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Abstract

Filters relying on the Gaussian approximation typically incorporate the measurement linearly, i.e., the

value of the measurement is pre-multiplied by a matrix-valued gain in the state update. Nonlinear filters

that relax the Gaussian assumption, on the other hand, typically approximate the distribution of the state

with a finite sum of point masses or Gaussian distributions. In this work, the distribution of the state

is approximated by a polynomial transformation of a Gaussian distribution, allowing for all moments,

central and raw, to be rapidly computed in closed form. Knowledge of the higher-order moments is then

employed to perform a polynomial measurement update, i.e., the value of the measurement enters the

update function as a polynomial of arbitrary order. A filter employing a Gaussian approximation with

linear update is, therefore, a special case of the proposed algorithm when both the order of the series

and the order of the update are set to one: it reduces to the extended Kalman filter. At the cost of more

computations, the new methodology guarantees performance better than the linear/Gaussian approach

for nonlinear systems. This work employs monomial basis functions and Taylor series, developed in the

Differential Algebra framework, but it is readily extendable to an orthogonal polynomial basis.

Index Terms

Differential Algebra, Nonlinear filtering, Polynomial update

I. INTRODUCTION

The conditional mean is the optimal estimate to the sequential stochastic Minimum Mean Square Error

(MMSE) estimation problem. It is derived recursively thought Bayes’ rule. When the system is linear

and Gaussian, the Kalman filter [1] [2] exactly represents the conditional distribution. However, when

the dynamics of the system are nonlinear, the conditional probability density function (PDF) is generally

a non-Gaussian distribution, and the optimal MMSE estimate is not typically obtainable in closed form.
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Consequentially, many algorithms have been developed that approximate the optimal MMSE solution

in the presence of nonlinearities. A simple approach is to perform a linearization of the measurement

and dynamics functions around the current estimate, and apply the Kalman filter equations as if the

system were linear; the so-called Extended Kalman Filter (EKF) [3]. However, simple linearization fails

to achieve convergence for highly nonlinear systems [4].

The Unscented Kalman Filter (UKF) [5], [6] usually achieves better results and is more robust to

nonlinearities than the EKF. Using deterministically placed sigma points, the distribution of the state is

approximated by applying the actual nonlinear dynamics and nonlinear measurement function to estimate

the mean and covariance matrix via a weighted average.

Several methods to better incorporate the nonlinear dynamics during the time propagation phase of

filtering algorithms exist. Park and Sheeres [7] employ State Transition Tensors (STT) to propagate mean

and high order central moments. Majji et al. [8] expand Park and Sheeres work to include the high-order

moments in the update. Valli et al. [9] reproduced these results in the differential algebra (DA) framework.

Filters based on differential algebra approximate functions with their Taylor expansion series up to a

fixed truncation order. The relation between the accuracy of the DA estimators and the truncation order

has been studied by Rasotto et al. [10], [11]. The studies concluded that increasing the order of the

expansion is beneficial up to a certain threshold, after which the increase of computational effort no

longer warrants the small increment in accuracy.

All above-mentioned filters, including the EKF and UKF, are linear estimators, i.e., the estimate is

a linear function of the measurements. The conditional mean, which is the optimal MMSE solution, is

generally some unknown nonlinear function of the measurement whose exact form usually cannot be

calculated. A linear estimator, even when accounting for the nonlinearities of the measurement function,

is typically outperformed by nonlinear estimators such as the Gaussian Sum Filter (GSF) [12] [13] or

particle filters [14].

In the GSF, the optimal nonlinear update is approximated by representing the state PDF with multiple

normal distributions; the Gaussian Mixture Models (GMM). As long as each component of the GMM

has a covariance “small” enough, linearization of the measurement and dynamic functions can accurately

represent the uncertainty in the component’s support, and linear update equations (EKF or UKF) can be

used for each component. The total update is a weighted combination of the linear updates, where each

weight is obtained from the likelihood of the corresponding Gaussian component.

De Santis et al. [15] developed a quadratic update by augmenting the state of the system with its

square. The estimator in [15] also augments the measurement with its square, by doing so they are able

to rewrite the quadratic update with a linear update structure. A polynomial approximation of the optimal
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nonlinear update also exists [16].

Servadio and Zanetti [17] implemented a quadratic update (extendable to a polynomial update of

any order) based on Taylor series expansions. By carrying central moments up to a desired order, the

polynomial high-order coefficients are evaluated to minimize the mean square estimation error. The

computational demand of calculating higher order central moments grows quickly with the order of the

series, the size of the state vector, and the order of the polynomial update.

In this work all non-Gaussian distributions are approximated as a polynomial transformation of Gaus-

sian random variables. In doing so, all high order central moments are easily and efficiently calculated

in close form with Isserlis formula [18]. As a consequence, polynomial updates can be performed more

efficiently than in prior works.

Preliminary results for this work were presented in [19]. This paper expands on that work by including

a new polynomial reduction technique, the results section is expanded to reflect this new case and

includes a comparison of accuracy between the two reduction methodologies. The two formulations

of the polynomial reduction offer different accuracy and computational complexity. The least squares

approach first proposed in Ref. [19] better approximates the shape of the distribution, and hence it is

more accurate than the new method that relies on the Gaussian approximation. The newly introduced

Gaussian approximation used for polynomial reduction is computationally simpler and faster than solving

a least squares problem. The draw back is that it looses the shape of the distribution as it approximates

the PDF as Gaussian and preserves only the mean and covariance. This approximation results in a more

conservative filter, i.e., loss of performance. Hence, this work expands [19] by proposing a similar but

simpler nonlinear filter, the trade between the two is overall estimation accuracy vs. computational cost,

the decreased accuracy of the new simpler algorithm is made evident in a numerical example. Finally,

this paper includes an additional scalar estimation example not shown in [19] to highlight the benefits

of polynomial estimation when compared to a linear approach.

