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Abstract

A particle filter with an expectation-maximization (EM) clustering algorithm to approximate the state’s distribution

with Gaussian mixture models (GMMs) is proposed to simultaneously estimate the position, velocity, attitude, angular

rates, and surface parameters of a space object (SO) in the near-Geostationary Earth Orbit (GEO). Recent work shows

that the unscented Kalman filter applied to this problem is susceptible to divergence due to the presence of the many

uncertain states estimated. The underlying reasons of the filter’s divergence have not yet been completely revealed

and preliminary attributed to information dilution. Under the scenario considered in this paper, it is demonstrated

through numerical simulation that the underlying reason for the filter’s divergence in SO tracking is due to the severe

nonlinearities of light-curve measurement data coupled with weak observability; rather than information dilution.

In addition to the novel particle filter, two alternative estimation techniques based on modifications of the extended

Kalman filter (EKF) and unscented Kalman filter (UKF) are introduced to reduce the computational burden while still

mitigating filter divergence.

Keywords: Space situational awareness, Information dilution theorem, Particle filter, Gaussian mixture models

1. Introduction

Space situational awareness (SSA) refers to knowledge of our near-space environment, including the tracking and

identification of space objects (SOs) orbiting Earth. This task encounters many challenges and one of them is the lim-

ited number of sensors available to track and identify an ever growing number of SOs. To extract as much information

as possible from the sparse data, sophisticated techniques need to be used to estimate and predict the states of SOs.

Precise models of non-gravitational forces acting on SOs are needed for accurate orbit prediction and propagation.

Solar radiation pressure (SRP) is the main non-gravitational force acting on SOs in or around Geostationary Earth

Orbits (GEO) and it can be modeled using the shape and reflectivity properties of the body (McMahon and Scheeres,

2015; Kelecy et al., 2012).

Light curve data, which is an object’s observed brightness, have been used to analyze attitude observability and
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to estimate the shape and attitude of SOs (Hinks et al., 2013; Wetterer and Jah, 2009; Linares et al., 2014d; Fan and

Frueh, 2019; Linares et al., 2013). Since light curve observations are sensitive to the object’s surface parameters, these

can also be estimated from light curve data (Wetterer et al., 2014; Linares and Crassidis, 2018). Furthermore, it is

shown that the space object mass as well as the position, velocity, angle, angular velocity and surface parameters can

be estimated by fusing the two data types, the angles (line-of-sight) and apparent brightness magnitude of an object

(Linares et al., 2012, 2014b,c). Estimation of this many parameters with relatively little observations variety, however,

has been shown to cause diverged in an unscented Kalman filter (UKF) when too many states with large uncertainty

are estimated simultaneusly (Wetterer et al., 2013). Wetterer et al. (2013) attributes the divergence to information

dilution (Fraiture, 1986).

According to the information dilution theorem (IDT), when additional biases are added to an estimation problem, it

is possible that the uncertainties of the original states in the model increase (Rapoport and Bar-Itzhack, 2001). More-

over, filter divergence may occur because the limited information is not being used in the most proper way (Wetterer

et al., 2013). To resolve the information dilution problem in the context of SO tracking, multiple-model adaptive

estimation (MMAE) and unscented Schmidt-Kalman filter were implemented to determine which states should be

estimated (Linares et al., 2014d; Dianetti et al., 2018; Mallik and Jah, 2019; Richardson et al., 2019). Dianetti et al.

(2018) quantifies system observability with the information matrix of an estimator and uses the system’s observabil-

ity to determine which states should be estimated. Mallik and Jah (2019) use an unscented Schmidt-Kalman filter

algorithm based on the physical relationship between SRP and observed albedo-area to find low observable states and

to consider their contribution to the uncertainty of the system without estimating them. The Schmidt-Kalman filter

(Schmidt, 1966) only estimates a subset of the states, while “considers” the effect of other statess without attempting to

infer their value; with this approach the effective number of estimated states is reduced and the effects of information

dilution are mitigated. Richardson et al. (2019) also employ an unscented Schmidt-Kalman filter algorithm and use

the Fisher information matrix (FIM) to measure of the observability of the system; when the FIM becomes close to

singular, some states are considered rather than estimated. Considering states in a recursive estimator mitigates infor-

mation dilution, and to date no study exists that conclusively establishes whether concurrently estimating a dynamic

attitude state, angular velocity, and surface parameters from light curve data using a recursive estimator is feasible or

if, conversely, information dilution and/or the lack of observability prevent such an estimator to improve knowledge of

the system or even avoid divergence. In this paper, we demonstrate that the principal driver to divergence is the severe

nonlinearity of the problem and that it is possible to design a recursive estimator able to improve knowledge of both

the attitude and the surface parameters of SOs. The detrimental effects of nonlinearities are exacerbated by informa-

tion dilution making the UKF design in Wetterer et al. (2013) diverge, but information dilution alone is not cause for

divergence; as shown by the algorithms proposed in this work. In this work, the system is studied using three different

recursive estimation techniques that successfully estimate all states simultaneously without resorting to only consider

the uncertainty of some of them. The three algorithms used are: a newly proposed modification of particle filter with

Gaussian mixture models (PFGMM) (Raihan and Chakravorty, 2018), the truncated interval unscented Kalman filter

(TIUKF) (Teixeira et al., 2010), and the truncated extended Kalman filter (TEKF) (Simon and Simon, 2010).
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The first estimation technique used here is based on sequential Monte Carlo methods. Previous works using sequen-

tial Monte Carlo methods include Linares et al. (2014a), where attitude and angular velocity of an SO are estimated

from light curve data using a regularized particle filter with the generalized Rodrigues parameters used for local attitude

error representation. More recently, a marginalized particle filter is used to reduce computational cost of a conventional

particle filter (PF) for attitude and angular velocity estimation from light curve data (Coder et al., 2018a,b). The use

of a PF in this type of problems is particularly appealing for two reasons: i. it provides a nonlinear approximation of

the optimal nonlinear estimator, and ii. it handles much larger initial uncertainties than linear estimators (such as the

extended Kalman filter (EKF) or the UKF); in fact, Coder et al. (2018a) assume a a uniform initial attitude uncertainty

of almost 360 degrees. Coder et al. (2018a,b) are very successful in estimating attitude, but do not attempt to concur-

rently estimate both attitude and surface parameters. It is the addition of surface parameters that causes information

dilution and divergence in Wetterer et al. (2013). This work also uses a sequential Monte Carlo filter to estimate both

the attitude and rate of the vehicle, but the filter’s estimated states include surface parameters and translational states.

