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Abstract The nonlinear filtering problem plays a fundamental role in multi-
ple space related applications. This paper offers a new filtering technique that
combines Monte Carlo time propagation with a Gaussian mixture model mea-
surement update. Differential Algebra (DA) techniques are used as a tool to
reduce the computational effort required by particle filters. Moreover, the use
of Expectation Maximization (EM) optimization algorithm leads to a good
approximation of the probability density functions. The performance of the
new method is assessed in the nonlinear Orbit Determination problem, for
the challenging case of low observations frequency, and in the restricted three

bodies dynamics.
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1 Introduction

The filtering problem for nonlinear dynamic systems is an important research
area that has attracted considerable interest, especially in space applications:
it consists in estimating the state of a nonlinear dynamical system from noisy
measurements. For the well-known linear and Gaussian case, the posterior dis-
tribution remains Gaussian and the optimal estimate is the posterior mean.
The well-known Kalman Filter [16] [17] provides the mechanization to calculate
the mean and the covariance of the a posteriori probability density function
(PDF). However, most problems of interest in aerospace engineering applica-
tions, such as orbit determination [27], spacecraft navigation, target tracking,
etc., require a reliable filtering method that deals with high nonlinearities. In
the presence of nonlinearities, the posterior distribution is necessarily a non-
Gaussian PDF that is typically not representable exactly in closed form and
needs to be approximated.

The most common approach to estimate a system with nonlinear dynam-
ics/measurements is the Extended Kalman Filter (EKF) [8]. The EKF is
widely used for trajectory estimation. The EKF linearizes the equations of mo-
tion and the measurements equations around the most current estimate and

then applies the Kalman filter update equations to the linearized system. In
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its Bayesian interpretation, the EKF approximates the distributions as Gaus-
sian. However, in problems with high nonlinearities, the simple linearization
assumption fails to provide an accurate approximation of the dynamics and the
filter fails to give a valid estimate [15]. In such cases, a different approach that
accounts for the system nonlinearities must be used. The Unscented Kalman
Filter (UKF) [13] [14] is based on the unscented transformation and does not
rely on linearization around the estimate. Carefully chosen sample points are
propagated with the true nonlinear dynamics, leading the UKF to higher con-

sistency when compared to the EKF.

Park and Sheeres [21,22] developed two nonlinear filters that use state
transition tensors (STT) to describe the localized nonlinear motion. The initial
uncertainties, mean and covariance matrices, are analytically mapped achiev-
ing a better representation than the EKF. Valli et al. [30] reproduced Park
and Sheeres’ work using Differential Algebra (DA), eliminating the need to

evaluate STT.

Gaussian Sum Filters (GSF) represent the states distribution function with
multiple Gaussian kernels (known as Gaussian Mixture Model, GMM) and
apply the Kalman filter equations for each model. The GSF estimate is the
weighted sum of the estimates from each model, based on the measurement
likelihood function. Accuracy during the PDF time-update has been improved
by changing the weights of each distribution regardless of the availability of
measurements [28], or by changing the number of kernels to better address the

nonlinearities present in the system [6].
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The nonlinear filters mentioned above are more accurate than the EKF,
but also more computationally expensive due to the evaluation of STT or to
performing multiple high fidelity integrations [12]. High accuracy can also be
achieved with sequential Monte Carlo methods [26] (such as the particle filter,
PF), or the Monte Carlo Kalman filter (MCKF)[10]. However, even if these
filters can provide a good estimate of the statics and uncertainties, performing
a large number of particle propagations can be computationally expensive
and, as a consequence, they are not necessarily always the best choice for

orbit determination problems or on-board navigation applications.

Valli et al. [29] use DA techniques to develop a Monte Carlo Kalman fil-
ter that substitutes samples propagation with polynomial evaluations: thus
it enhances and speeds up the classical Monte Carlo approach. However, the
measurement update in [29] is linear, i.e. the distributions are approximated as
a Gaussian distribution and the Kalman update is performed. This approach
neglects the information about the shape of the predicted PDF contained in
the samples. The filter presented in this paper contains a similar prediction
step to that in [29], but it improves the update step with the introduction of

multiple Gaussian models.

Raihan and Chakravorty [23] developed a particle Gaussian mixture fil-
ter where the kernels are created directly from the propagated samples. The
estimator has the usual computational burden that characterize all particle
filters: having to propagate the whole set of particles. Ref. [23] uses K-means

clustering algorithm to form a Gaussian Mixture from the particles. K-means
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is a hard clustering algorithm, and the covariance calculation for each Gaus-
sian component is performed using only the points belonging to that cluster,
without any influence from the rest of the ensemble. A different approach to
clustering is optimization via the Expectation Maximization algorithm [33].
Expectation Maximization is a type of coordinate descent/ascent optimiza-

tion often used in clustering applications [9].