The remainder of this paper is structured in the following way: Section II presents the mathematics and

fundamentals for the newly proposed polynomial estimator; Section III describes the filtering algorithm

and its implementation in the DA framework; then, Section IV applies the new filtering techniques both

to a demonstrative scalar problem and to the more challenging simulation of a Lorenz96 application [20],

[21]; lastly, Section V draws conclusions.

II. POLYNOMIAL ESTIMATOR

In our previous work, [17], a nonlinear update using polynomial residuals was presented. While the

polynomial approach can be extended to arbitrary order, the quadratic update is shown here. Let x be
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the state of the system we wish to estimate, modeled as a random vector, and y another, related, random

vector that is sampleable. We will use the known outcome of y to estimate the unknown outcome of x.

Let g(y) be a family of quadratic estimators of x from y, defined by constants a, which is a vector, and

K1,K2 which are matrices of appropriate dimensions.

g(y) = a + K1y + K2y
[2] (1)

where y[2] = y ⊗ y and the symbol ⊗ indicates the Kronecker product between two vectors, but with

the redundant components of y ⊗ y eliminated, e.g., only one y1y2 or y2y1 is present in y[2]. It is

often convenient to work with deviation vectors of the variables from their mean instead of the vectors

themselves. Therefore, let us define the quantity dy = y − E {y}, which indicates the measurement

residual, and similarly, the state deviation as dx = x− E {x}. Ref. [17] defines the quadratic estimator

in terms of dy[2] = dy ⊗ dy, but, in this work, a different quantity is used:

dy{2} = y ⊗ y − E {y ⊗ y} = y[2] − E
{

y[2]
}

The two formulations are equivalent, but the latter is convenient because it has zero mean. Thus, we work

with the deviation of the square instead of the square of the deviation. Without any loss of generality,

we can redefine a, K1, and K2 by adding and subtracting constants in order to obtain a different, but

equivalent, family of quadratic estimators

g(y) = a + E {x}+ K1(y − E {y}) + K2

(
y[2] − E

{
y[2]
})

(2)

It is known that the optimal values of the estimator’s coefficients (denoted with an asterisk) satisfy the

orthogonality principle

E
{(

dx− a∗ −K∗1dy −K∗2dy
{2}
)
·

·
(
a+E {x}+ K1dy + K2dy

{2}
)T}

= O (3)

which is valid ∀a,K1,K2. Therefore the optimal coefficients can be found solving the linear system

a∗ = 0 (4)

K∗1Pdydy + K∗2Pdy{2}dy = Pdxdy (5)

K∗1Pdydy{2} + K∗2Pdy{2}dy{2} = Pdxdy{2} (6)
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where the following notation is used:

Pxy = E
{
(x− E {x}) (y − E {y})T

}
(7)

Since y[2] and dy{2} only differ by a constant, they share the same covariance matrix.

The optimal solution is given by

a∗ = 0 (8)

[
K∗1 K∗2

]
=

 PT
dxdy

PT
dxdy{2}

T  Pdydy Pdydy{2}

Pdy{2}dy Pdy{2}dy{2}

−1 (9)

The optimal estimator is

x̂ = E {x}+ K∗1dy + K∗2 dy
{2} (10)

and the posterior estimation error is

ε = x− x̂ = x− g(y) = (11)

= x−
(
E {x}+ K∗1dy + K∗2dy

{2}
)

(12)

= dx−K∗1dy −K∗2dy
{2} (13)

A. Generalization to Higher Orders

It is possible to generalize the results of the previous section to higher orders of the polynomial update.

Let us expand Equation (1) to an arbitrary order

g(y) = a + K1y + K2y
[2] + K3y

[3] + K4y
[4] + . . . (14)

where each Ki is a matrix of appropriate dimensions and each y[i] is calculated using the Kronecker

product with the repeated elements deleted. The measurements and its powers can be stacked, defining

the augmented measurement vector

Y =
[
yT y[2]T y[3]T . . .

]T
(15)

Once again, the estimator family is redefined in order to work with deviations. Since deviations have zero

mean by construction, the identities Py[i]y[j] = Pdy{i}dy{j} and Pxy[j] = Pdxdy{j} are valid ∀i, j ∈ N0.
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Therefore, it is possible to evaluate the augmented measurement covariance matrix as

PYY =


Pyy Pyy[2] Pyy[3] . . .

Py[2]y Py[2]y[2] Py[2]y[2] . . .

Py[3]y Py[3]y[2] Py[3]y[3] . . .
...

...
...

. . .

 (16)

and the augmented state-measurement cross-covariance matrix as

PxY =
[
Pxy Pxy[2] Pxy[3] . . .

]
(17)

The deviations can be stacked as well, creating an augmented deviation vector.

dY =
[
dyT dy{2}T dy{3}T . . .

]T
(18)

The optimal polynomial update estimator becomes

x̂ = E {x}+ PxYP−1YYdY (19)

where the product PxYP−1YY is similar to the Kalman gain but realized with knowledge of the central

moments of the distribution up to a selected order, improving accuracy.

III. THE HIGH-ORDER POLYNOMIAL UPDATE FILTER - HOPUF-`-c

The new filtering technique has been developed in the Differential Algebra (DA) framework, using an

algebra based on Taylor series expansions. The Taylor series coefficients are obtained up to an arbitrary

and specified order using a library of know Taylor series expansions of elementary functions using the

Differential Algebra Core Engine (DACE2.0) software [22], [23]. DACE2.0 does not compute derivatives

numerically, e. g. finite differences, but expresses any function as an array of coefficients and exponents

from a hard-coded library. Please refer to [9], [24]–[26] for a more detailed review of DA, and to [10],

[27] for details on the DACE2.0 software implementation.