Surface parameters are successfully estimated in (Wetterer et al., 2014) and (Linares and Crassidis, 2018); the former

uses multiple model adaptive estimation, essentially choosing between a finite set of possible values for the surface

parameters, while the latter is perhaps the closest existing results to this work. The key differences between the two

works is that Linares and Crassidis (2018) assume a known (constant) angular velocity, hence the attitude estimation

problem can be fully solved by determining the attitude at a single time; therefore all estimated quantities are con-

stant/static, and a batch approach for Bayesian inverse problems is used by the authors. This work, on the other hand,

does not assume a priori knowledge of the angular velocity, which is instead estimated together with the attitude and

surface parameters in a recursive dynamic filter.

The proposed sequential Monte Carlo method is a modification of the work by Raihan and Chakravorty (2018) but

a different clustering algorithm (expectation-maximization, EM) is used to form the Gaussian Mixture Model (GMM)

density approximation. This modification overcomes issues encountered when applying to this problem two existing

particle/GMM hybrid algorithms, Yun and Zanetti (2019) and Raihan and Chakravorty (2018). Yun and Zanetti (2019)

introduces a new sequential Monte Carlo algorithm which treats each particle of the pre-propagation distribution as

a Gaussian component with a zero or small covariance matrix; the Gaussian sum filter (GSF) algorithm is used to

calculate the posterior distribution. Raihan and Chakravorty (2018) introduces the particle Gaussian mixture filter

(PGMF) and employs an ensemble of randomly sampled states for the propagation of the conditional state probability

density. The propagated ensemble for representing the propagated PDF is clustered using K-means algorithm. While

K-means is a simple approach to clustering, it does not produce adequate results for the problem at hand. The K-

means algorithm performs a hard assignment of data points to clusters, which means each data point is associated

uniquely with one cluster, hence only the points in the same cluster are used to update each mean. Additionally, the

K-means algorithm does not account for the covariance. The K-means algorithm can be interpreted as a special case

of GMMs clustering in which all mixture weights are equal and the covariance matrices of the mixture components

are given by ξI , where ξ is a variance parameter and I is the identity matrix. The EM algorithm for GMMs used in

this paper as it performs a soft assignment based on the posterior probabilities, thus obtaining the proper covariance
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of the components. In addition, to this new nonlinear filter, the modified UKF and EKF are also shown to successfully

mitigate the filter divergence issues while reducing the overall computational complexity.

The remainder of this paper is organized as follows. First, the dynamics and measurement models are described

and the filter states are presented. Then, the various nonlinear estimation techniques are introduced in section III. In

section IV, simulation results are shown using five filtering algorithms followed by some concluding remarks on the

methodology and results.

2. System Models

In this paper, the inertial position and velocity of SOs are denoted by rI = [x y z]
T and vI = [vx vy vz]

T,

respectively. The quaternion, which is based on the Euler axis of rotation n and rotation angle θ, is defined as

q =
[
sin(θ/2)nT cos(θ/2)

]T
=
[
%T q

]T
and the angular velocity of the SO with respect to the inertial frame,

expressed in body frame, is denoted by ωBB/I = [ωx ωy ωz]
T.

2.1. Dynamics Model

The orbital dynamics of SO in Earth-centered inertial (ECI) coordinates are modeled by

r̈I = − µ
r3
rI + aIJ2 + aIsrp (1)

where µ is the Earth’s gravitational parameter, r is the Euclidean norm of rI , aIJ2 is the gravitational perturbation due

to non-spherical nature of Earth, and aIsrp is the acceleration perturbation due to SRP.

The J2 perturbation acceleration equation computes the three component forces in the ECI frame.

ẍ = F

(
1− 5

(z
r

)2) x

r
(2)

ÿ = F

(
1− 5

(z
r

)2) y

r
(3)

z̈ = F

(
3− 5

(z
r

)2) z

r
(4)

where

F = −3

2
J2

( µ
r2

)2(RE
r

)2

(5)

where J2 is the second zonal harmonic coefficient and RE is the Earth’s equatorial radius. Higher order spherical

harmonics are neglected without loss of generality. At geosynchrounous distances, the J2 term is almost negligible

and higher order spherical harmonics are not needed to demonstrate the efficacy of the proposed methodologies.

SRP represents the primary non-gravitational force acting on SOs in GEO and the acceleration due to SRP is

modeled using the shape of the body. In this paper, it is assumed that the shape model consists of a finite number of

flat facets; the ith facet is defined by a set of three orthonormal basis vectors uBu , uBv , and uBn expressed in the body

coordinates. The unit vector uBn points outward normal of the facet, whereas the vectors uBu and uBv lie in the plane
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Figure 1: Geometry of reflection

of the facet. The geometry of the modeled reflection is shown in Figure 1. The acceleration perturbation due to SRP

is then given by (Wetterer et al., 2013):

aIsrp =

Nfacets∑
i=1

aIsrp(i) (6)

aIsrp(i) = −
SFA(i)

(
uIn(i) · uIsun

)
mc

(
(1− sF0)uIsun +

(
2

3
dρ+ 2sF0

(
uIn(i) · uIsun

))
uIn(i)

)
(7)

where Nfacets is the number of facets, SF is the solar flux, m is the mass of the SO, c is the speed of light, and A(i)

is the area of the ith facet. The unit vector uIn(i) is the normal vector pointing outward along the ith surface and

uIsun is the unit vector pointing from the SO to the Sun. Scalars s and d are the fraction of the specular bidirectional

reflectance Rs and the diffuse bidirectional reflectance Rd, respectively, where s + d = 1. F0 and ρ are the specular

and diffuse reflectance of the facet i at normal incidence, respectively.

