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Abstract A deep learning approach is presented to detect safe landing lo-
cations using LIDAR scans of the Lunar surface. Semantic Segmentation is
used to classify hazardous and safe locations from a LIDAR scan during the
landing phase. Digital Elevation Maps from the Lunar Reconnaissance Orbiter
mission are used to generate the training, validation, and testing dataset. The
ground truth is generated using geometric techniques by evaluating the sur-
face roughness, slope, and other hazard avoidance specifications. In order to
train a robust model, artificially generated training data is augmented to the
training dataset. A UNet-like neural network structure learns a lower dimen-
sional representation of LIDAR scan to retain essential information regarding
safety of the landing locations. A softmax activation layer at the bottom of
the network ensures that the network outputs a probability of a safe landing
spot. The network is also trained with a cost function that prioritizes the false
safes to achieve a sub 1% false safes value. The results presented show the
effectiveness of the technique for hazard detection. Future work on electing
one landing spot based on proximity to the intended landing spot and the size
of safety region around it is motivated.

Keywords Hazard Detection · Machine Learning · Autonomous Landing ·
Semantic Segmentation

1 Introduction

Autonomous landing is essential for safety and reliability of future space explo-
ration missions. Hazard detection during landing enables automatic detection
and navigation of hazards on the surface. The Hazard Detection System (HDS)
is a primary component of the cross-NASA developed Autonomous Landing
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and Hazard Avoidance Technology (ALHAT) sensor suite [1–4]. It provides
guidance, navigation and control capabilities for autonomous landing under
robust lighting conditions. It generates a Digital Elevation Map (DEM) using
a LIDAR sensor which can then be processed to detect hazards on the landing
area. In order to determine safe landing locations, the DEM is analyzed for
candidate locations that satisfy mission specifications such as slope, terrain
roughness, and proximity to hazards. Convolutional Neural Networks (CNN)
are ideally suited to recognize desired patterns on spatially correlated input
data such as images. The safety of a landing spot depends on the elevation
of the surface in its vicinity. Moreover, complex mission specifications can be
incorporated by aggregating them in the CNN training, thereby shifting the
complexity to pre-flight operations and making the on-board inference com-
putationally efficient for real time application. In this paper, we present a
robust learning approach to detect hazardous and safe landing locations using
CNNs. In particular, we use Semantic Segmentation to determine safe landing
locations by analyzing the DEM of the Lunar surface.

Previous studies on autonomous landing have passive optical sensors like
cameras as well as active sensors like LIDAR. LIDAR based methods have
become popular because they are robust to different lighting conditions. The
ALHAT sensor suite primarily uses LIDAR sensors. Research on the choice and
construction of sensors to be used for autonomous landing has been studied in
the literature [5, 6]. Much recent work at NASA focuses on the development
of NASA’s next generation HDS through the SPLICE project [7]. Obtaining
real time and reliable DEMs using these sensors has also been the focus of pre-
vious works [8–10]. Various studies have concentrated on the Terrain Relative
Navigation (TRN) aspect of autonomous landing, wherein sensor observations
are compared to a surface map to obtain position estimates for navigation.
This paper focuses on the Hazard Detection and Avoidance (HDA) phase of
autonomous landing which typically takes place between 0.5 − 2 km above
the Lunar surface. In particular, given a sensor observation, candidate landing
locations that satisfy safety and mission specifications are detected.

Various studies on hazard detection using active sensors have been con-
ducted in the past [11–13]. The geometric footprint of the spacecraft and the
slope and roughness of the terrain were evaluated to determine the safety of
the landing location. Although our work uses similar landing specifications,
we assign a discrete value to the safety of a landing location and use physical
instead of synthetic data from a Lunar mission to evaluate our algorithm. It is
important to note that more complexity in defining safety of a landing location
can be added without any change to flight-software complexity. In all of the
previous studies, adding more complexity results in increased computational
burden of the algorithm to be used in real time. The approach presented in
this paper is oblivious to the added complexity. This is because the added
complexity makes the pre-processing more complicated but does not affect
the training phase of our deep learning approach. To the best of our knowl-
edge, our approach to move the computationally complex aspect of the HDA
algorithm from onboard to offline is a novel contribution of this work.
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In the past, machine learning methods have been used for crater identifi-
cation on the Lunar surface [14–18]. CNNs were used to infer the center and
the radius of the crater by analyzing the digital elevation map of the surface.
The detected craters were then used for TRN, wherein a comparison with an
existing map provides a position measurement used for navigation. In this pa-
per, we instead train CNNs to find safe landing locations. A number of tests
for LIDAR based navigation have been performed in the past. The ALHAT
sensor suite was fully integrated with the Morpheus vehicle to test its TRN
capabilities for precision landing [19]. Past studies have evaluated and im-
proved passive optical sensor based TRN algorithms [20]. Flash LIDAR and
laser altimeter based TRN was tested on a fixed-wing aircraft [3].