The High-Order Polynomial Update Filter (HOPUF-`-c) algorithm is composed of three main parts:

the prediction, the polynomial update, and the polynomial reduction. The two integers ` and c in HOPUF-

`-c refer to the order of the polynomial update and of the Taylor series expansion, respectively. Hence,

HOPUF-1-1 is the extended Kalman filter, HOPUF-1-2 is the Gaussian Second Order Filter, and HOPUF-

2-3 is a quadratic estimator with nonlinear functions approximated by their third order Taylor series

expansion.
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A. Prediction

Consider the following equations of motion and measurement equations describing a generic dynamic

system:

xk+1 = f(xk) + vk (20)

yk+1 = h(xk+1) + wk+1 (21)

where f(·) is the dynamics function, xk is the n-dimensional state of the system at time-step k, yk+1

is the m-dimensional measurement vector at time-step k + 1, and h(·) is the measurement function.

The process noise and the measurement noise are assumed to be zero mean and uncorrelated, i.e.,

E
{

viw
T
j

}
= 0 ∀i, j, with the autocovariance functions E

{
viv

T
j

}
= Qiδij , and E

{
wiw

T
j

}
= Riδij

for all discrete time indexes i and j. It is assumed that the initial condition x0 and the noises are Gaussian,

however, the nonlinear functions will make the distribution of xk non-Gaussian for all k > 0.

DA expresses all functions as their Taylor series expansion up to an arbitrary order. The state is

initialized in the DA framework with a first order polynomial.

x0 = x0(δx0) = x̂0 + S0δx0 (22)

where x0 ∼ N (x̂0,P0), S0S
T
0 = P0, and the DA variable δx0 = x0 − x̂0 is therefore interpreted as

Gaussian with zero mean and identity covariance matrix.

The propagation function is applied directly to the state polynomials xk, thus, the ith component of

the predicted state vector is

x−i,k+1 = x−i,k+1(δxk) = fi(xk(δxk)) =

= fi(x̂k) +

c∑
r=1

1

r!

∑ ∂rfi(xk)

∂xγ11 . . . ∂xγrn
δxγ11,k . . . δx

γr
n,k (23)

where the integer c indicates the user-defined order of the Taylor expansion (the same numerical value

specified in HOPUF-`-c); the second summation is over all permutations of γi ∈ {1, . . . , n} with i ∈

{1, . . . , r}. Therefore x−k+1(δxk) is a vector of polynomial functions that map the deviations (δxk) into

the distribution of the state at time k + 1. The final step of the propagation is to add the process noise

contribution. The process noise is introduced as a DA variable δvk, which once again is interpreted as

a standard normal random vector

x−k+1(δxk, δvk) := x−k+1(δxk) + Tkδvk (24)
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where vk = Tkδvk and TkT
T
k = Qk.

The predicted measurements are evaluated similarly and the jth component is given by:

yj,k+1 = yj,k+1(δxk, δvk) = hj(f(x
−
k+1)) =

= hj(f(x̂k+1)) +

c∑
r=1

1

r!

∑ ∂rhj(x
−
k+1)

∂xγ11 . . . ∂xγrn ∂v
γ1
1 . . . ∂vγrn

·

· δxγ11,k . . . δx
γr
n,kδv

γ1
1,k . . . δv

γr
n,k (25)

where, again, the second summation is over all permutations of γi ∈ {1, . . . , n} with i ∈ {1, . . . , r}.

Note that the Taylor series expansion is now in terms of both δxk and δvk. The measurement noise is

also introduced as a DA variable δwk+1, which is interpreted as a standard normal random vector

yk+1(δxk, δvk, δwk+1) := yk+1(δxk, δvk) + Ukδwk+1 (26)

where wk = Ukδwk and UkU
T
k = Rk.

The total number of DA variables is 2n+m: n are used to map the state behavior (δxk), n map the

process noise (δvk), and the remaining m map the measurement noise (δwk+1). All quantities of interest

are represented by polynomial functions of standard normal random vectors. Therefore all expectations

can be easily computed using Isserlis’ formula to calculate central moments of standard normals [18].

B. Quadratic Update

Once the predicted state and measurement polynomials have been calculated, the next step in performing

the quadratic update is evaluating the augmented Kalman gain with Equation (9). We start by calculating

y
[2]
k+1 = yk+1 ⊗ yk+1 (27)

where, once again, all the redundant components are eliminated.

The mean of each component of the predicted state is

x̂−i,k+1 = E
{
x−i,k+1

}
(28)

= fi(x̂k) +

c∑
r=1

1

r!

∑ ∂rfi(xk)

∂xγ11 . . . ∂xγrn
E
{
δxγ11,k . . . δx

γr
n,k

}
(29)

where the expectations are applied directly on the monomials of the series. Since the deviations have a

Gaussian distribution with zero mean and identity covariance, the expected value operator just substitutes

the relative Isserlis’ moment in for to each monomial, according to Table I. As an illustrative example:
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TABLE I
ISSERLIS’ MOMENTS OF GAUSSIAN N (0, 1)

exponent 0 1 2 3 4 5 6 7 8 . . .
coefficient 1 0 1 0 3 0 15 0 105 . . .