As commonly done in aerospace engineering applications (Zanetti, 2019), the direction cosine matrix is used as the

attitude matrix representation in this study. The relationship between the vector vB in the body frame and the vector

vI in the inertial frame is described by the attitude matrix A(q) such as

vB = A(q)vI (8)

and the attitude matrix can be parameterized in terms of the quaternion as follows:

A(q) = I3×3 − 2q[%×] + 2[%×]2 (9)

where

[a×] =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 (10)
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is the skew-symmetric matrix representation of the cross product for a vector a. The quaternion dynamic equation is

given by

q̇ =
1

2
Ω · q (11)

where

Ω =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (12)

is the skew-symmetric form of the body rotation about the inertial frame. The angular velocity dynamic equation is

expressed as follows:

ω̇BB/I = J−1SO

(
TBsrp −

[
ωBB/I×

]
JSOω

B
B/I

)
(13)

where JSO is the inertia matrix of the SO and TBsrp is the total torque acting on the SO due to SRP in body frame. The

force due to SRP can be assumed to act on the centroid of each surface. Then, the total torque is calculated by

TBsrp = m

Nfacets∑
i=1

[
lB(i)×

]
A(q)aIsrp(i) (14)

where lB(i) is the position vector from the center of the mass of the SO to the geometric center of the ith facet in body

frame.

2.2. Measurement Model

Angle data in the form of azimuth (az) and elevation (el) are measures used to estimate the states of SO. The angle

observation equations are expressed as follows:

az = tan−1
(
ρE
ρN

)
(15)

el = sin−1
(
ρU

‖dI‖

)
(16)

where 
ρE

ρN

ρU

 =


1 0 0

0 cos(π2 − λ) sin(π2 − λ)

0 − sin(π2 − λ) cos(π2 − λ)




cos(π2 + θ) sin(π2 + θ) 0

− sin(π2 + θ) cos(π2 + θ) 0

0 0 1

dI (17)

where dI is the position vector from an observer to the SO, ‖ · ‖ means the Euclidean norm, θ and λ are the sidereal

time and geodetic latitude of the observer, respectively, and [ρE ρN ρU ]
T is the position vector converted from the

inertial to the local topocentric East-North-Up coordinates. In this study, light travel time delay is not considered.

Along with the azimuth and elevation, the light curves, which are the time-varying apparent brightness measure-

ments of the SO, are also used. The apparent brightness magnitude measured by the observer is computed by

mapp = −26.7− 2.5 log10

∣∣∣∣∣∣
Nfacets∑
i=1

fr(i)A(i)
(
uIn(i) · uIsun

) (
uIn(i) · uIobs

)
‖dI‖2

∣∣∣∣∣∣ (18)
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where -26.7 is the apparent magnitude of the Sun, uIobs is the unit vector pointing from the SO to the observer, and

fr(i) is the bidirectional reflectance distribution function (BRDF) for the ith facet. The BRDF models light distribution

of a surface due to incident light and it is a function of two directions, one toward the light source and one toward

the observer (Linares et al., 2014d; Ashikhmin and Shirley, 2000). The BRDF can be decomposed into a specular

component and a diffuse component as follows:

fr(i) = sRs(i) + dRd(i) (19)

The specular reflectance is mirror-like and the diffuse reflectance is Lambertian which means that light is equally

reflected in all directions. These bidirectional reflectances are calculated differently for the various models. In this

paper, we use a modified version of the Phong model with a simple form of a non-Lambertian diffuse reflectance

(Ashikhmin and Shirley, 2000). Under the flat facet assumption, the specular bidirectional reflectance is given by

Rs(i) =

√
(nu(i) + 1) (nv(i) + 1)

8π

(
uIn(i) · uIh

)nu(i)(uI
u(i)·u

I
h)

2
+nv(i)(uI

v(i)·u
I
h)

2

uIn(i) · uIsun + uIn(i) · uIobs − (uIn(i) · uIsun)
(
uIn(i) · uIobs

)F (i) (20)

where nu(i) and nv(i) are the anisotropic reflectance properties of the ith surface along the uBu (i) and uBv (i) direc-

tions, respectively. Without loss of functionality, in this study they are assumed to be set equal to each other for the

sake of simplicity (nu(i) = nv(i) = n(i)). Then, Eq. (20) is simplified as follows:

Rs(i) =
(n(i) + 1)

8π

(
uIn(i) · uIh

)n(i)
uIn(i) · uIsun + uIn(i) · uIobs − (uIn(i) · uIsun)

(
uIn(i) · uIobs

)F (i) (21)

where uIh is the normalized half vector which bisects the angle between uIsun and uIobs:

uIh =
uIsun + uIobs
‖uIsun + uIobs‖

(22)

and the Fresnel reflectance F (i) is approximated as

F (i) = F0(i) +

(
1

s
− F0(i)

)(
uIsun · uIh

)
(23)

The diffuse bidirectional reflectance is calculated as follows:

Rd(i) =
28ρ

23π
(1− sF0)

[
1−

(
1− u

I
n(i) · uIsun

2

)5
][

1−
(

1− u
I
n(i) · uIobs

2

)5
]

(24)

The apparent magnitude is measured differently mainly depending on the SO attitude and it has the highest value

when the surface normal vector uIn and the half vector uIh are in the same direction. The various values of apparent

magnitude depending on the SO attitude are analyzed in Hinks et al. (2013).

2.3. Filter States

In this paper, it is assumed that the shape of the SO is a cube and each facet of it has the same BRDF surface

parameters. The area and mass of the SO are assumed to be known. In addition, the specular reflectance F0 and

diffuse reflectance ρ at normal incidence can be set to be equal to each other because the difference between specular
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and diffuse reflectance can be expressed by specular s and diffuse fraction parameter d. Thus, the three unique surface

parameters to be estimated are n. ρ, d, and the obey the following constraints:

n < 0, 0 ≤ ρ ≤ 1, 0 ≤ d ≤ 1, s+ d = 1

Therefore, the state vector utilized is:

x =

[
qT

(
ωBB/I

)T (
rI
)T (

vI
)T

n ρ d

]T
(25)

3. Nonlinear Estimation Techniques for Highly Nonlinear Systems

This section presents the three different estimation algorithms used to analyze the problem at hand: particle Gaussian

mixture filter with an EM algorithm, truncated interval unscented Kalman filter, and truncated extended Kalman filter.