Semantic Segmentation is a technique used in computer vision wherein
a CNN is trained to classify parts of the image into a set of predetermined
classes [21]. This technique enables us to determine whether the spot on the
surface belongs to the safe or the hazardous class. The CNN outputs a prob-
ability of a landing location being safe. A threshold value on the probability
enables us to infer the class.

The DEM collected from the Lunar Reconnaissance Orbiter (LRO) mission
is used for training, testing and validation. Even though there is an abundance
of training data, all possible hazardous situations are not included in the train-
ing data due the high dimensionality of the system. Hence, noise is added to
the training data to make the trained model robust to sensor noises. Addition-
ally, a popular technique called data augmentation is used to add diversity to
the training data [22]. In this technique, artificial training data is generated
by applying randomly chosen transformations to existing training data.

This paper presents a deep learning approach to Hazard Detection and
Avoidance for precision Lunar landing. The data preparation for creating the
training, testing and validation data sets from the LRO mission is described
in Section 2. This includes the mission specifications, ground truth data gen-
eration as well as the data augmentation techniques. The training framework
presented in Section 3, describes the network topology, the loss function, the
training methodology, and finally the metrics and techniques used for evalu-
ation of the trained model. The results on the testing data set are given in
Section 4. Finally, some concluding remarks and future directions are discussed
in Section 5.

2 Data Preparation

2.1 Specifications

Table 1 contains the mission specifications considered in this paper and their
respective acceptable limits used for training the CNN. The main parameters
considered when deciding safety precautions are the slope, geometry of the
spacecraft and its landing pads, and the size of the features on the surface.
Computational complexity is also constrained since the DEMs have to be
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Parameters Requirements
Heading of the spacecraft < ±10◦ from the vertical

Slope < 5◦

Proximity to hazards > footprint size and system uncertainties
Landing position error < 100m

Surface feature size < 20cm
DEM Processing time < 5 seconds

Table 1 Mission specifications for a safe landing spot on the Lunar surface.

processed and used for navigation. The intended or preplanned landing site
must be within certain distance of the calculated landing site. In this paper
however, we aim to find all the safe landing locations rather that the best one.
Post-processing to obtain the best possible landing spot is a topic of future
research.

2.2 Ground Truth

For this study, we use the DEM data collected during the LRO mission which
started in 2009 [23]. A large DEM of the Lunar surface spanning between the
equator and 15◦ north latitude and longitude between 30◦ and 60◦ is used
for creating the training and validation set. The testing dataset is sample
from a different region spanning between 15◦ north and 30◦ north latitude
and 0◦ and 30◦ longitude. Smaller areas of size (400, 400) pixels are then
randomly sampled from this dense DEM. Each pixel represents the elevation
of the surface at that position. The sampled DEM simulates a LIDAR scan
generated during the HDA phase of the spacecraft descent phase. Although the
LRO data was collected using an Altimeter and further processed, The ground
truth LIDAR DEM can be simulated by adding noise. This is explained in the
sequel. Existing formulas from the literature are then applied to calculate the
slope of the terrain at a particular spatial position. In this paper, a third order
difference method is used to calculate the partial derivatives in a global x and
y direction [24]. This is given by

fx =
(zSE − zSW +

√
(2)(zE − zW ) + zNE − zNW )

(4 + 2
√

2)g
(1)

fy =
(zNW − zSW +

√
(2)(zN − zS) + zNE − zSE)

(4 + 2
√

2)g
(2)

wherein, zX denotes the elevation of the neighboring position on the map in
the X direction where X can be E, W , SE, SW , NE, or NW . Here, g is the
spatial resolution of the DEM which can be approximately calculated using
the radius of the moon and dimensions of the scan. The slope of the surface
at a spatial position is calculated according to

θ = tan−1(f2x + f2y ) (3)
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Raw DEM Slope Thresholding Smoothing

Fig. 1 Two examples of training data containing the raw DEM in the first column, the slope
thresholded DEM in the second column and the final smoothed DEM based on proximity
and minimum size of the hazards in the right column. The safe areas are in white and
hazardous ones are in black. The first and third columns are used as input and output for
training respectively.