E
{
aiδx

2
1δx

6
2δx

4
4

}
= 45ai. Similar to Equation (28), the predicted means of the measurements are

evaluated as:

ŷk+1 = E {yk+1} (30)

ŷ
[2]
k+1 = E

{
y
[2]
k+1

}
(31)

The augmented measurement covariance matrix is calculated blockwise:

PYY =

 Pyy Pyy[2]

Py[2]y Py[2]y[2]

 (32)

where, having removed the redundant components from the square of the measurements, the matrix is

guaranteed to avoid any singularities. The matrix is symmetric and the three different blocks are calculated

as:

Pyy = E
{
(yk+1 − ŷk+1)(yk+1 − ŷk+1)

T
}

(33)

Pyy[2] = E
{
(yk+1 − ŷk+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}

(34)

Py[2]y[2] = E
{
(y

[2]
k+1 − ŷ

[2]
k+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}

(35)

The augmented cross-covariance matrix between the state and measurement is evaluated blockwise as

well:

PxY =
[
Pxy Pxy[2]

]
(36)

where each block is calculated in a similar way:

Pxy = E
{
(x−k+1 − x̂−k+1)(yk+1 − ŷk+1)

T
}

(37)

Pxy[2] = E
{
(x−k+1 − x̂−k+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}

(38)

From these quantities it is now possible to use Equation (9) to calculate the Kalman gain associated with

the augmented system:

K =
[
K1 K2

]
= PxYP−1YY (39)
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Denote ỹk as the outcome of random vector yk, i.e., the numerical value of the measurement from the

sensors, and its square as

ỹ
[2]
k = ỹk ⊗ ỹk (40)

The updated distribution of the state and the posterior estimate are given by

x+
k+1(δxk, δvk, δwk+1) (41)

= x−k+1(δxk, δvk) + K

 ỹ − yk+1(δxk, δvk, δwk+1)

ỹ[2] − y
[2]
k+1(δxk, δvk, δwk+1)


x̂+
k+1 = E

{
x+
k+1

}
= x̂−k+1 + K

ỹk+1 − ŷk+1

ỹ
[2]
k+1 − ŷ

[2]
k+1

 (42)

Note that the updated polynomials are a function of the state deviations, the process noise and the

measurement noise. Moreover, since the order of x−k+1(δxk, δvk) is c, then, because of the quadratic

update, x+
k+1(δxk, δvk, δwk+1) is a polynomial of order 2c. The higher the polynomial order, the higher

the number of moments to be calculated with Table I. The covariance matrix is obtained as

Pxx,k+1 = E
{
(x+
k+1 − x̂+

k+1)(x
+
k+1 − x̂+

k+1)
T
}

(43)

Thus, starting form a polynomial of order c at the beginning of each filter’s iteration, equation (43)

employs a polynomial of order 4c in order to calculate the state covariance matrix. Equations (42) and

(43) are outputs calculated for downstream users; the recursive algorithm does not employ the actual

value of the state estimate and its uncertainties to start the next iteration; the coefficients of the Taylor

series representation of the updated polynomial x+
k+1 are stored and contain all the information needed

for the recursion.

C. Polynomial Reduction

The updated state x+
k+1(δxk, δvk, δwk+1) is a 2cth order polynomial in 2n+m variables and it describes

the (typically non-Gaussian) posterior probability density function of the state. Without taking any further

action and starting the next filter iteration from x+
k+1 to calculate x+

k+2, the order of the series will double

to 4c and the number of independent variables will increase by two: the process noise associated with

the subsequent propagation and the measurement noise associated with the next measurement.

To keep the recursive algorithm tractable, it is therefore desirable to: i. reduce the polynomial order

back to c, and ii. reduce the number of input variables back to n. In this section we introduce two new

methodologies to achieve these two objectives.
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A possible solution is to approximate the distribution as Gaussian, which simplifies the problem and is

consistent with the first filtering step taken after initialization. The updated polynomial is rewritten using

x̂+
k+1 and Pxx,k+1 in a manner similar to initialization, Eq. (22):

xk+1 = x̂+
k+1 + Sxx,k+1δxk+1 (44)

Sxx,k+1S
T
xx,k+1 = Pxx,k+1 (45)

where δxk+1 is a new (DA) deviation interpreted as Gaussian with zero mean and identity covariance

matrix. The polynomial expansion of the state is redefined after each measurement update using the

state estimate and the corresponding covariance matrix. The result is a fast and computationally efficient

filter. The drawback is that all the information about the non-Gaussianity of the distribution is lost. In

the remainder of the paper performing the Gaussian approximation after the update is referred to as

HOPUFG: this computationally faster variant can be used when the nonlinearities of the dynamics or

measurements are not too marked, and a Gaussian filter is a sensible choice.

The second approach proposed preserves the non-Gaussian nature of the posterior distribution. The

idea is to exactly match the zeroth and first-order components of the series representation of x+
k+1 and

to approximate the higher-order elements with least squares.

The posterior is a nonlinear (polynomial) function of three Gaussian distributions, and the goal is to

accurately approximate it as a polynomial function of a single Gaussian. The linear part of the Taylor

series (zeroth and first order) is represented exactly as a single Gaussian, while higher than first-order

contributions are approximated via least-squares.

We start by dividing the polynomials into their linear part (constant plus first order) and the remaining

higher-order terms. Thus, at time tk+1

x+
k+1 = xL,k+1 + xH,k+1 (46)

where xL,k+1 indicates the linear part of the Taylor series, while xH,k+1 represents the non-linear terms.

For linear and Gaussian systems, xH,k+1 is identically zero and xL,k+1 is the posterior solution found

with the Kalman filter equations. For nonlinear systems, xH,k+1 is non-zero and xL,k+1 is not the Kalman

filter posterior, however xL,k+1 is still Gaussian distributed because it is the linear combination of three

Gaussian random vectors. The mean and covariance matrix of the linear polynomials are readily found
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in the DA framework

x̂L,k+1 = E {xL,k+1} (47)

PL,k+1 = E
{
(xL,k+1 − x̂L,k+1)(xL,k+1 − x̂L,k+1)

T
}

(48)

Sk+1S
T
k+1 = PL,k+1 (49)

Defining δxk+1 ∼ N (0, I), we can represent xL,k+1 exactly:

xL,k+1 = x̂L,k+1 + Sk+1δxk+1 (50)

The goal is to create a new series approximation of x+
k+1, which is only a function of δxk+1 rather

than the three variables (δxk, δvk, δwk+1). Effectively, a complex transformation of random vectors is

approximated with a surrogate of sufficient accuracy. This approach is motivated by similar approaches

in Uncertainty Quantification (UQ) where the surrogate provides analytic knowledge on the propagated

uncertainty or knowledge on the quantities of interest via sampling (e.g., see [28], [29]).