3.1. Particle Gaussian Mixture Filter with an EM Algorithm

The particle filter (PF) with an EM clustering algorithm for GMMs is proposed in this section. A recursive algo-

rithm is used, i.e. knowledge of the distribution p(xk−1|yk−1) at the prior time is assumed and approximated by N

identically distributed (i.i.d.) samples x(i)
k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (26)

where k is an integer that indicates the discrete time step, y is a measurement vector, and δ(·) is the Dirac delta

function. As in the bootstrap particle filter (Arulampalam et al., 2004), a set of samples at the next time step is generated

using the Markov transition kernel p(xk|xk−1). Throughout this research, SRP and J2 are the only perturbations

included and additional process noise is neglected. This is a particularly challenging assumption, as particle filters

typically rely on process noise to overcome impoverishment.

The next step is to cluster the data into Gaussian mixtures using an EM clustering algorithm. The EM algorithm for

GMM approximates the PDF of xk by combining several Gaussian components having different means, covariance

matrices, and weights. With the i.i.d. data set, the likelihood function for the GMM is expressed by

p(xk|π, µ,Σ) =

N∏
i=1

K∑
j=1

πjn(x
(i)
k |µj ,Σj) (27)

where K is a preassigned number of clusters, n(x|µ,Σ) represents the Gaussian PDF with mean µ and covariance

Σ; and µj , Σj , and πj are the means, covariance matrices, and weights of the jth Gaussian component. The PDF’s

normalization and positivity properties lead to the following constraints on the weights:

πj ≥ 0, ∀j
K∑
j=1

πj = 1 (28)
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The goal of the EM clustering algorithm is to maximize the likelihood function with respect to the clustering parame-

ters which are means and covariance matrices of the components, as well as the weights. The algorithm is summarized

as follows:

1. Initialize the meansµj , covariance matrices Σj and weights πj , and evaluate the initial value of the log likelihood.

lnp(xk|π, µ,Σ) =

N∑
i=1

ln

 K∑
j=1

πjn(x
(i)
k |µj ,Σj)

 (29)

2. (E step) Evaluate the responsibilities using the current clustering parameter values.

γ(z
(i)
j ) = p(z

(i)
j = 1|x(i)

k ) =
πjn(x

(i)
k |µj ,Σj)∑K

m πmn(x
(i)
k |µm,Σm)

(30)

where γ(z
(i)
j ) is the responsibility of a sample i with respect to a jth Gaussian distribution.

3. (M step) Estimate the new clustering parameters using the current responsibilities to maximize the likelihood.

(The following equations are derived in Bishop (2006))

µj =

∑N
i=1 γ(z

(i)
j )x

(i)
k∑N

i=1 γ(z
(i)
j )

(31)

Σj =

∑N
i=1 γ(z

(i)
j )(x

(i)
k − µj)(x

(i)
k − µj)T∑N

i=1 γ(z
(i)
j )

(32)

πj =
1

N

N∑
i=1

γ(z
(i)
j ) (33)

4. Evaluate the value of the log likelihood and check for convergence of it. If the convergence criterion is not

satisfied, replace the old clustering parameters with the new ones and return to step 2.

In this paper all components of the GMM are taken with the same covariance matrix, this assumption avoid the

GMMs from being too overlapped, while not enforcing hard clustering as in K-means.

Finally, we can incorporate the measurement information by updating the means and covariance matrices of all K

components using Kalman measurement update. The mixture weights need to be updated as well using the components

likelihood functions. We then draw N i.i.d. samples from the posterior distribution; from these samples, we construct

a Bayesian estimate and use them as a starting point for the next iteration. The details of the measurement update and

the method to draw N i.i.d. samples from a GMM are explained in Yun and Zanetti (2019).

Two approaches to enforce the surface parameters constraints are evaluated. The first approach is to modify them

to unconstrained proxy values. For this study, the same conversion equation used in Wetterer et al. (2013) is applied
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to convert the surface parameters to the corresponding proxy value and vice versa:

p1 = ln(n), n = exp(p1) (34)

p2 =
1

2
ln
(

ρ

1− ρ

)
, ρ =

1

2
(tanh(p2) + 1) (35)

p3 =
1

2
ln
(

d

1− d

)
, d =

1

2
(tanh(p3) + 1) (36)

Alternatively, rather than transforming the surface parameters, we can modify the filter to exploit the additional in-

formation on the constraints and improve the performance of the filter. In this paper, we use the modified rejection-

sampling approach which enforces the constraints by simply discarding the particles violating them in the prediction

step. Although the number of total samples will be reduced, it is shown that the algorithm maintains the generic

properties of the PF (Papi et al., 2012).

The filter’s density, under the assumption of a perfect clustering scheme, converges in probability to the true filter

density (Raihan and Chakravorty, 2018). The other two approaches studied are based on the constrained UKF and

EKF with the PDF truncation approach, which are computationally cheaper and will be presented in the following two

subsections.

3.2. Truncated Interval Unscented Kalman Filter

The UKF is a linear estimator for nonlinear systems which employs statistical linearization of nonlinear functions

through a set of sigma points (Lefebvre et al., 2002). The most common schemes to calculate sigma points effectively

employs the Gaussian approximation (Julier et al., 2000). The truncated interval unscented Kalman filter (TIUKF)

is used in this study to include the inequality constraints on the surface parameters. The TIUKF is composed of two

parts: the interval constrained approach which enforces the sigma points interval constraints and the PDF truncation

approach which truncates the PDF at the constraint edges (Vachhani et al., 2006; Simon, 2006; Teixeira et al., 2010).

The generic nonlinear dynamics is given by

xk+1 = fk(xk) + νk (37)

where k is the time step, xk is an nx× 1 vector, fk is some nonlinear function, and the process noise νk is zero-mean

white noise, albeit in this application it will be taken as zero. The measurement is

yk = hk(xk) + ηk (38)

where yk is a measurement vector, hk is some non-linear function, and ηk is the measurement noise consisting of a

zero-mean, white sequence with covariance matrix Rk, independent from the initial distribution of x0. In addition,

assume that the state vector satisfies the interval constraint as follows:

bk ≤ xk ≤ ck (39)
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where bk ∈ Rnx and ck ∈ Rnx are known vectors. If the state vector xi,k, where i = 1, · · · , nx, is one-sided, we set

bi,k = −∞ or ci,k =∞.