The slope is thresholded according to the specifications and a binary map
is generated with the flat and rough patches labeled as 1’s and 0’s respectively.
An imbalanced or sparse binary map populated primarily with 0’s or 1’s can
prove detrimental to training. This is because such maps make the denomi-
nator of the cost function zero. Hence, only the training data with 25 − 75%
flat areas is added to the training data set. The obtained map represents a
high resolution slope map of the terrain. A median filter of appropriate size
is then applied to remove small obstacles from the map. A minimum filter
of appropriate size inflates the hazardous areas and ensures that the landing
locations are a certain distance away from them. The input DEM is centered
and normalized with the mean and standard deviation of its pixel values. Fig-
ure 1 shows 2 examples of the sampled DEM on the left and the binary map
showing safe and hazardous areas on the right.

2.3 Sensor Noise and Data Augmentation

A data augmentation technique is applied to improve robustness properties
of the trained network model. This method artificially increases the size and
variety of the training dataset by transforming existing training data. Two
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types of transformations are applied to the input data. First, robustness to
noisy sensor data is improved by adding a zero mean white Gaussian noise
and applying a Gaussian blur to the training data. The variance of the white
Gaussian is a value below the limit of 0.5 and is randomly chosen at train time.
Since, the input DEM is normalized to have a variance of 1, the value of 0.5 is
half of the input variance. The second type applies geometric transformations
to the inputs and outputs from the training dataset to form additional train-
ing data. Rotation by a multiple of 90◦, vertical and horizontal flipping, and
transposing operation are examples of this kind. Each of the transformations
have a probability of 0.5 to be applied to the normalized training DEM. We
use the fast image augmentation technique called Albumentations. Using data
augmentation allows the CNN to be robust to errors in the DEM and allows
the network to learn from a larger and richer dataset.

3 Learning Framework

3.1 Network Topology
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Fig. 2 The figure above describes the topology of the network. Yellow layers: fully connected
convolutional layers with ReLU activation, Red layers: Max Pooling layers, Blue layers:
Upsampling layers, Green layers with connections: Residual or skip connections, and Purple
Layer: Sigmoid Layer.

The structure of the CNN trained in this paper is given in Figure 2. The
UNet architecture used in this framework is adopted from the structure used
for biomedical representation [25]. The idea behind using the UNet CNN ar-
chitecture is to reduce the dimensionality of the input DEM and retain the
essential data from the DEM using the top half of the network, and then pro-
jecting this essential information back onto the DEM in the bottom half of
the UNet. The sampled DEM of size (400, 400) and the binary map generated
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Table 2 The table of layers sizes, their inputs, outputs and filter sizes.

Name Input Size Output Size Layer Width Kernel Size
1 Conv-2D 400 400 20 6
2 Conv-2D 400 400 20 12
3 Max Pooling 400 200 20 2
4 Conv-2D 200 200 40 12
5 Conv-2D 200 200 40 12
6 Max Pooling 200 100 40 2
7 Conv-2D 100 100 60 12
8 Conv-2D 100 100 60 12
9 Max Pooling 100 50 60 2
10 Conv-2D 50 50 40 12
11 Conv-2D 50 50 40 12
12 Up Sampling 50 100 40 2
13 Conv-2D 100 100 40 6
14 Concatenate (13 + 8) 100 100 100 -
15 Conv-2D 100 100 40 12
16 Conv-2D 100 100 40 12
17 Up Sampling 100 200 40 2
18 Conv-2D 200 200 40 6
19 Concatenate (18 + 5) 200 200 80 -
20 Conv-2D 200 200 40 12
21 Conv-2D 200 200 40 12
22 Up Sampling 200 400 40 2
23 Conv-2D 400 400 40 6
24 Concatenate (23 + 2) 400 100 60 -
25 Conv-2D 400 400 40 12
26 Conv-2D 400 400 40 12
27 Sigmoid 400 400 1 1