The approach leveraged here is similar to generating a polynomial chaos expansion via a non-intrusive

approach with least squares (e.g., [30]). The basic idea is to minimize the square of the difference between

the full transformation and the surrogate. This is achieved by propagating random samples from the input

space, i.e., δxk, δvk, and δwk+1, through the function to be approximated and then fitting the surrogate

using least squares. Accuracy of the surrogate is determined by the basis and the number of discrete

samples.

We draw N independent and identically distributed samples from a 2n+m Gaussian distribution with

zero mean and identity covariance matrix in order to have N independent samples of δxk, δvk, and

δwk+1. Samples are denoted with a superscript (j), j ∈ [1, N ]. The polynomials are then evaluated at

the samples, giving N independent realizations of the posterior. We calculate N samples of x+
k+1, xL,k+1

and δxk+1:

x
+(j)
k+1 = x+

k+1(δx
(j)
k , δv

(j)
k , δw

(j)
k+1) (51)

x
(j)
L,k+1 = xL,k+1(δx

(j)
k , δv

(j)
k , δw

(j)
k+1) (52)

δx
(j)
k+1 = S−1k+1

(
x
(j)
L,k+1 − x̂L,k+1

)
(53)

where Equation (53) scales and centers the realizations from the linear polynomials, such that their
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distribution is a standard Gaussian. The ith component of the new series is

x+i,k+1 = x+i,k+1(δxk+1)

= ai,0 +

c∑
r=1

1

r!

∑
`

ai,r,` δx
γ1
1,k+1 . . . δx

γr
n,k+1 (54)

where the second summation is over all permutations of γi ∈ {1, . . . , n} with i ∈ {1, . . . , r}, describing

each possible monomial through combinatorial mathematics.

The above equation is linear in the coefficients, therefore it can be rewritten as

x+i,k+1 = ∆k+1ai (55)

where vector ai contains the coefficients of the series we are solving for. We can now use the samples

of x+
i,k+1 and δxk+1 to compute a least square estimate of ai.

We start by stacking all N realizations ot the ith component x
+(j)
i,k+1 of the posterior state into a single

vector,

x̃+
i,k+1 =

[
x
+(1)
i,k+1 x

+(2)
i,k+1 x

+(3)
i,k+1 . . .

]T
(56)

while the unknown coefficients of the ith state polynomial are stored in the γ-long vector, ai. The integer

γ expresses the number of coefficients needed to represents a state polynomial component of order c.

For example, setting c = 2 leads to

γ = 1 + n+
(n+ 1)n

2

where n is the state dimension. Lastly, matrix ∆k+1, of dimensions N×γ, is constructed using deviations

δx
(j)
k+1, where each jth row follows Equation (54):

∆k+1 =


1 δx

(1)
1 . . . δx

(1)
n (δx

(1)
1 )2 δx

(1)
1 δx

(1)
2 . . .

1 δx
(2)
1 . . . δx

(2)
n (δx

(2)
1 )2 δx

(2)
1 δx

(2)
2 . . .

1 δx
(3)
1 . . . δx

(3)
n (δx

(3)
1 )2 δx

(3)
1 δx

(3)
2 . . .

...
...

...
...

...
. . .

 (57)

where the subscript k + 1 on the deviations has been omitted.

The coefficients can now be calculated via least square solution to Equation (55)

ai =
(
∆T
k+1∆k+1

)−1
∆k+1x̃

+
i,k+1 (58)

The deviations δx(j)
k+1 are the same regardless of which component of the state is calculated: for each ith

component, we fit different coefficients to their relative realizations. Consequentially, instead of applying
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Equation (58) multiple times, it is convenient to rewrite the least square problem in matrix form

Ξk+1 =
[
x̃+
1,k+1 x̃+

2,k+1 x̃+
3,k+1 . . .

]
(59)

A =
[
a1 a2 a3 . . .

]
(60)

such that the whole set of coefficients is calculated at once:

A =
(
∆T
k+1∆k+1

)−1
∆k+1Ξk+1 (61)

After evaluating all realizations of the random variables, HOPUF directly applies this last equation for

an efficient evaluation of the reduced series.

The algorithm is now ready to start the next iteration with a new polynomial propagation.

The number of samples N used in the reduction step of HOPUF-`-c is chosen to obtain an accurate

approximation of the surrogate; an exact number can be determined via cross-validation (e.g., see [31]).

For an appropriate value of c, a common approximation for the value of N is 2P -4P where

P =

n+ c

c

 =
(n+ c)!

n! c!
(62)

and n is the dimension of the state vector x.

D. Algorithm Summary

The proposed filtering techniques are summarized in Algorithms 1 (HOPUFG-2-c) and 2 (HOPUF-

2-c). The algorithms can be expanded to any arbitrary update order ` using the results of Section II-A.

The two algorithms differ only by the polynomial reduction step. HOPUFG approximates the reduced

posterior as a Gaussian random variable. HOPUF applies the least square polynomial reduction step which

approximates the non-Gaussian the shape of the posterior. Consequently, HOPUF starts each iteration

with a more accurate prior PDF, leading to a performance increase in the estimation accuracy, as shown

the numerical applications. The benefits in accuracy form the least squares algorithm are achieved at the

expenses of an higher computational cost.