This paper introduces a filter, EMDAc-N, that combines the strengths of
the above cited filters. EMDAc-N will use DA techniques to solve the predic-
tion problem through DA-based Monte Carlo integrations. By solving ordinary
differential equations (ODEs) in the DA framework, the result is not only the
integrated state, but also a map of how deviations from the nominal solution
evolve in time (represented using Taylor series expansion up to a user-defined
order ¢). In the measurement update portion of the algorithm, the performance
of the classical Kalman update is improved with the addition of multiple mod-
els. After clustering the predicted PDF into N Gaussians, a GSF updates is
performed and the estimate is evaluated through weighted mean of the Gaus-

sian components.

This paper is organized as follows. First a brief introduction on differential
algebra is presented with references to a more detailed explanation. Then, the
main part of the paper describes the filtering algorithm and how it works in
the DA framework, underlining the benefits of the Taylor series representation
and the improvements given by a multiple model update. Moreover, the effec-

tiveness of the proposed method is assessed in an orbit determination problem
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characterized by low availability of measurements: the filter has been compared
to multiple others to demonstrate the benefits of the new algorithm. Further-
more, a second orbit determination example is presented where the spacecraft
undergoes the restricted three bodies dynamics around the unstable L2 point.

Lastly, conclusions are deduced.

2 Differential Algebra

Differential Algebra techniques are used to obtain the c-th order Taylor ex-
pansion of the solution flow of a system of ODEs with respect to a given initial
condition. DA relies on solving analytical problems using an algebraic approach
[18]. Standard representation of functions in a computer environment is based
on the simple evaluation at specific points, working with the classical floating
point (FP) representation. DA techniques, on the other hand, exploit the idea
that it is possible to extract more information from a function rather than its
evaluations. Therefore, DA expresses each function as a matrix of coefficients
and exponents that describe the Taylor series approximation of that specific
function after a center point is selected. The DA framework is able to operate
algebraic operations, including differentiation and integration operators, in the
DA structure [24]. Therefore, DA offers another way to work in a computer
environment, with endowed composition of functions, function inversions, ex-
plicit system solving, etc., similar to the algorithms used in FP arithmetic. DA
has been successfully used to compute the time evolution of the state of a dy-

namic system affected by process noise both in discrete-time applications [25]
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and in continuous-time situations [19]. Rasotto at al. quantify the accuracy
of DA methods by studying the convergence of the approximation errors, for
different expansion orders, comparing the DA propagation results with Monte
Carlo [24].

An implementation of such DA computer routines is available in the Dif-
ferential Algebra Core Engine (DACE2.0) software [7], which has been used to
implement the algorithm presented in this paper. For additional explanation
of DA, the reader is advised to look through previous works such as [29] and

[3]-

3 Multiple Models Differential Algebra Ensemble Kalman Filter -

EMDA

Consider the following system, where the state evolves according to a discrete-
time nonlinear state transition equation. The only information about the sys-
tem is a set of measurements, related to the state vector, acquired at discrete

times

X1 = fi[xk] + Vi (1)

Vi1 = by [Xeq1] + 1544 (2)

where fj, is the process model, x;, is the s-dimensional state at time-step k, yx+1
is the m-dimensional vector of the actual measurement at time-step k+ 1, and

h; is the measurement function. The process noise v, and the measurement
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noise 1, are random sequences which satisfy the following conditions V ¢, j > 0:

E{vi} =E{n;} =0 (3)
E{viv]} =Qd;; (4)
E {n;nj } =R (5)
E{vn]} =0 (6)

3.1 Cluster Propagation

The truncation order of the Taylor series can be set to any desired value, it is
denoted with c¢. Let N be the fixed number of Gaussian distributions that will
approximate the propagated PDF. Therefore, each Gaussian PDF is described
by its own mean X; and covariance matrix P;, and has an associated weight p;,
where ¢ = 1,..., N. The weights add to one and the estimate is evaluated as
the weighted average of the Gaussian kernels’ means. If the initial distribution
is exactly Gaussian, at initialization each of the N Gaussian components shares

the same mean and covariance values, with equal weight 1/N.

Let n be the total number of particles used to describe the shape of the
distribution. Each filter’s iteration starts with sampling from the GMM, in
particular each ith Gaussian component generates a number of particles pro-
portional to its weight

0; = nuj:k eN (7)
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where ,uj"k indicates the updated weight at time step k of the i-th Gaussian.
The points are generated after calculating, thorough Cholesky Decomposition,

the square root of the covariance matrices.

The propagation is carried out in the DA framework . Differential Algebra
creates a map of the dynamics that connects deviations at time steps k to
deviations at time step k£ + 1. This can be achieved by replacing the classic
numerical integration scheme with the corresponding DA operations. Conse-
quently, by working directly on functions, the DA solution of any ODE allows
the propagation of the Taylor expansion of the flow forward in time from
the given initial condition to any final time [32]. Therefore, it is sufficient to
propagate the mean of the samples together with the map and, subsequently,
evaluate the polynomial map at each deviation. The result is a computational

efficient way to evaluate the predicted PDF [1].