Given an nx × nx error covariance matrix P xxk|k, we generate the 2nx + 1 sigma points Xk|k holding

bk ≤ Xj,k|k ≤ ck, j = 0, · · · , 2nx. (40)

To satisfy the inequality constraints, the sigma points are chosen as follows:

Xk|k = x̂k|k11×(2nx+1) + [0nx×1, θ1,kcol1 [Sk] , · · · , θ2nx,kcol2nx [Sk]] (41)

where x̂k|k is the a posteriori state estimate which is assumed to satisfy the interval constraints at time instant k,

11×(2nx+1) is an indicator function,

Sk =

[(
P xxk|k

)1/2
−
(
P xxk|k

)1/2]
, (42)

and

θj,k = min
(√

nx + λU , Θ1, Θ2

)
, for j = 1, · · · , 2nx (43)

where, for i = 1, · · · , nx,

Θ1 = min
j:S(i,j),k>0

(
∞,

ci,k − x̂i,k|k
S(i,j),k

)
, Θ2 = min

j:S(i,j),k<0

(
∞,

bi,k − x̂i,k|k
S(i,j),k

)
, (44)

and λU = α2 (nx + κ)−nx is a scaling parameter (Wan and Merwe, 2000). The constant α determines the spread of

the sigma points around x̂k|k and it is usually set to a small positive number (10−4 ≤ α ≤ 1). κ is a secondary scaling

parameter which is usually set to 3 − nx. Based on the above sigma points, the associated weights are computed as

follows:

Wm
0 = ek, W c

0 = ek +
(
1− α2 + β

)
(45)

Wm
j = W c

j = dkθj,k + ek, for j = 1, · · · , 2nx (46)

where the constant β is used to include prior knowledge of the distribution of x, and

dk =
2λU − 1

2 (nx + λU )
(∑nx

j=1 θj,k − (2nx + 1)
√
nx + λU

) (47)

ek =
1

2 (nx + λU )
− 2λU − 1

2
√
nx + λU

(∑nx

j=1 θj,k − (2nx + 1)
√
nx + λU

) (48)

The derivation of the weights equations is described in Vachhani et al. (2006).

Figure 2 illustrates how the sigma points of the TIUKF are chosen compared to the sigma points of the conventional

UKF in two dimensional system. When the scaling parameters are α = 1, β = 2, and κ = 1, and the interval

constrains are bk = [3 2]T and ck = [8 8]T, the mean and covariance matrix of the TIUKF are obtained as follows:

x̂UKF =

4

4

⇒ x̂TIUKF =

4.3717

4.2587

 (49)

P̂ xxUKF =

3 0

0 3

⇒ P̂ xxTIUKF =

1.7122 0.0962

0.0962 1.8456

 (50)
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W0
'
 = 0.24

W1
'
 = 0.17

W2
'
 = 0.17

W3
'
 = 0.22

W4
'
 = 0.21

𝑥 =  
4.37
4.26

  

(b) Sigma points and weights of TIUKF

Figure 2: Comparison of the sigma points and weights in UKF and TIUKF

With the above sigma points, the time update equations are the same as the conventional UKF:

Xj,k+1|k = fk(Xj,k|k), j = 0, · · · , 2nx (51)

x̂k+1|k =

2nx∑
j=0

Wm
j Xj,k+1|k (52)

P xxk+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Xj,k+1|k − x̂k+1|k

]T
(53)

where x̂k+1|k is the a priori state estimate and P xxk+1|k is the a priori state estimation error covariance. With the

propagated estimates x̂k+1|k and P xxk+1|k, a new set of sigma points Xk+1|k of the TIUKF which satisfy the interval

constraints and the corresponding weights are recalculated. Then, the measurement update equations are expressed as

follows:

Yj,k+1|k = hk+1(Xj,k+1|k), j = 0, · · · , 2nx (54)

ŷk+1 =

2nx∑
j=0

Wm
j Yj,k+1|k (55)

P yyk+1|k =

2nx∑
j=0

W c
j

[
Yj,k+1|k − ŷk+1

] [
Yj,k+1|k − ŷk+1

]T
+Rk (56)

P xyk+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Yj,k+1|k − ŷk+1

]T
(57)

x̂k+1|k+1 = x̂k+1|k + P xyk+1|k

(
P yyk+1|k

)−1 (
yk+1 − ŷk+1

)
(58)

P xxk+1|k+1 = P xxk+1|k − P
xy
k+1|k

(
P yyk+1|k

)−1 (
P xyk+1|k

)T
(59)

12



where P xxk+1|k+1 is the a posteriori state estimation error covariance, P yyk+1|k is the measurement residual covariance,

and P xyk+1|k is the cross covariance.

We then perform the PDF truncation process. The constrained state estimate is the mean of the truncated Gaussian

PDF at the constraint edges. The state estimate is normalized in a way that its components are statistically independent

of each other to reduce computational effort to determine the truncated PDF. Then the part of the Gaussian PDF

which is outside of the constraints is removed. After all the constraints are sequentially applied to the corresponding

component, we then revert the normalization process to obtain the constrained state estimate. The details of the

algorithm are explained in Simon (2006) and Simon and Simon (2010).