By selecting a linear update, a linear approximation of the functions, and a Gaussian reduction,

HOPUFG-1-1 reduces to the classic EKF. Increasing the order of the update, the order of the Taylor

series approximation, and/or performing the least-squares reduction step will result in a more accurate

filter at the cost of more computations.
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Algorithm 1 HOPUFG-2-c
Declare Taylor truncation order c;
Initialize iteration counter k = 0;
Initialize state polynomial as Gaussian: x0 ∼ N (x̂0,P0)
S0S

T
0 = P0;

x0 = x̂0 + S0δx0; // Polynomial Initialization
TkT

T
k = Qk;

UkU
T
k = Rk;

while new measurements ỹk+1 available do

//Prediction//
x−k+1(δxk) = f(xk(δxk)); // Polynomial Propagation
x−k+1(δxk, δvk) = x−k+1(δxk) + Tkδvk; // Add Prop. Noise Variables
yk+1(δxk, δvk) = h(f(x−k+1)); // Meas. Polynomial
yk+1(δxk, δvk, δwk+1) := yk+1(δxk, δvk) + Ukδwk+1; //Add Meas. Noise Variables

//Quadratic Update//

y
[2]
k+1 = yk+1 ⊗ yk+1; // Square Meas. Polynomial;

x̂−k+1 = E
{
x−k+1

}
;

ŷk+1 = E {yk+1} ;
ŷ
[2]
k+1 = E

{
y
[2]
k+1

}
;

Pyy = E
{
(yk+1 − ŷk+1)(yk+1 − ŷk+1)

T
}
;

Pyy[2] = E
{
(yk+1 − ŷk+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}
;

Py[2]y[2] = E
{
(y

[2]
k+1 − ŷ

[2]
k+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}
;

PYY =

[
Pyy Pyy[2]

Py[2]y Py[2]y[2]

]
;

Pxy = E
{
(x−k+1 − x̂−k+1)(yk+1 − ŷk+1)

T
}
;

Pxy[2] = E
{
(x−k+1 − x̂−k+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}
;

PxY =
[
Pxy Pxy[2]

]
;

K =
[
K1 K2

]
= PxYP−1YY ; // Augmented Gain

ỹ
[2]
k+1 = ỹk+1 ⊗ ỹk+1; // Square Meas. Outcome

x+
k+1(δxk, δvk, δwk+1) = x−k+1(δxk, δvk)+K

[
ỹk+1 − y−k+1(δxk, δvk, δwk+1)

ỹ
[2]
k+1 − y

[2]−
k+1(δxk, δvk, δwk+1)

]
; // Polyn. Update

x̂+
k+1 = E

{
x+
k+1

}
= x̂−k+1 + K

[
ỹk+1 − ŷk+1

ỹ
[2]
k+1 − ŷ

[2]
k+1

]
;

Pxx,k+1 = E
{
(x+
k+1 − x̂+

k+1)(x
+
k+1 − x̂+

k+1)
T
}

;

//Gaussian Reduction//
Sxx,k+1 = CholeskyDecomposition(Pxx,k+1);
xk+1 = x̂+

k+1 + Sxx,k+1δxk+1; // Polynomial DA Scaling
k = k + 1;

end while
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Algorithm 2 HOPUF-2-c
Declare Taylor truncation order c;
Initialize iteration counter k = 0;
Initialize state polynomial as Gaussian: x0 ∼ N (x̂0,P0)
S0S

T
0 = P0;

x0 = x̂0 + S0δx0; // Polynomial Initialization
TkT

T
k = Qk;

UkU
T
k = Rk;

while new measurements ỹk+1 available do

//Prediction//
. . . Same as HOPUFG-2-c . . .

//Quadratic Update//
. . . Same as HOPUFG-2-c . . .

//Least Square Reduction//
Extract linear part from the updated polynomial: x̂L,k+1

x̂L,k+1 = E {xL,k+1};
PL,k+1 = E

{
(xL,k+1 − x̂L,k+1)(xL,k+1 − x̂L,k+1)

T
}

;
Sk+1 = CholeskyDecomposition(PL,k+1);
Draw N samples δxk, δvk, δwk+1 from N (0, I);
for j = 1 : N do
δx

(j)
k+1 = S−1k+1

(
x
(j)
L,k+1 − x̂L,k+1

)
;

x
+(j)
k+1 = x+

k+1(δx
(j)
k , δv

(j)
k , δw

(j)
k+1);

x
(j)
L,k+1 = xL,k+1(δx

(j)
k , δv

(j)
k , δw

(j)
k+1);

end for
for i = 1 : n do

x̃+
i,k+1 =

[
x
+(1)
i,k+1 x

+(2)
i,k+1 x

+(3)
i,k+1 . . .

]T
;

end for
Ξk+1 =

[
x̃+
1,k+1 x̃+

2,k+1 x̃+
3,k+1 . . .

]
;

∆k+1 =MatrixOfDeviations(δxk, δvk, δwk+1); // LS matrix form the N samples
A =

(
∆T
k+1∆k+1

)−1
∆k+1Ξk+1;

Extract LS coefficients from A to create new prior state polynomials;
k = k + 1;

end while

IV. NUMERICAL EXAMPLES

A. Scalar Problem

A simple scalar problem is presented here to underline the improvements in accuracy gained by a

nonlinear estimator over linear ones. The following application shows how higher orders of polynomial

estimators are better approximations of the MMSE.
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Define a prior state x ∼ N (0, 0.1) and a measurement

y = arctan(x) + η (63)

where η ∼ N (0, 10−2) is measurement noise.

Figure 1 shows the true joint distribution of x and y represented using 105 samples (blue dots in

the figure). The optimal (nonlinear) MMSE is the conditional mean, which visually is the curved line

dividing in half the distribution of y (horizontal spread of blue points) for each value of x. The figure

also shows different estimators: the EKF, the UKF and HOPUF-`-c. The notation HOPUF-`-c indicates

with c the selected truncation order of the Taylor series expansion, and with ` the order of the update.