The next step of the algorithm is to calculate the deviation of each single
sample from its component’s mean: this is achieved through simple vector

subtraction. As depicted in Figure 1, the deviation ¢;, j = 1,...,n, of each

Fig. 1: Vectors representation.
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sample from the estimate after propagation Xj, is the vector summation of the
deviation from the mean of the Gaussian component, o, and the distance

between that Gaussian mean and the estimate, d;.

aj = Pik — Xik (8)
d; = )A(Z‘,k — Xk (9)
0j =pjk — Xk =Dik — Rik +Xig —Xp = a5 +d; (10)

where p; 1 is the particle’s position and this set of equation is repeated Vi, j.

The state is now propagated to the next time step in the DA framework.

X :)_(k+5x (11)

Xy = fi[xx] (12)

where x;_ , indicates the Taylor series expansion of the dynamics centered at
X, and truncated at order ¢. The polynomial is now evaluated n times, one for
each sample point. With this DA approach, n — 1 propagations are substituted
with faster polynomial evaluations. Therefore, each particle of the propagated

PDF is found as

Pjk+1 :X;+1(5j) + Vgt1,j V.] =1,...,n (13)
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where vy ; indicates the contribution from the process noise, at time step
k 4+ 1 for the jth particle, generated randomly from the knows process noise

PDF.

3.2 K-means

As with all particle filters, the propagated PDF is represented by n random
samples. In the proposed approach, the next step is to approximate the distri-
bution as a GMM [23]. After approximating the propagated PDF with multiple
Gaussian kernels, the measurements are incorporated as in the Gaussian Sum
Filter. Expectation Maximization (EM) is an algorithm that evaluates means
and covariances of the Gaussian distributions to approximate the cluster. The
EM optimization is initialized with the K-means clustering solution. K-means
divides the whole ensemble into a selected number of sets using a hard con-
straint on the sample: each point is either part of the set or not. EM, on the
other hand, enforces a soft constraint where each sample has a probability of
belonging to each different set.

Let us randomly select N particles as initial guesses of the means X h1
of the sets for the K-means algorithm. Then, we repeat until convergence the

following Equations:

a; ;= argmin [|pj 41 — ;e ll? (14)

. >oie Haj = ipj i
R 1 = z (15)

Z?:1 Ha; =i}
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Equation (14) selects which is the closest mean to sample p; ;41 and assigns
it to that corresponding set. Equation (15) evaluates the updated means with
the new sets of points. When the sets stop changing, the algorithm has reached
convergence and the outputs are the IV state vectors X; | ; and the clustered
samples. The K-means algorithm always converges but not necessary to a
global optimum. However, since the output of K-means is used purely as a
good initial condition for the EM algorithm, the proposed filtering technique
does not suffer from this issue. Another possible solution is to implement the

more robust K-means++ algorithm [2].

3.3 Expectation Maximization (EM)

As stated above, the EM algorithm is initialized with the output from the
K-means algorithm. The initial means are taken from K-means and the initial
covariances are calculated directly from the clustered particles. Given the set n
independent samples p = {p1 g+1-- - -, Pn.k+1}, the goal is to fit the parameters
of a model p(p, ¢) to the data, in order to find the maximum of the likelihood

max £(f) = maxlog /p p(p, C;0)dp (16)

where 6 are the parameters of the models it is desired to find, such as means,
weights and covariances. In Equation (16), the (; 41 are the latent random
variables (unobserved). The EM algorithm gives an efficient method for max-

imum likelihood estimation. The explicit maximization of ¢(6) might be un-
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feasible. thus the proposed strategy is to repeatedly construct a lower bound

on ¢, E-step, and then optimize that lower bound, M-step.

Starting from the particles, each one has an associated probability to belong

to each of the IV Gaussian clusters given by

P(pjri1li) =N (X;k+1vP;k+1) =

-1 T
1 1 o _ .
= exp D) (pj,k+1 - Xi,k—i—l) (Pi,k-i-l) (pj7k+1 - Xi,k-i—l)

(2m)*/% | Jdet P,

(17)

where P(p; x+1]¢) is the probability that point p; x41 belongs to the ith Gaus-
sian. It is now possible to calculate, through Baye’s rule, the probability of

each Gaussian given the single sample.

P(pj 4111 P (i)

18
Zthl P(Pj,k+1|h)P(h) ( )

P(i|pj 1) =

where P(i) = ;1 is the weight of each Gaussian component. Due to the
exponential behavior of the Gaussian distribution, it is convenient to work
with a logarithm scale and to operate with the weights separately. Therefore,
the following step of the EM algorithm, after Equation (17), is to calculate
the weight of each single particle j referred to each single Gaussian ¢. This

can be performed working directly on logarithms, after some mathematical
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manipulations.