above, are the input and the output to the CNN respectively. As mentioned be-
fore, the input DEM is first centered and normalized before training since only
the relative values of the elevations affect the measure of safety of a landing
spot. All the fully connected convolutional layers use the Rectified Linear Unit
(ReLU) as the activation function [8]. Since, the output is to be constrained
between zero and one, a Sigmoid activation function is applied to the last
layer. A threshold is then applied to the output for binary classification. The
network also includes residual or skip connections between lower and higher
layers wherein a lower layer is concatenated as is to a higher layer of the net-
work [26]. This facilitates free flow of gradients without passing through the
nonlinear layers and helps us avoid the degradation problem in deep neural
networks.

3.2 Loss Function

The loss function used for training is the Jaccard loss which is known to work
well on unbalanced data where most of the image may belong to one class [27].
The Jaccard loss is evaluated as the Intersection over Union with a smoothing
factor as given below.
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Case A B C D E F G
K 1 10 20 35 50 65 75

Table 3 The weights used in the weighted Jaccard loss function while training are shown
above. The K = 0 case is the one where the original Jaccard loss function is used for training.
The successive cases show training with increasing preference for lowering FS.

L(Ypred, Ytrue) = s
(

1− sum(Ypred � Ytrue) + s

sum(Ypred + Ytrue)− sum(Ypred � Ytrue) + s

)
(4)

where the choice s = 100 is made to allow for data with unbalanced classes
to train quickly. Here, � represents the element wise product and the sum(·)
represents the sum of all the elements of the matrix. In this paper, the predic-
tion Ypred is thresholded with a constant threshold. More advanced methods
based on recent work on multi-threshold techniques may be pursued in future
work [28]. This is a popular choice of loss function for evaluating semantic
segmentation models.

The Jaccard loss function weighs the False Positives and False Negatives
equally. For Lunar Landing applications however, having a low number of
False Positives (i.e. hazardous sites classified as safe) is much more critical
than having few False Negatives (i.e. safe sites classified as hazardous). In this
paper, the network is also trained introducing a weight to the Jaccard loss
function to more heavily penalize False Positives. For a binary output Ypred
(pixel values are either zero or one), the term in the numerator of equation (4)
can be interpreted as the total number of True Safes (TS). The denominator,
which is the intersection, can be broken down into the sum of True Safes, False
Safes (FS) and False Hazardous (FH) as follows.

sum(Ypred + Ytrue)− sum(Ypred � Ytrue) =

= sum(Ypred � Ytrue) + sum(Ypred � (1− Ytrue)) + sum((1− Ypred)� Ytrue)
= TS + FS + FH

Therefore, the Jaccard loss, given in terms of TS, FS, and FH is as follows.

L(Ypred, Ytrue) = s
(

1− TS + s

TS + FS + FH + s

)
(5)

We define the weighted Jaccard loss function by prioritizing the FS as follows.

LFS(Ypred, Ytrue) = s
(

1− TS + s

TS +K ∗ FS + FH + s

)
(6)

where K is the weight on the FS while training. The values used for training
are given in the Table 3.
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3.3 Training and Evaluation

The Adam optimizer [29] with β1 = 0.9 and β2 = 0.999 is used for training
the network. The validation (200 DEMs) and testing (100 DEMs) datasets are
created in a similar way to the training set and the network is trained for 4000
epochs. The weights that output a minimum validation loss are stored and
used for testing. The NVIDIA GeForce GTX 2080 TI GPU that was used for
training and testing took an entire day for the network to train and fine tune
on the GPU. The CNN outputs a (400, 400) image with pixel values between
zero and one. A plot of histogram of these pixel values for a test data shows
the distribution of pixel values in the test DEM output.

3.4 Metrics

Four metrics commonly used in semantic segmentation applications are eval-
uated. These are i. Pixel Accuracy, ii. Mean Accuracy, iii. Mean Intersection
over Union (IoU), and iv. Frequency weighted IoU and are explained in detail
in the following four sub-sections.