3.3. Truncated Extended Kalman Filter

The EKF is a nonlinear approximation of the Kalman filter that can be applied to nonlinear systems using the same

Kalman filtering framework. Given the system model, Eq. (37) and Eq. (38), the time update equations are described

as follows:

x̂k+1|k = fk(x̂k|k) (60)

P xxk+1|k = FkP
xx
k|kF

T
k (61)

Fk =
∂fk(x)

∂x

∣∣∣∣
x=x̂k|k

(62)

where Fk is the Jacobian of the dynamics evaluated at the posterior mean x̂k|k. The measurement update equations

are:

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk+1 − hk+1(x̂k+1|k)

)
(63)

P xxk+1|k+1 = P xxk+1|k −Kk+1Wk+1K
T
k+1 (64)

Kk+1 = P xxk+1|kH
T
k+1W

−1
k+1 (65)

Wk+1 = Hk+1P
xx
k+1|kH

T
k+1 +Rk+1 (66)

Hk+1 =
∂hk+1(x)

∂x

∣∣∣∣
x=x̂k+1|k

(67)

where Hk+1 is the Jacobian of the measurement evaluated at the prior mean x̂k+1|k, Kk+1 is the Kalman gain, and

Wk+1 is the measurement residual covariance. The PDF truncation step which is explained in the previous subsection

is then applied to the truncated extended Kalman filter (TEKF) (Simon and Simon, 2010).

Despite of the additional information on the constraints, the severe nonlinearities of the system can lead to diver-

gence of the TEKF. For example, the approximation error caused by truncating the nonlinear functions to the first-order

(e.g. Eq. (62) and Eq. (67)) can be significant. It is well-known that when measurement noise is small while the a

priori uncertainty of the state estimate is relatively large, nonlinear effects can become very significant (Maybeck,

1982; Zanetti et al., 2010).
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To analyze nonlinear effects on the measurement update in detail, a Gaussian second-order filter is considered which

includes the second-order terms in the Taylor series expansion (Maybeck, 1982). The Kalman gain and measurement

residual covariance in the Gaussian second-order filter are expressed as follows:

K2nd
k+1 = P xxk+1|kH

T
k+1

(
W 2nd
k+1

)−1
(68)

W 2nd
k+1 = Hk+1P

xx
k+1|kH

T
k+1 +Rk+1 +Bk+1 (69)

where matrixBk+1 is the contribution of the second-order effects and the ijth component ofBk+1, under the Gaussian

approximation, is given by

Bij,k+1 =
1

2
trace

(
∂2hi,k+1(x)

∂x∂xT

∣∣∣∣
x=x̂k+1|k

P xxk+1|k
∂2hj,k+1(x)

∂x∂xT

∣∣∣∣
x=x̂k+1|k

P xxk+1|k

)
(70)

where hi,k+1 is the i-th component of hk+1(xk+1). Comparing the measurement residual covariance for the EKF

in Eq. (66) with the measurement residual covariance for the Gaussian second-order filter in Eq. (69) and observed

the Gaussian second-order filter gain is smaller than the standard EKF gain when the contribution of the second-order

term is significant. Consequently, the state estimation error covariance (Eq. (64)) of the standard EKF decreases more

quickly than the actual state error covariance when the contribution of the second-order term is not negligible.

The Gaussian second-order filter is rarely used in practice due to its reliance on the Gaussian approximation, an

alternative method to compensate for the high-order effects that allows for tuning are implemented in this paper:

Lear’s underweighting method (Zanetti et al., 2010). Lear’s approach to underweighting the measurement is to add a

percentage of the a priori estimation error covariance to the measurement residual covariance:

WU.W
k+1 = Hk+1P

xx
k+1|kH

T
k+1 +Rk+1 + βUWHk+1P

xx
k+1|kH

T
k+1 (71)

where βUW is a tuning parameter. The additional term, βUWHk+1P
xx
k+1|kH

T
k+1, in the measurement residual covari-

ance decreases the Kalman gain, thus reducing the state estimate and a posteriori state estimation error covariance

update.

Another approach to make the filter more robust in the presence of high uncertainty and nonlinearities is the consider

Kalman filter (Woodbury and Junkins, 2010). The effects of highly nonlinear states of the system can be “considered”

only, meaning the states are not updated in the filter. In other words, we only update the state estimates which are not

highly nonlinear and the corresponding error covariance based on the uncertainty of the highly nonlinear states. The

consider Kalman filter algorithm and derivation are explained in Woodbury and Junkins (2010). In this paper, both

methods are applied to the TEKF only when the contribution of the a priori estimated state uncertainty to the residual

covariance is much larger than the measurement noise covariance, i.e. Hk+1P
xx
k+1|kH

T
k+1 � Rk+1, which is a strong

indicator that nonlinear effects might become important (Zanetti et al., 2010).

4. Numerical Results

For the state estimation problem described in section 2, we adopted the scenario used in Wetterer et al. (2013)

to investigate the divergence and accuracy achievable by recursive estimators, i.e. non-batch. Wetterer et al. (2013)
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suggests divergence is due to information dilution, as the available data is scarce and not used in the most appropriate

way. We concur with this analysis in that information dilution coupled with severe nonlinearities causes divergence

in the UKF. However, information dilution alone is not responsible for divergence as a linear system does not exhibit

divergence. The numerical results in this section show that it is possible to design recursive estimators for this problem

that do not diverge and that improves the accuracy of all states. It is not only possible with sophisticated sequential

Monte Carlo methods, but also with an UKF or even an EKF when appropriate precautions are taken.

In the simulation, a SO is in a geosynchronous orbit with the following orbital elements: a = 42, 364.16932 km,

e = 0, i = 30◦, M0 = 91◦, and ω = Ω = 0. The simulation epoch is 15-March-2010 at 04:00:00 UT and the SO

does not pass through the shadow of the Earth during the simulation time. The shape of the SO is a cube with side

length 1m and a mass of 2kg and it is assumed that there is no self shadowing in the model. Apparent brightness

magnitude and angle measurements are simulated using a ground station located at the top of Haleakala in Maui

(latitude = 20.71◦, longitude = −156.26◦, and altitude = 3.5086km). Measurements are corrupted by additive zero-

mean Gaussian white noise with standard deviations of 0.1 for the brightness magnitude and 10 arc-seconds on the

azimuth and elevation observation. Both measurements are available every 2 seconds for two hours. The changes we

made in this simulation scenario with respect to Wetterer et al. (2013) are that (1) we used the azimuth and elevation

observations for angle data instead of right ascension and declination observation and (2) we omitted thermal radiation

pressure (TRP) in the dynamics as it did not change the results appreciably. The details of the initial truth state, the

initial estimated state, and the initial uncertainty are listed in Table 1. Note that the goal of this study is to estimate

attitude, attitude rate, and surface parameters simultaneously, and we do so using the initial conditions highlighted in

Wetterer et al. (2013) that include an initial attitude uncertainty of 10 degrees (3σ) and that cause their UKF design

to diverge. This is a challenging scenario as all surfaces of the SO are assumed to have the same parameters, hence

differnt surfaces are indistinguishable from one another and very large initial attitude errors cannot be resolved. Other

studies, including Linares et al. (2014a); Coder et al. (2018a) assume known surface parameters with different values

for each facet. Under those conditions, a particle filter is able to resolve initial orientation uncertainties much larger

than 10 degrees.