_ P(pj,k+1|i)
- N
Zh:1 P(pj,kﬂ\h)

Wi, j

1
o exp (log [P(pjs1|h)] — log [P(pjs1]i)])

(19)

Conceptually, w; ; defines how much the jth sample belongs to the ith Gaus-
sian: the denominator normalizes the weights such that Zfil w; ; = 1. Fur-
thermore, the influence of each Gaussian is evaluated by summing the relative

weights.
W; = Z Wi, 5 (20)
j=1

The new mean and the covariance of the Gaussians can then be calculated:

A_ 1 n
Rikt1 = 3 E Wi jPj k1 (21)
1 j=1

_ 1 - . \7
P = W- wa <pj,k+1 - Xi,k+1) (pj,k+1 - Xi,k+1> (22)
1 ]:1

where W; normalizes the summation. The last step is to normalize the weights

of the Gaussians such that they sum to unity.

Wi

Yy W 29)
=1

Hi g1 =

The next iteration is then ready to start with the new mean, covariance, and

weight values until a set tolerance level on the update of the weights is reached.

Vi=1,...,NAVj=1,...

,n
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3.4 Measurement Update

The prediction part of the filter results in the propagated PDF approximated

as a GMM. The following step is to perform the measurement update.

The measurement equation can be expressed as a truncated Taylor series

expansion in the DA framework.

Zit1 = By [Xpqa] (24)

Where zj41 is a polynomial centered in X truncated at order c¢. The polyno-
mial can now be evaluated using the deviations from Equation (??) in order

to calculate the predicted measurements associated with each particle.

Gr1 = Zi41(5) (25)

It is now possible to apply the Kalman filter update equations to each Gaus-
sian component. The measurements covariances and cross covariances are com-

puted directly from the particles:

_ 1 ¢
Zika = 3 D Wik (26)
(et
1 & L N\T
Pzzi= > wij (Qj,k+1 - Zz‘,k+1) (q]yk+1 - Zi,k+1> +R(27)
7 J=1

1 n A_ A_ T
Pxzi= Wh sz‘,j (Pj,k+1 - Xi,k+1> (qj,k+1 - Zi,k+1> (28)
1 _7:1
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The covariance matrices Pz ; and Pxz; are calculated using the whole en-
semble of points. This approach is in contrast with the hard K-means con-
straint of Ref. [23]. The advantage of a soft constraint is that all Gaussian
components are updated using complete knowledge of the distribution from

the entire set of points.

The Kalman gain of each Gaussian kernel is evaluated as
Ki,=Pxz,; (PZZ,i)_l (29)

Each mean and covariance are updated likewise they are working indepen-

dently

i;fk+1 =X, 1 T Ki (Yk+1 - i;k+1) (30)

P:ka =P — KPPz, K/ (31)

where yj41 is the actual measurements vector from the sensors.

3.5 Weights Update and Estimate

The weight associated to each Gaussian component of the updated PDF are
updated based on the measurement outcome as well. This step applies Baye’s

rule to obtain the posterior distribution of the probability of each Gaussian
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given the measurements [4].

”Xk+1 = P(i|[Yx11) = P(ilyrs1, Yi) =
_ PlyenalYr) Pl yrenlYr)
P(yr1]Yr) 22\21 P(h,yk+1Yk)
P(yr41]t, Yi)P(i|Yy)

— 32
Sony P(h,yis|Y) (32

where Y, indicates all the measurements up to time step k. Looking at Equa-
tion (32), it can be noted its recursive property, since P(i[Y) = p; ;- More-

over P(yk+t1li, Yi) is the probability of yr11 to be the outcome from the ith

Gaussian.
, (2m) /2 < 1 . 1 — T
P 1, Yp) = —————ex —7( — 7 )P i ( — 7 )
(yk+1| k) \/(WZZJ p 9 Yk+1 i,k+1 ( ZZ, ) Yk+1 i,k+1
(33)
Therefore, the weights update equation can be written as
P(yrili, Yi) b i
N:k+1 = - (34)

N _
2oh=1 P g1 PVl Yi)

These weights will dictate how many samples each Gaussian will generate in

the next time step, as explained at the beginning of the algorithm.

Lastly, the state estimate and covariance are calculated as weighted means.

N
- + ot
Xk+1 = Zrui,kJrlXi,k:Jrl (35)
i1
N
P + + ot AT
Pri1 = —Xpp1Xp g + Z:ui,k-&-l (Pi,k+1 + Xi,k+1xi,k+1) (36)

=1



18 Simone Servadio, Renato Zanetti

The filter is now ready to start the following step with X1, ,u:kﬂ, fcjkﬂ

+
and Pi,k+1'

3.6 Algorithm Summary

The proposed filtering technique (EMDAc¢-N) is summarized in Algorithm 1,
with references to Algorithm 2 (K-means), and Algorithm 3 (EM for GMM).
Algorithm 3 differs from the classic implementation of the EM algorithm since
it adds as outputs the weight of each jth particle w; ;j, and their sum over the
total number of samples, W;. Due to this feature, Algorithm 1 uses the whole
ensemble of points for the evaluation of the covariances Px;; and Pz, for
each ith Gaussian model.