– Pixel Accuracy:
∑

safe,haz naa∑
safe,haz ta

– Mean Accuracy: 1
ncl

∑
safe,haz

naa

ta

– Mean Intersection over Union (IoU): 1
ncl

∑
safe,haz

naa

(ta+
∑

j nba−naa)

– Frequency weighted IoU: 1
(
∑

k tk)

∑
safe,haz

tanaa

(ta+
∑

j nba−naa)

wherein, nab is the number of pixels of class a classified as class b by the
network, ncl = 2 is the number of classes, and ta =

∑
b nab is the total pixels

belonging to class a. Here, a and b are either the safe or hazardous class.
While calculating these quantities safe and hazardous as considered as two
different classes. For example, for the safe (hazardous) class, a True Positive
(TP) is the number of pixels belonging to the safe (hazardous) class classified
as safe (hazardous) pixel by the algorithm. These are denoted by nsafe,safe
and nhaz,haz respectively. Also, since these are the only two classes, the TP for
the safe class is identical to the True Negative (TN) for the hazardous class.
Let False Positives and False Negatives be denoted by FP and FN respectively.
Given below are the intuition behind using each of the metrics.

3.4.1 Pixel Accuracy

Pixel accuracy is the total number of correct pixel classifications in the test
dataset divided by the total number of pixels in the test dataset. Here,Npixels =
400 × 400 × 100 = 16, 000, 000 is the total number of pixels in the 100 test
samples each of size (400, 400). The correctly classified pixels correspond to
the safe landing locations classified as safe, as well as the hazardous locations
classified as hazardous.

Pixel Accuracy :

∑
safe,haz TP

Npixels
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3.4.2 Mean Accuracy

Mean accuracy is the percentage of true positives averaged over the two classes,
i.e. the average of i. Number of correctly identified safe landing locations over
the total number of landing locations and ii. Number of correctly identified
hazardous landing locations over the total number of hazardous locations. Note
that TP + FN is the total number of pixels in the ground truth belonging to
each class.

Mean Accuracy :
1

2

∑
safe,haz

TP

TP + FN

Pixel accuracy tells us the total accuracy of the safe and hazardous lo-
cations combined. However, if there is a large difference between the total
number of safe or hazardous pixels, the pixel accuracy maybe be misleading
as it hides the inaccuracies of the less represented class (Ex. mostly safe of
mostly hazardous DEM). To address this, the Mean accuracy metric was in-
troduced which averages the accuracies for each class. Hence, if the hazardous
pixels in a mostly safe DEM is incorrectly classified, the Mean accuracy will
expose that.

3.4.3 Mean Intersection over Union

Mean intersection over union is the average, over the two classes, of the inter-
section of safe (hazardous) pixels in both the truth and prediction divided by
the number of pixels that are either safe (hazardous) or are classified as safe
(hazardous) by the algorithm. The denominator is also known as the union.

Mean Intersection over Union :
1

2

∑
safe,haz

TP

TP + FN + FP

The False Positives are not adequately represented in the Pixel and Mean
accuracies. For example, the case in which all the safe pixels are classified as
safe sets both the accuracies to be high indicating a good performance by the
UNet. However, the fact that there may be a lot of hazardous pixels that are
also classified as safe is ignored. This inaccuracy is exposed by Intersection
over Union.

3.4.4 Frequency Weighted Intersection over Union

Frequency weighted intersection over union is the weighted average over all
pixels of the intersection of safe (hazardous) pixels in both the truth and
prediction divided by the number of pixels that are either safe (hazardous) or
are classified as safe (hazardous) by the algorithm.

Frequency Weighted Intersection / Union :
1

Npixels

∑
safe,haz

(TP + FN) ∗ TP
TP + FN + FP
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The Frequency weighted IoU, similar to its accuracy counterpart, is intro-
duced to the handle the less represented classes. In summary, the accuracies
handle the positive predictions and the IoU handle the missed predictions of
the UNet.

3.4.5 Confusion Matrix

The confusion matrix is a common way to evaluate classification problems.
Since semantic segmentation problems have a two dimensional output, the
confusion matrix for pixel level prediction is calculated. The four entries of
the confusion matrix are listed below. These values are then normalized with
the total number true safe and hazardous pixels respectively.

