)
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The transformation from Gibbs vector to quaternion is done as follows:

X@B =

√
2

2 + ||Xg | |2
, XqE =

1
2
X@BXg. (66)

One should notice that E[g# ] = 0. In addition, assuming a small angle approximation, then tan2 \:
2 ≈

\2
:

4 , leading

to E[g# g)
#
] = 1

3f
2
\
O.

The Gibbs error kinematics is described as:

X ¤g = 2
X ¤qE
XqB
− 2

XqE
XqB

X ¤qB
XqB

=

[
O + 1

4XgXg
)

] (
8 − 8'

)
− 1

2

(
8 + 8'

)
× Xg.

Assuming the first order approximations XgXg) ≈ 0, and X8 × Xg ≈ 0, we get to:

X ¤g ≈ X8 − 8' × Xg. (67)

Defining the state vector ^ ,

[
Xg) 8)

])
and the dynamics of Eq. 67, then we have the linearized state dynamics:

¤̂ =


−[8×] O3

03 03

︸           ︷︷           ︸
,G

^ . (68)

We define the state transition matrix:

G3 [:] , 4�X: , X: , C:+1 − C: . (69)

In the propagation step, the following equations are used:

q:+1 |: = L(8: |: )q: |: ,

8:+1 |: = 8: |: ,

V:+1 |: = G3 [:]V: |:G)3 [:],

where V: |: , E[^: |:^): |: ], and V:+1 |: , E[^:+1 |:^):+1 |: ], and L(8: |: ) is defined in Eq. 5.
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As for the measurement model, only quaternion measurements are available. The innovation term is given by:

.: = 2
q̃E [:]
@̃B [:]

, (70)

where @̃B [:] and q̃E [:] are, respectively, the scalar and vector parts of q̃: , defined as:

q̃: ,


@̃B [:]

q̃E [:]

 , q̂: ⊗ q−1
: |:−1.

Assuming the measurement noise defined in Eq. 65, the measurement covariance is given by X: , E[g# g)
#
] =

1
3f

2
\
O.

The measurement update step uses the following expressions:

N: =

[
O3 03

]
,

Y: = N:V: |:−1N
)
: + X: ,

Q: = V: |:−1N
)
: Y
−1
: ,

Δx: |: = Q:.: ,

V: |: = (O − Q:N: )V: |:−1 (O − Q:N: )) + Q:X:Q): ,

where Δx: |: ,

[
ΔG1 ΔG2 ΔG3 ΔG4 ΔG5 ΔG6

])
is the incremental state update typical for standard EKF

formulations.

The updated state Xg: |: can be obtained from Δx: |: as Xg: |: =
[
ΔG1 ΔG2 ΔG3

])
. Bearing in mind that Xg: |:

represents the attitude error respective to Xq: (see Eqs. 61 and 64), then Xq: |: can be obtained from Xg: |: using the

transformation in Eq. 66. Defining Δ8 =

[
ΔG4 ΔG5 ΔG6

])
, the updated states are given by:

q: |: = Xq: |: ⊗ q: |:−1,

8: |: = 8: |:−1 + Δ8.
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