The first goal is to investigate whether information dilution alone can cause divergence, or if a nonlinear filter can

be successfully applied to this problem. Many nonlinear algorithms such as various flavors of the particle filter as well

as PGMF from Raihan and Chakravorty (2018) and the sequential Monte Carlo filter from Yun and Zanetti (2019)

were used and they all diverged. The UKF also diverges. These failures are due to the high nonlinearities of the

light-curve data combined with the absence of process noise. Divergence is not an intrinsic property of the system, as

the modified PGMF algorithm proposed here, named PFGMM1, is able to prevent the divergence of the state. Figure 3

shows the position, attitude, and surface parameter errors with the corresponding 3σ predictions when PFGMM1 is

used. Notice that proxy values are used in order to estimate the surface parameter without any constraint on their

values. All errors are consistent with the uncertainties, meaning that the filter does not diverge. From the analysis, it

is shown that it is the severe nonlinearities coupled with the weak observability of the system that leads to divergence,

not information dilution. The PFGMM uses 3 clusters with 10,000 particles and for this and all subsequent filters the
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State Initial Truth Initial Estimate Uncertainty (1σ)

q

0.754 0.695

3.33 deg
0.133 0.134

0.000 0.010

0.643 0.706

ωBB/I (rad/s)

0.00200 0.00212

1.16 × 10−4-0.00100 -0.00106

0.00500 0.00506

rI (km)

-739.4 -789.4

10036682.9 36732.9

21178.9 21278.9

vI (km/s)

-3.0669 -3.0169

0.10-0.0464 0.0536

-0.0268 -0.0768

n 150 120 30

ρ 0.40 0.10 0.30

d 0.70 1.00 0.30

Table 1: Initial conditions

modified Rodrigues parameters (MRPs) are used to define the local error for the attitude estimation.

The simulation is conducted with the five nonlinear filters described in the previous section: (1) the particle filter

with Gaussian mixture models (PFGMM) without the constraint information (PFGMM1), (2) the PFGMM with the

constraint information (PFGMM2), (3) the TIUKF, (4) the TEKF with underweighting (TEKF1), and (5) the TEKF

with considering parameters (TEKF2).

The introduction of proxy surface parameters, while making the state space unconstrained, adds more nonlinearities

to the systems. Alternatively, the constraint can be used as additional information in the modified rejection-sampling

algorithm, we denote this filter as PFGMM2. The time history of the state errors and respective 3σ predicted perfor-

mance when using the PFGMM2 with the modified rejection-sampling approach is depicted in Figure 4. Since the

constraint information is added to the estimator, it can be seen that the PFGMM2 has the better performance than the

PFGMM1.

The two nonlinear filter proposed (PFGMM1 and PFGMM2) establish that information dilution due to few mea-

surements and many estimated quantities does not necessarily cause filter divergence, and that treating constraints as

source of information improves the performance of the filter. The next objective of this investigation is to design a

consistent linear estimator, i.e. Kalman filter, which, while producing less accurate estimates than the nonlinear filters
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above, still produces a consistent, non-diverging solution. The algorithms used are the modifications of the UKF and

EKF described in the previous sections.

The TIUKF uses the following tuning parameters: α = 0.8, β = 3, and κ = 3, for its sigma points spread. The

underweighting tuning parameter for the TEKF with underweighting approach (denoted as TEKF1) is βUW = 2.0.

The third and last linear estimator considered is the TEKF with considering parameters (denoted as TEKF2) which

treats the surface parameters (since they are highly nonlinear states in the system) as considered states when high

nonlinearities are detected. High nonlinearities are declared when Hk+1P
xx
k+1|kH

T
k+1 > 3Rk+1 in the brightness

magnitude measurement only, as it is the nonlinear measurement that causes divergence.

The simulation results of the three linear filters are shown in Figure 5 to Figure 7. Comparing the error and co-

variance of all the cases, the performance of those filters is comparable to that of the PFGMMs, yet at a reduced

computational cost. Based on the criterion, Hk+1P
xx
k+1|kH

T
k+1 > 3Rk+1, the TEKF1 used the underweighting param-

eter as follows: βUW = 2.0 for t ≤ 16 and βUW = 0 for t > 16, where t is the simulation time. With the same

criterion, the TEKF2 considers surface parameters when t ≤ 48 and estimates all the states for the rest of the time.

Since the PDF truncation step was performed in the TEKF with the methods to compensate for the high-order effects,

the uncertainties of the surface parameters and associated states (i.e. attitude) eventually converge to slightly smaller

values than those of the PFGMM1.

Table 2 lists the time-averaged root mean square error (RMSE) for a single simulation. The best performance is

obtained with the PFGMM2 when comparing the time-averaged RMSE. In terms of the RMS attitude, angular velocity,

and parameter errors, the TEKFs have the better performance than the PFGMM1, which indicates it is possible to

improve the PFGMM by increasing the number of particles and clusters. While an increases in the number of particles

and clusters might improve the PFGMM, such an increase would increase the computational cost substantially. The

computation time for filtering run in MATLAB on a 3.2 GHz hexa-core Windows operation system is also presented in

Table 2. In terms of computation time, the TEKFs are the best performers while retaining roughly the same accuracy

as the PFGMMs.