– True Safe (TS): Number of safe pixels classified as safe
– False Safe (FS): Number of hazardous pixels classified as safe
– True Hazardous (TH): Number of hazardous pixels classified as hazardous
– False Hazardous (FH): Number of safe pixels classified as hazardous

3.5 Receiver Operating Characteristic Curve

The value used to threshold the CNN output is chosen using the Receiver
Operating Characteristic (ROC) curve. A trained CNN classifies each pixel
in the LIDAR image into two classes, namely, Safe and Hazardous. To eval-
uate the performance of the CNN for different thresholds, we plot the ROC
curve [30]. The ROC curve is a two dimensional representation of the classifier
performance. It plots the True Positive Rate (TPR) vs. the False Positive Rate
(FPR). Since there are only two classes, the ROC curve can be plotted for ei-
ther class. We choose to plot the curve for safe landing locations. That is to
say, True Safe (TS) is a safe landing location classified as safe, True Hazardous
(TH) an hazardous landing location classified as hazardous, False Safe (FS) is
an hazardous landing location classified as safe, and finally False Hazardous
(FH) a safe landing location classified as hazardous. The goal is to have few
FS (type I errors), as those are the most dangerous for the mission.

The TPR, also known as Recall or Sensitivity in the literature, is defined
using the TS and the FH for a given value of the threshold.

TPR =
TS

TS + FH
(7)

Similarly, for a given threshold, the FPR, which is also known as inverse
Recall, is related to the FS and TH as given by the following equation.

FPR =
FS

FS + TH
(8)

While varying the threshold value between zero and one, the TPR and
FPR values are calculated and plotted against each other. The area under the
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ROC curve (AUROC) is calculated using the trapezoidal approximation. If
each pixel in the image was classified randomly as safe or hazardous with a
probability of 0.5, the ROC would have been a straight line between (0, 0) and
(1, 1). In an ideal situation, when the prediction is perfect, the TPR should be
equal to 1 for every nonzero value of FPR. In this case, the AUROC is equal
to 1. The closer the AUROC is to being 1, the better the CNN is in terms of
distinguishing between Safe and Hazardous pixels.

3.6 Post-processing

The metrics mentioned above are indifferent to class boundaries. The hazards
are already inflated to account for the proximity to the hazards. Hence, accu-
racy of segmentation away from the class boundaries is critical for autonomous
landing operations. If most of the misclassification occurs at the class bound-
aries, the performance of the CNN can be better evaluated by post processing
the CNN output. The erosion of the CNN output with a square matrix of ones
is calculated before generating the confusion matrix for each of the cases from
Table 3. Hence, a pixel value is considered safe only if all of its neighboring
pixels including itself are classified as safe. Metrics evaluated after such a post
processing measure the performance of the CNN inside the class regions.

4 Results
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Fig. 3 The training and validation loss vs. epoch number for K = 0 case is shown above.

The CNN was trained while monitoring the training and validation loss
simultaneously. The loss history on the training and validation set for the
K = 0 case is given in the Figure 3. The weights that result in a minimum
validation loss are stored and used for evaluating the performance of the CNN.
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Pixel Acc. Mean Acc. Mean IoU Freq. weighted IoU
train 98.16%(±0.004)% 98%(±0.004)% 96.08%(±0.016)% 96.4%(±0.013%)
val 92.24%(±0.19)% 92.81%(±0.13)% 84.98%(±0.52)% 86.1%(±0.46%)
test 91.66%(±0.22)% 92.44%(±0.16)% 84.17%(±0.61)% 85.16%(±0.55%)

Table 4 Accuracy results on training, validation, and testing dataset for the K = 0 case
evaluated using the metrics given in Section 3. A threshold of 0.6 was used to calculate the
above metrics.

K = 1
Predicted
H S

T
ru

e H 91.31 8.69
S 8.01 91.99

Table 5 Normalized confusion matrices for pixel level prediction for safe and hazardous
classes on the test dataset. The S and H columns or rows denote the Safe and Hazardous
classes respectively. This table denotes the results for K = 0 case which is the network
trained with unweighted Jaccard loss function.

As is seen from the figure, the minimum validation loss is slightly higher than
its training loss counterpart. Stopping the training at this epoch is ideal to
prevent overfitting of the data on the training dataset. Networks trained with
different weights K, although have similar training times, are initialized with
the weights trained for the K = 0 case so as to reduce their overall training
time.