Choosing N = 1, EMDAc¢-1 reduces to the DAEnKF-¢ from [29]. Adding
a linear approximation of the dynamics and measurement equation reduces

EMDAI1-1 to the classic EKF.

4 Orbit Determination

The performance of the newly developed filter has been assessed with a non-
linear problem common in celestial mechanics: the two body problem. The
equations of motion governing the system are the ones associated to the Kep-

lerian dynamics, where r is the position vector of the spacecraft and p is the
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Algorithm 1 EMDAc-N

Declare Taylor truncation order c;

Declare number of particles n;

Declare number of Gaussian Kernels N;

Initialize iteration counter k& = 0;

Initialize Gaussians: p; 0 = 1/N, %io=%o, Pi=PoVi=1,...,N;
while new measurements yj; available do

//Deviations//

fori=1,...,N do
o; = nujk; //Number of particles per Gaussian
Dik = N (x[&; 1, Pig); // Samples generated by each Gaussian
0 =Dpji — Xu; //Deviations from current estimate

end for

// Propagation//

Xp = X+ 6x; //Initialize State Polynomial

X1 = fr[xel; //Propagation in the DA framework

for j=1,...,ndo
Pjk+1 =X, 1(05) +vi41 5 //Propagated ensemble through evaluation
0j = 05 + Vi1, //New Deviations with process noise

//Clustering//
Ris1: Prpys By = K-means(pr1, N);
[XE+1>P;+17 My W, W] = EM<P1€+17X1;+1’ P p’l;+1);

//Measurement Update//

Zi+1 = hpp1[Xep1]; / /Evaluate measurement polynomial
for j=1,...,ndo

Gkt = Zrr1(05); //Measurement ensemble through evaluation
end for

fori=1,...,N do

n

Zir1 = 37 2ajmt Wig Qike1s
(3

1 n o o T
Pzzi= W Zj:l Wi, j (qj,k+1 - Zi,k+1> (‘Jj,k+1 - Zi,k+1> +R;
1

Pxz,= Wiz Z;—;l wy (pj,k+1 - igkﬂ) (Qj,k+1 - ZZkH)T;

K, =Pxz,; (Pzz,z‘)_l;

X1 =X TKi (y’““ - 2;k+1);

P:tk+1 = P;k+1 - KiPZZ}iK??

P(Yky1li, Yi) = (iﬂmz exp <—1 <Yk+1 — 2 ) (Pzzi) <Yk+1 — 2, >T>;

etPzz,; 2 t,k+1 ) ik+1

P(yk\iliTk)m,kH .

2111\[:1 ﬂl:,k+1P(Yk+1|thk’),

+
K g1 =

end for

//Estimates//
%, = + et
Xk+1 = Zizl i kr1%X5 k415

— %, . %xT N+ + T 2T ).
Pri1 = —Xp1Xp 1y + dim1 i k11 (Pi,lc+1 + Xi,k+lxi,k+1)7
end while
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Algorithm 2 K-means

Get ensemble of n points p;

Get number of clusters N;

Declare N random initial means X;;
while %x; changes do

//Sample Assigment//
for j=1,...,ndo
fori=1,...,N do
di = |lp; — %:|%; //Get distances
end for
a; = arg(min(d)); //Assign sample to cluster
end for

//Mean Correction//
fori=1,...,N do
P Z;‘L:1 Ha; = i}pj_
' Z?:l Ha; =1}’
end for
end while

Earth gravitational parameter.

=Ly
3

(37)

The initial condition and uncertainties values are chosen equal to those in

Refs. [29,7] and are here listed. Length units are normalized by the orbit

[ 3
semi-major axis, a = 8788 km, and time units by the parameter e based
1
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Algorithm 3 EM
Get ensemble of n points p;
Get N means X;, covariances P;, and weights u;;
Declare a tolerance T;
while tolerance is met do

//Mazximization//
for j=1,...,ndo
fori=1,...,N do

™ o2 1 T
Pyl = T o (5 (s - %) (P07 (- 2" )

1
Wi,j = N NN
>_n—1xp (log [P(pj k+1[h)] — log [P(pj r+1]i)])
end for
end for
//Expectation//
fori=1,...,N do
Wi = %:?:1 Wi,
X = W, > i Wi gy
1 n A A \T
Pi= g5 2 wig (pj = %) (pj = %)
end for
end while
on the orbital period.
—0.68787
—0.39713
ro 0.28448
Vo —0.51331
0.98266
0.37611

and the initial estimate of the system state has a 10% offset from the true

initial state.
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The measurement model assumes the radial position of the spacecraft w.r.t.