Filter

Time-averaged RMSE

Computation

Position (m)
Velocity

(m/s)

Attitude

(deg)

Angular

velocity

(deg/hr)

Parameter time (s)

PFGMM1 26383.9 22.3130 2.4399 19.9157 8.7214 4090.9011

PFGMM2 22208.3 15.6344 0.7056 7.6407 8.0329 4292.7190

TIUKF 45548.6 21.1789 3.0219 46.9340 10.1084 158.0590

TEKF1 33062.5 22.9153 1.1209 9.1540 8.4212 127.8666

TEKF2 29865.8 22.3357 0.7939 8.9834 8.5570 127.8417

Table 2: RMSE for a single simulation

17



As results from single runs cannot definitively assess the performance of a stochastic estimator, a Monte Carlo

analysis is performed with 100 simulations to compare the performance of the five filters based on the RMSE and the

noncredibility index (NCI) (Li and Zhao, 2006). The RMSE is calculated from the true and estimated states at each

time k for each Monte Carlo simulation. The NCI is expressed as

NCIk =
1

M

M∑
j=1

[
10 log10

(
(xjk − µ

j
k)T(P j

k)−1(xjk − µ
j
k)
)
− 10 log10

(
(xjk − µ

j
k)TΣ−1k (xjk − µ

j
k)
)]

(72)

where M is the number of Monte Carlo simulations, xjk are the true states, µjk are the estimated states, P j
k are the

filter’s error covariance matrix of the j-th Monte Carlo run, and Σk is the ensemble error covariance matrix of the

estimates at time k computed from the Monte Carlo samples. The NCI evaluates the difference between the ideal

error covariance matrix Σk and the estimated error covariance matrix P k. The NCI metric is a geometric average

of 10 times the logarithm of the normalized estimation error squared (NEES) ratio; it is a balanced measure of the

consistency of the five estimators. When the difference between Σk and P k is small, the NCI value should be zero or

nearly zero at all times (Li and Zhao, 2006).

Figure 8 to Figure 10 display the time history of the RMS position, velocity, attitude, angular velocity, and parameter

errors of the 100 simulations. The time-averaged value of the RMSE of all the filters are listed in Table 3. The surface

parameters of the highly nonlinear light curve measurements are associated with the attitude and angular velocity. It

is shown in the figures that the results of the RMS attitude, angular velocity, and surface parameter (ρ and d) errors

are highly correlated to each other. The best performance is obtained with the PFGMM2. The results also show that

although the performance of the TEKF1 and PFGMM2 are comparable, the TEKF2 has the worst performance among

the five filters. In terms of the RMS position, velocity, and surface parameter (n) errors, the performances of the

TIUKF and PFGMM2 are comparable. However, the RMS attitude, angular velocity, and surface parameter (ρ and d)

errors of the TIUKF are higher than those of any filters, which means the TIUKF is adversely affected by the severe

nonlinearities of the system. On the other hand, the RMS attitude, angular velocity, and surface parameter errors of

the PFGMM1 which does not use the constraint information are comparable to the PFGMM2 while the RMS position

and velocity errors of the PFGMM1 are higher than those of any filters.

The consistency test result of each filter represented by the absolute NCI value is shown in Figure 11. In this figure,

the NCI values of the PFGMM1 and PFGMM2 are smaller than those of other linear filters and they approach to

zero as time passes. The absolute NCI value of the TEKF1 is smaller than that of the TEKF2, which means that

Lear’s underweighting method is more effective to compensate the nonlinear effects of this system than considering

the surface parameters. Moreover, the figure shows that the TIUKF is unsuitable for such a highly nonlinear system.

The average computation time per filtering run as well as the time-averaged absolute NCI value are listed in Table 3.

5. Conclusions

This paper presents a detailed study of the estimation of the translational and rotational states of near-geosynchronous

objects from bearing angles and light curve data. Three parameters of the highly nonlinear light curve measurements
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Filter

Time-averaged RMSE

NCI

Computation

Position

(m)

Velocity

(m/s)

Attitude

(deg)

Angular

velocity

(deg/hr)

Parameter
time

(s/simulation)

PFGMM1 10473.0 13.3760 3.5661 39.8182 8.9694 6.0991 3886.9418

PFGMM2 6058.0 10.5164 1.8168 20.3907 6.1568 4.6129 3724.6250

TIUKF 6128.7 10.2885 12.9220 124.8847 8.6949 14.5863 120.7671

TEKF1 6768.3 11.2232 2.5504 26.9194 10.3177 11.8965 114.7027

TEKF2 10330.0 13.0897 11.9788 86.2043 18.0175 15.5414 112.6375

Table 3: RMSE for 100 Monte Carlo simulations

are also estimated. The high nonlinearity and weak observability of the system makes this problem particularly chal-

lenging for recursing filtering algorithms. This fact is exacerbated by the absence of process noise, which is typically

needed to overcome particle impoverishment in particle filters.

A novel approach to nonlinear estimation combining particle filters and Gaussian sum filters using an expectation-

maximization clustering method is proposed. The advantage of this algorithm is that the use of soft clustering gives

a more accurate Gaussian mixture model representation of the prior probability density function over existing related

approaches. The soft-clustering approach allows the filter to converge, while a similar existing algorithm using K-

means clustering diverges under the conditions of the example studied. The soft clustering works in a way that each

point is assigned to all the clusters with different weights or probabilities, thus obtaining the proper covariance of the

components. By designing a consitent filter with the same members of the state space and same measurements, it is

shown that dilution of information is not a cause of divergence per-se, rather divergence of prior approaches are due

to the severe nonlinearities of the system coupled with large initial uncertainties and weak observability.

Finally, three linear estimators were designed and shown to provide good performance. The truncated interval

unscented Kalman filter uses the constraint information in the time and measurement update steps and truncates the

probability density function after the measurement update. The truncated extended Kalman filter includes not only the

probability density function truncation approach but also two extra methods to compensate nonlinear effects.
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Figure 3: Position, attitude, and surface parameter errors with the PFGMM without the constraint information
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Figure 4: Position, attitude, and surface parameter errors with the PFGMM with the constraint information
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Figure 5: Position, attitude, and surface parameter errors with the TIUKF
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Figure 6: Position, attitude, and surface parameter errors with the TEKF with underweighting
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Figure 7: Position, attitude, and surface parameter errors with the TEKF with considering surface parameters
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Figure 9: Monte Carlo averaged RMSE of attitude and angular velocity for 100 random realizations
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Figure 10: Monte Carlo averaged RMSE of surface parameters for 100 random realizations
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