Once the CNN is trained, a few example outputs from the testing dataset
are calculated and shown in Figure 4. The first column shows the raw DEM
images from the sensor and the second column shows the ground truth safe
and hazardous locations as calculated using techniques from Section 2. The
CNN outputs a value between 0 and 1 for each pixel as shown in the third
column. The output was then thresholded with a value of 0.6 to produce the
final prediction in the forth column.

Since the CNN outputs a pixel value between 0 and 1, a histogram of the
pixel values from the CNN output of a test input is shown in Figure 5. A
majority of the pixels values are concentrated near zero and one. This means
that the changing the threshold value barely changes the results unless the
threshold value is close to 0 or 1.

The metrics given in Section 3.4 are evaluated on the training, validation
and testing data and compiled in Table 4. The training dataset has the highest
accuracy since the network is trained on it. The validation and testing dataset
have similar accuracies which ensures that the CNN is not over or under fitted.

The confusion matrices for pixel level predictions for each of the seven K
cases are calculated in Tables 5 and 6. The rows in the matrix are normalized
since the accuracy is evaluated separately for each class. The average pixel
values in the CNN output for TS, FS, TH, and FH are shown in Table 7
for each entry in the confusion matrix for K = 0 case. The histogram of the
pixel values are consistent with the high FS and low FH values in this matrix
respectively. One would imagine the average pixel value of the FS and the FH
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Raw DEM Ground Truth Prediction Thresholding

Fig. 4 The four columns denote the raw DEM, the processed ground truth, the CNN output
and the thresholded CNN output. The six rows are example show six example input DEMs
being processed. The prediction of the trained CNN is thresholded with a value of 0.6 to
generate the final output.
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Fig. 5 The histogram of the CNN prediction normalized to form a density function is given
above. A log scale is used for better visualization and the empty bins are removed.

K = 10
Predicted
H S

T
ru

e H 94.42 5.58
S 11.09 88.91

K = 20
Predicted
H S

T
ru

e H 95.94 4.06
S 13.72 86.28

K = 35
Predicted
H S

T
ru

e H 97.13 2.86
S 16.79 83.21

K = 50
Predicted
H S

T
ru

e H 98.35 1.65
S 22.25 77.75

K = 65
Predicted
H S

T
ru

e H 99.01 0.99
S 27.97 72.03

K = 75
Predicted
H S

T
ru

e H 98.69 1.31
S 25.30 74.70

Table 6 Normalized confusion matrices for pixel level prediction for safe and hazardous
classes on the test dataset. Cases B through G corresponding to the entries in Table 3 are
showcased here.

Predicted
Haz. Safe

T
ru

e Haz. 0.0014 0.9852
Safe 0.0354 0.9991

Table 7 Average probability for each entry in the confusion matrix on the test dataset for
the K = 0 case.

would be close to the threshold. However, this is not the case since the CNN
was trained on pixel values of 0 and 1.

The variation of the TPR and FPR as function of the threshold value is
depicted in Figure 6. This curve shows the decreasing TPR and increasing
FPR with increasing weight K respectively. The ROC curve for the trained
CNN calculated, for all the weights, on the testing dataset is shown in Figure 7.
The AUROC calculated from the ROC curve is found to be 0.926 for K = 0
case. As the weight K is increased, the AUROC approximately demonstrates
a decreasing trend. This shows that the performance of the CNN as a whole
is sacrificed in order to improve the False Safe value which is desirable and in
accordance with the objectives of the algorithm.

In terms of the computational complexity, the prediction from a DEM
on an average takes 67 ms per DEM on the GPU which is well within the
computational specifications. For a test input DEM, the output of the CNN
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Fig. 6 Plot of the True Positive Rate vs. threshold on the left and the False Positive Rate
vs. threshold on the right for the trained CNN for each of the cases from Table 3. The FPR
plot on the right shows how the False Positive Rate is minimized by increasing the weight
K on the False Safes. Consequently, the TPR is sacrificed as the weight is increased.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0
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Fig. 7 Receiving Operator Characteristics (ROC) curve of TPR vs. FPR for varying thresh-
olds is plotted for different weights in the weighted Jaccard loss function. The dashed line
is the ROC curve for the arbitrary prediction. The Area under the ROC curve (AUROC)
which is the area between the ROC, TPR = 0 line, and FPR = 1 line was found to be 0.926
for unweighted K = 1 case. The AUROC decreases with an increasing weight K on the
False Safe.