the Earth and the line of sight direction of the planet:

yi=r+m (39)
T2

Yo = arctan?(—) + 712 (40)
T1

Y3 = arcsin(@) + 13 (41)
T

where 7;, with ¢ = 1,2, 3, is the measurement noise, assumed to be Gaussian.
The standard deviation of the error is assumed to be 0.1 m for the radial posi-
tion and 0.1 arcsec for the angle errors. The initial uncertainties are assumed
to be Gaussian as well, with a diagonal covariance matrix divided into position

states, with std o, = 10~2a, and velocity states, with std o, = 10™* \/ﬁ

a

For the presented application, the number of Gaussians in the multiple
models is chosen beforehand and it is kept fixed during the whole simulation.
However, if needed, the EMDAc-N algorithm can be enhanced with merging,
splitting, pruning and truncation, according to the methodology that the user
desires. The nomenclature EMDAc-N indicates with ¢ the truncation order of
the dynamics flow during propagation and N indicates the number of Gaus-
sians used in the clustering algorithm. For example, EMDA2-3 indicates a
filter with truncation order 2 and a GMM update with 3 Gaussians. In each

single simulation a total of 10* particles are used.

A Monte Carlo analysis is performed to assess the consistency of the pre-

sented filter and to show reliability and accuracy levels. The simulation is
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performed with low acquisition measurement frequency. Figure 2 and Fig-
ure 3 show the performance of EMDA2-3 and EMDA2-5, respectively, with a
Monte Carlo analysis of 100 runs. The figures show the consistency of the posi-
tion components, left columns, and velocity components, right columns, of the
spacecraft state vector in a simulation with time duration of 12 orbits with
3 equally spaced observations per orbit. Both filters converge and correctly
predict the estimation uncertainties. The continuous blue lines indicate the
standard deviation of the estimation error as predicted by the filter, expressed
as 3o values, while the dashed blue lines represent the actual standard devi-
ations of the errors calculated directly from the Monte Carlo samples, again
shown as 30 values. The consistency of the filter is assessed by the overlap-
ping of the two lines. Lastly, the black line shows the mean of the samples:
the expected value of the error is very close to zero, making EMDAc-N and
unbiased filter, matching the theoretical results expected for minimum mean

square error (MMSE) estimators.

In order to assess the filter relative accuracy and robustness, it is compared
with common estimators, such as the EKF and the UKF, and filters from pre-
vious works on differential algebra, such as DAHO-c from [31] and DAEnKF-¢
from [29]. DAHO-c is a DA-based filter that uses Taylor expansion series up to
order ¢ to represent each predicted variable. After propagation in time in the
DA framework, the predicted means and covariances are evaluated directly
on the monomials of each polynomial using a Gaussian assumption of the

distribution. DAEnKF-c is a Monte Carlo Kalman Filter (MCKF) that uses
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Fig. 2: 100 Monte Carlo runs depicting the performance of EMDA2-3 over 12
orbits with 3 observations each orbit.

polynomial evaluations, through DA, to propagate an ensemble of particles to
the next time step, as done in EMDAc¢-N. Therefore DAEnKF-c is equivalent
to choosing a single Gaussian kernel in our approach (EMDAc-1), where the
GMM update reduces to the single model Kalman filter update.

Figure 4 is divided into two parts. It shows the standard deviation profiles
for the spacecraft position, top row, and velocity, bottom row on a 6 orbits-
long simulation with 3 observations per orbit. Each graph has two sets of lines:
the dashed lines refer to the standard deviations calculated from the Monte

Carlo samples (100 runs), at each time step, while the continuous lines are
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Fig. 3: 100 Monte Carlo runs depicting the performance of EMDA2-5 over 12
orbits with 3 observations each orbit.

the predicted standard deviations estimated by each filter. These values are
derived from the diagonal terms of the updated covariance matrix of each of

the filters.

Or = \/ 0-12“36 + O"%y =+ 0'72'2 (42)
Oy = \/ 012)1 + 0-12)1; + 01212 (43)
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Therefore, a consistent filter will have the overlapping of its dashed and con-

tinuous lines, meaning a match between the effective and the predicted uncer-

tainties.

-8 -
~o U= py. - B ]
o = - g -0 o
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-4 DAHO-2 eff. DAHO-1 eff. -= UKF eff.

<DAHO-2 pred. -+ DAHO-1 pred. =UKF pred.

Fig. 4: Position and velocity error standard deviations comparison over a pe-

riod

of 6 orbits with 3 observations per orbit.
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The figure compares, in a logarithmic scale, the estimators mentioned above
for a total of 7 different filters. From the figure it can be noted how DAHO-1
and DAEnKF-1 have identical trends and they give the same estimation. Their
lines overlap both for the predicted and the effective covariance, settling on
different order of magnitude. The two filters work with a simple linearization
of the dynamics, thus they reduce to the well-know Extended Kalman Filter
which, in this orbit determination problem with high initial uncertainty, di-
verges. In fact, their dashed lines settle two orders of magnitude above the
continuous lines: the EKF is overconfident on its estimation and the effective
accuracy level is way bigger with respect to the covariance level that the filter
is expecting to achieve. The other filters, characterized by nonlinear propaga-
tion, behave similarly, but with some important differences that need to be
pointed out. The UKF predicted covariance settles with the same accuracy
level as the other nonlinear filter, however, the effective covariance from the
Monte Carlo runs does not match this prediction and it is larger, indicating
the UKF is not performing correctly and it is not a consistent estimator, as
the dashed green line in the figure is the only one that does not overlap with
the others, both in position and velocity. In contrast, DAHO-2, DAEnKF-2,
EMDA2-3 and EMDAZ2-5 show similar behavior and achieve the same accu-
racy level. The filters are consistent and the state is predicted correctly with
the same steady state precision. However, it is important to point out that
the new EMDA2-5 is the fastest filter to reach steady state, as it can be seen