Fig. 1. Representation of the state-measurement joint distribution (blue points) and of the relative estimates from different
estimators.

Both the EKF and UKF are linear estimators, therefore their representations in Figure 1 are straight

lines, black and magenta, respectively. The slope of the lines is the Kalman gain, whose optimal value

is PxyP−1yy ; different approximations of Pxy and Pyy result in different values of the Kalman gain and

different slopes in the figure. The EKF is a local approximation, hence the line is aligned with the slope

of the optimal MMSE at the prior mean, and has the largest deviation from the optimal MMSE at the

edges of the distribution. The brown line in the figure shows the optimal Linear MMSE (LMMSE) which

is given by

x̂+ = E {x}+ PxyP−1yy(y − E {y}) (64)

where the values of Pxy, Pyy, and E {y} are calculated from the 105 samples of the joint distribution

of x and y. The Sigma Points employed in the UKF allow for some global information, as such, the
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UKF provides an approximation closer to the LMMSE than the EKF’s.

The DA-based polynomial estimator is reported with three different orders: a linear estimator, a cubic,

and a fifth order one, all employing a third order Taylor series approximation of the arctan function.

The estimates from HOPUF-1-3 form a straight line, depicted in cyan, with different slope with respect

to the EKF and the UKF; HOPUF-1-3 is almost completely superimposed and indistinguishable from

the optimal LMMSE. Therefore, the higher order polynomial representation of the measurement equation

leads to a better approximation of the true LMMSE (when compareted to the EKF and UKF) and it

improves accuracy, as shown by the RMSE analysis in Figure 2.

RMSE =

√∑Nsamples

i=1 (xi − x̂+i )2

Nsamples
(65)

The DA estimator uses Taylor polynomials approximation to represent the system function and the

moments of the PDF are calculated accordingly. In this example, a third order Taylor series approximation

is used, therefore the Kalman gain evaluated by the LMMSE differs from the EKF, that uses linearization

(Jacobian), and from the UKF, that applies the unscented transformation.

Fig. 2. RMSE

Figure 2 shows the RMSE of each estimator evaluated using the entire set of 105 samples. The first

3 bars in the figure show that the more accurate representation of the measurement equation relates to

higher accuracy and to lower error level of the estimator, while still having a linear dependency on the

measurement outcome, HOPUF-1-3 shows lower estimation error than the EKF and the UKF, indicating

it is a closer approximation to the true LMMSE estimator.

In Figure 1, the Cubic MMSE (HOPUF-3-3) and the 5th order MMSE (HOPUF-5-3) are also reported,

with red and green points, respectively. They both work with a 3rd order polynomial truncation of the

Taylor series representation of the arctan function. These estimators are a polynomial function of the

measurement and, therefore, they can better follow the true (nonlinear) behavior of the MMSE. The

estimator functions are curved and follow the tails of the distribution. The improvement in accuracy can
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be appreciated by looking at the RMSE values in Figure 2: the higher the order of the update, the lower

the RMSE, which leads to a more accurate estimate.

This simple example shows how the LMMSE can be interpreted as the first order approximation of

the true nonlinear MMSE, while the HOPUF-3-3 and HOPUF-5-3 are respectively the 3rd and 5th order

approximations. Theoretically, under some regularity assumptions on the optimal MMSE function, by

increasing the estimators order to infinity, we will asymptotically reach the true MMSE.

As a consequence, high order update filters, such as HOPUF-`-c, achieve better results in terms of

accuracy and robustness when compared to linear estimators. The improvement in robustness is shown

in the next example.

B. Lorenz96 System

The performance of the proposed filter is tested in a Lorenz96 example [20] [21]. The estimated state

is:

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
and the state dynamics are

dxi(t)

dt
= xi−1(t)(xi+1(t)− xi−2(t))− xi(t) + F + νi(t) (66)

where i = 1, . . . , 4 since x(t) is four-dimensional. The following conventions are used: x−1(t) = xn−1(t),

x0(t) = xn(t), and x1(t) = xn+1(t). The term F is a constant external force and it is chosen equal to

eight in order to introduce a chaotic behavior in the system. The initial condition is assumed to be

Gaussian, with mean x̂ =
[
F F F + 0.01 F

]T
and diagonal covariance matrix, with the same

standard deviation for each component of the state: σx = 10−3. The process noise is assumed to be

Gaussian and uncorrelated among states, with known standard deviation σν = 10−3.

Measurements are acquired at discrete time-steps tk according to the following model:

yk = Hi,jx(tk) + µk, H =

1 j = 2i− 1

0 otherwise
(67)

with i = {1, 2} and j = {1, 2, 3, 4}. In other words, the measurements are linear and the components of

the state vector with odd indeces are measured. The measurement noises, uncorrelated from the process

noise and with each other, are assumed to be Gaussian as well with standard deviation σµ = 10−2. The

dynamics are propagated at 2 Hz with a Runge-Kutta 7-8 integrator.
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Figure 3 shows the Monte Carlo analysis performed with HOPUF-2-2 on the presented problem. Once

again, the notation HOPUF-`-c indicates the selected truncation order of the Taylor series expansion c

and the order of the update `. The value N = 1000 samples is chosen for the least squares problem and

the number of Monte Carlo runs is also 1000. Figure 3 shows the 1000 realizations of the estimation

error (gray lines), evaluated as distance between the estimate and the true state, for each one of the four

state components. For the i-th component of the state

εj,i = xj,i − x̂j,i (68)

The algorithms’ predicted estimation error standard deviation of each state is reported in green lines

(3σ values), calculated as the square roots of the diagonal terms of Pxx in Equation (43). The actual

performance of the system is assessed by the sample standard deviation of the Monte Carlo estimation

errors, represented in the figure as blue lines (3σ values). The consistency of HOPUF-2-2 is established

by the close values of the estimated and effective standard deviations, as shown by the overlapping of

the green and blue lines. Finally, the black lines are the sample means of the estimation errors at each

time-step and they demonstrate the unbiased nature of the filter, as expected from the theory of MMSE

estimation.