K = 1
Predicted
H S

T
ru

e H 92.98 7.02
S 10.65 89.35

Table 8 The CNN predictions were post processed and a normalized confusion matrices
for pixel level prediction for both the classes on the test dataset. This confusion matrix
measures the performance of the CNN within the class regions and away from the class
boundaries for the K = 1 unweighted case.
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Ground Truth K = 1 K = 10 K = 20

K = 35 K = 50 K = 65 K = 75

Fig. 8 The above figure shows the ground truth of a test DEM along with the output
its output when passed through the seven CNNs trained using different weights in the loss
function. The black and the white colored pixels are the True Hazardous and True Safe
pixels. The red and the blue colored pixels are False Safe and False Hazardous pixels. As
the weight K is increased, the False Safe pixels decrease at the cost of increasing number of
False Hazardous pixels as expected. Note that misclassification occurs primarily at the class
boundaries.

K = 10
Predicted
H S

T
ru

e H 95.59 4.41
S 14.20 85.80

K = 20
Predicted
H S

T
ru

e H 96.83 3.17
S 16.98 83.02

K = 35
Predicted
H S

T
ru

e H 97.78 2.22
S 20.22 79.78

K = 50
Predicted
H S

T
ru

e H 98.76 1.24
S 25.79 74.21

K = 65
Predicted
H S

T
ru

e H 99.27 0.73
S 31.48 68.52

K = 75
Predicted
H S

T
ru

e H 99.03 0.97
S 28.76 71.24

Table 9 The CNN predictions were post processed and a normalized confusion matrices
for pixel level prediction for both the classes on the test dataset. This confusion matrix
measures the performance of the CNN within the class regions and away from the class
boundaries for the K = 10 to K = 75 case. The False Safes and False Hazardous rates are
re weighted to improve the False Safe rate.

prediction is displayed for the networks trained with different loss functions
in Figure 8. The red and blue colored pixels denote the False Safe and False
Hazardous pixels respectively in the CNN prediction for the seven K cases.
The variation of False Safes with increasing weight is shown in Figure 9. As
mentioned previously, misclassification occurs at the class boundaries. In or-
der to differentiate between the errors within and at the class boundary, the
CNN output is post-processed by calculating the erosion of the output with
a 3× 3 square matrix of ones. The confusion matrix hence calculated for the
unweighted and the weighted cases are given in Tables 8 and 9. The False Safe
measures are lower than their unprocessed counterparts and hence shows a
better regional prediction performance measure of the trained CNN.
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Fig. 9 The black and the grey lines correspond to the False Safe without and with post
processing respectively. The False Safes decreases monotonically for the weights using which
the CNN was trained. At K = 75, the False Safe begins to saturate at a steady state.

5 Summary

A deep learning algorithm called semantic segmentation popularized in com-
puter vision applications is used for identifying safe landing locations on the
Lunar surface. The digital elevation map (DEM) from the Lunar Reconnais-
sance Orbiter (LRO) is used to train a convolutional neural network (CNN)
to find safe landing locations on the Lunar surface. Existing algorithms for
calculating the slope and roughness are used on the DEM to find the ground
truth locations which satisfy certain landing specifications. The training data
is corrupted with simulated sensor noise and additional transformed data is
augmented to the training data to make the model robust. A UNet-like network
architecture is used to train on the augmented training data set. A weighted
Jaccard loss function is used while training with different weights on the False
Safes. After testing the trained CNN on the randomly sample DEMs from
the Lunar surface, it was found that the CNN outputs a mean pixel accuracy
accuracy of around 92% on the testing dataset. Incrementing the weight on
the False Safes can get the False Safe percentage down to less that 1%. It is
noted that misclassifications occur at class boundaries. Other common metrics
for evaluating semantic segmentation models are also compared and reported.
Future work includes choosing the best safe landing spot; it is strongly recom-
mended that the choice choice of landing location is performed sufficiently far
from a safe/hazardous class boundary. Such a choice will significantly decrease
the chances of selecting a hazardous landing location.
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