by the black lines being the lowest in the transient phase. Furthermore, by
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remembering that DAEnKF-2 is equivalent to EMDA2-1, the figure shows
that, in EMDA2-N, the bigger the number of Gaussians used in the clustering

algorithm, the faster the filter converges to steady state.

The estimation improvement gained by approximating the shape of the
propagated PDF with multiple Gaussians can be appreciated by reducing fur-
ther the measurements acquisition frequency in the simulations. Figure 5 and
Figure 6 show the Monte Carlo analysis when only three measurement acquisi-
tions every two revolutions are available, for EMDA2-3 and EMDA2-5 in a 12
orbits long simulation. EMDAZ2-3 is able to estimate the state of the system,
but its covariance prediction is not consistent with the Monte Carlo analysis:
the standard deviation calculated from the samples at each time step is slightly
bigger when compared to the predicted one, thus the filter diverges. On the
other hand, EMDAZ2-5 has a consistent behavior and both the state and the
uncertainties are evaluated correctly, achieving steady state and reaching good

accuracy level.

Figure 7 represents the standard deviations analysis for DAHO-2, DAEnKF-
2, EMDA2-3, EMDAZ2-5 and the UFK in a 12 orbits simulation with 3 equally
spaced observations each 2 revolutions. The figure resemble the same charac-
teristics from the 3 observations per orbit case. Therefore, each dashed line is
connected to a Monte Carlo analysis performed with the relative filter where,
at each time step, the standard deviation of the error has been evaluated by
extracting the values from the single runs. The continuous lines represent the

error standard deviations predicted by the filters according to Equation (42)
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Fig. 5: 100 Monte Carlo runs depicting the performance of EMDA2-3 over 12
orbits with 3 observations each 2 orbits

and (43). The EKF, (equivalent to DAHO-1 and DAEnKF-1) has the same
problems seen in Figure 4: it diverges and the effective uncertainties increase,
it has therefore been omitted from the figure. The main difference with re-
spect to the previous case comes from UKF, DAHO-2 and DAEnKF-2: they
fail in their task to estimate the state and the estimation error grows in time,
diverging. Indeed, the dashed blue, red and green lines are almost 9 orders of
magnitude out of scale when compare to the relative continuous one. These 3
filters overestimate their confidence in their approximation of the uncertainties

and fail to perform a correct update of the state. On the contrary, EMDAc-
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Fig. 6: 100 Monte Carlo runs depicting the performance of EMDA2-5 over 12
orbits with 3 observations each 2 orbits

N is able to estimate the state of the system. When working with multiple
Gaussians (N > 1), the approximation of the shape of the ensemble of points
(thus the distribution) significantly improves and the multiple update achieves
a good estimate. However, even if decreasing, the effective std from EMDA2-
3 (dashed orange line) does not match the predicted one (continuous orange
line), as expected after studying Figure 5: the two lines do not overlap. Other-
wise, EMDA2-5 shows robustness and coherence. The black lines demonstrate
that EMDAZ2-5 is the only consistent filter and it has also fast convergence

to steady state level. Moreover, during the transient, the effective std stays
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below the predicted one. Therefore, it has been proven that the bigger the
number of Gaussians used in the algorithm, the more robust the prediction is,
at the expenses of a higher computational effort. The Bootstrap PF has not
been reported in the figure. In the absence of process noise, the particles of the
BPF do not spread during the propagation and the BPF suffers from particle
impoverishment.

Figure 8 supports the latter statement by showing the EM clustering at the
end of the first propagation. The samples distribution shows how the predicted
PDF has the so-called banana shape, characteristic of an orbit determination
problem with long propagation times in-between measurements. The clustering
algorithm with 5 Gaussians better approximates the shape of the distribution,
especially near the mean and at the tails. Using only 3 Gaussians the algorithm
does not match the curve of the density function. EMDA2-5 achieves a correct

estimate when EMDAZ2-3 fails.