The benefits of the quadratic update can be appreciated when comparing HOPUF-2-2 with linear

estimators, such as the EKF, the UKF [6], [32] and the DAHO-k [9]. DAHO-k is a linear estimator that

approximates the nonlinear functions with their kth order Taylor series representation. The EKF performs

a simple linearization of the equation of motion and, in the presence of high nonlinearities such as in the

Lorenz96 problem, fails to estimate the state of the system (therefore it is not reported in the figures).

The UKF and the DAHO-k, on the other hand, are linear estimators that better account for the system’s

nonlinearities and achieve better performance than the EKF [26]. Figure 4 compares HOPUF-2-2, with

DAHO-2 and the UKF. DAHO-k is a well suited test bench for higher-order linear estimators [17], [23].

Figure 4 has six lines. The three continuous lines represent the filter’s own estimate of accuracy in

terms of the predicted estimation error standard deviation, calculated from the covariance matrix as the

square root of its trace: σ̄ =
√

tr(Pxx). The three dashed lines represent the effective error standard

deviation derived from the Monte Carlo analysis (1000 runs). The filter is consistent when it predicts its

own uncertainty, i.e., when the continuous and dashed lines coincide. The figure shows how the quadratic

update (blue lines) reduces the system uncertainty, improving accuracy especially in the first steps of the

simulation, during the transient behavior. HOPUF-2-2 reaches steady state quickly and the filter avoids

overconfidence. The linear update of DAHO-2 (red lines), on the other hand, has a much slower and less
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Fig. 3. 1000 runs Monte Carlo performance test for the HOPUF-2-2, N = 1000.

accurate transient response but it is consistent and eventually converges. Once steady-state is reached, the

nonlinearities cease to dominate and the quadratic update no longer significantly outperforms the linear

update. The UKF (green lines) is inconsistent as the filter’s prediction of its own estimation error does

not match the actual behavior, which, as shown by the dashed green line, does not settle to the same

accuracy level as HOPUF-2-2 and DAHO-2.
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Fig. 4. Covariance comparison: quadratic vs. linear estimator. Solid lines are the filters own predictions, dashed lines represent
the sample standard deviation from Monte Carlo.

For the Lorenz96 example considered, the new quadratic estimator exhibits more robustness than the

linear estimators tested. Increasing the measurement noise levels or decreasing the measurement frequency

causes divergence of the DAHO-k as tested, while the consistency of HOPUF-2-2 is not affected by

those changes (the estimation accuracy on the other hand degrades, because of fewer or less precise

measurements).

Therefore, a new simulation has been performed after increasing the measurement noise standard

deviation to a higher level, σµ = 0.5, while keeping all the other parameters fixed. The performance of

HOPUFG-2-2 and HOPUF-2-2 are shown in Figure 5.

Figure 5 reports, in a logarithmic scale, the standard deviation analysis of a 40 seconds simulation.

HOPUF-2-2, in its two versions, is the only filter shown, as the linear estimators (EKF, UKF and DAHO-

k) diverge and fail to estimate the state of the system, and are therefore omitted. The figure shows

the accuracy improvements given by the non Gaussian representation of the updated state polynomials

achieved by the least squares reduction. The blue lines represent the behavior of the proposed filter

when the distribution is assumed as Gaussian at the beginning of each time step (HOPUFG-2-2). The

red lines show the accuracy level achieved by HOPUF-2-2: they remain below the blue lines during

the whole simulation, indicating smaller estimation error. Moreover, the effective (dashed) line from

the Monte Carlo runs and the predicted (continuous) line form the filter’s equations overlap closely for

HOPUF-2-2, showing consistency, while HOPUFG-2-2 is too conservative on its uncertainty estimation.
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Fig. 5. Covariance comparison: HOPUFG vs. HOPUF

We attribute this discrepancy to the fact that, for a fixed mean and covariance, a Gaussian distribution

is less informative than any other distribution. Hence, successive updates performed after replacing the

calculated posterior with a Gaussian with the same mean and covariance do not infer as much information

about the system. This approximation is the most conservative approximation that can be made given the

mean and covariance, since the Gaussian distribution has the highest entropy for a fixed covariance [33].

The higher accuracy level achieved by the non Gaussian representation of the prior for the following step

is paid by the higher computational burden requested by the least square polynomial fit. HOPUFG-2-2,

through the Gaussian approximation of the state prior, is a computational faster filter that, at each time

step, scales the polynomial coefficients using the most recent update covariance.

By increasing the measurement noise, filters that rely only on the linear dependency from the mea-

surements are not able to estimate the state of the system. The quadratic update improves accuracy by

evaluating not only the square of the measurements, but also its higher order moments, which provide

more precise (Kalman) gains. The measurement information is better fused with the state prediction to

produce superior performances.

V. CONCLUSIONS

An estimator with quadratic update has been presented. Unlike prior techniques, the proposed approach

does not require storing higher order central moments of the state’s distribution. The new technique

accounts for the nonlinearities of the system both in the prediction and in the update step by approximating
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the distributions resulting from nonlinear transformations as polynomial functions of Gaussian random

vectors. The new approach is easily expandable to any order of the polynomial update, as shown by the

proposed scalar example. For systems other than linear and Gaussian (where a linear update is globally

optimal) the higher the order of the polynomial update, the more precise the resulting state estimate.

The proposed algorithm can be interpreted as an expansion of Gaussian filters. Gaussian filters ap-

proximate uncertainties as Gaussian. By representing the state uncertainty with an arbitrary polynomial

function of a Gaussian random vector, it is possible to better approximate the shape of distributions

undergoing nonlinear dynamics and measurements.
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