5 Unstable and Chaotic L2 Orbit

The new filter is also tested on the restricted three body problem. A spacecraft
orbiting in the Earth-Moon system has his coordinates expressed with respect
to the rotating syndic reference frame. The equations of motion are derived
by expressing the position of the spacecraft with respect to the barycenter of
the system, which is the center of the frame, as shown by Figure 9. Figure
9 illustrates the z; axis connecting Earth’s center to the Moon’s center and

the x3 axis defining the Moon’s rotation plane around the Earth. The zo axis
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Fig. 7: Position and velocity error standard deviations comparison over a pe-
riod of 12 orbits with 3 observations each 2 orbits.

closes the frame. The problem is scaled such that variables and units are non
dimensional. The location of the barycenter for the system is defined by the

mass ratio

W= MMOON = 0.0121505856 (44)

MMOON + MEARTH
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Fig. 8: Position and Velocity EM clustering representation with 3 and 5 Gaus-
sians. First propagation from initial condition in the case of 3 observations each
2 orbits. Portrait of the Gaussian kernels before the measurement update.

spacecraft

Fig. 9: Coordinates in Earth-Moon system.

such that the distance between the two celestial masses defines the distance

unit: 1 DU = 385692,5 km. Under this parametrization, the distances of the
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spacecraft with respect to the Earth, 1, and to the Moon, 75, are

r = \/(ml + p*)? + 2% + 23 (45)

TQZ\/($1*1+‘LL*)2+£C%+.T§ (46)

The spacecraft, assumed of negligible mass compared to the two bodies, is

governed by the following equations of motion [11]:

(L—p )@ +p")  p(er—14p")

71 = 21 — — 47

T To + X T‘i)’ ’I’g (47)
1 — y* *

Tg =221 + X2 — 7a( 3 &) _ng (48)
1 )

. z3(l —p*)  xap”

_ i 49
3 r3 r3 (49)

The dynamics are propagated at 1.4 Hz with a Runge-Kutta 7-8 integrator.
The system has five different equilibrium points, the so-called liberation or
Lagrange points. In the presented application, the filter estimates the orbit
parameters of the spacecraft around the unstable L2 location, at coordinates

(1.156, 0, 0) DU [5].

The initial state distribution is assumed to be Gaussian xo ~ N (X, Py),

with mean at L2 with zero velocity and given covariance matrix Py = 10~ 3Igg.

The measurement model assumes the radial position of the spacecraft w.r.t.

the Earth and the line of sight direction of the planet, as in the previous
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problem,

n=ri+m (50)
= arctanQ(L> + (51)
b2 = Ty + p* G
. (T3
Y3 = arcsm(r—) + 13 (52)
1

where 7;, with ¢ = 1,2, 3, is the measurement noise, assumed to be Gaussian.

The standard deviation of the error resembles the previous application.

The selected initial condition integrates to a bimodal PDF, caused by the
unstable nature of the L2 point. Therefore, depending on the true initial state
of the spacecraft, which is randomly selected according to the initial Gaussian
PDF, the equations of motion define two family of orbits, as shown in Figure

10. The different orbit realizations are reported in the (z1,22) plane, as a

4 @ EARTH '
@® MOON 01
Q Initial PDF
0 °
0.1
X2 07 08 09 1 1.1 12

-3 -2 -1 x; 0 1 2

Fig. 10: 200 orbit realizations from L2, propagated for 2.77.
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bidimensional projection of the actual tridimensional orbit. Figure 10 shows
that the left part of the initial Gaussian evolves with revolutions around the
Moon before leaving due to the gravitational assist. The other half of the initial

Gaussian moves away form the Moon and starts orbiting around the Earth.

Process noise is added to the system. The process noise is white and addi-
tive to the acceleration of the system. The process noise covariance matrix is
computed as [27]

T(thon, tn) = | o1 —1)? _ (53)
k+1, Utk 5 I3 (teer — )3

Qiv1 = 00T (trg1, te) T (trgr, te)” (54)

Considering that the state of the system is scaled by the Earth/Moon distance,

the value of og is chosen to be 10-S.

A Monte Carlo analysis with 200 runs has been performed with EMDA2-3
and it is reported in Figure 11. The graphs are zoomed in from the initial large
uncertainty levels in order to show convergence. The overlapping, at steady
state, between the continuous and dashed blue lines proves the matching be-
tween the effective and the estimated uncertainties of the system, expressed as
30. Therefore, even in the new scenario, EMDAZ2-3 is a consistent filter that
reaches a precise estimate of the state. The error mean is null as expected by

the unbiased nature of the filter.

The performances of EMDAc-N is compared against the other filters, as

done in the previous problem. Figure 12 reports the standard deviation analy-
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Fig. 11: 400 Monte Carlo runs depicting the performance of EMDA2-3 at 1.4
Hz for 2.77.

sis for position, left, and velocity, right, of the spacecraft. EMDA2-3 has been
compared to the UKF, the BPF, and DAEnKF-2. DAHO-1 and DAEnKF-1
(which reduce to the EKF) diverge; and is therefore not reported. From the
figure, it can be noted that the UKF diverges and the effective standard devi-
ation is larger than the filter’'s own prediction. The DAHO-2 has an analogous
behavior to the UKF and it is not reported in the figure. The BPF diverges and
the orange curves start growing after the first step. Based on following each

single particle, the BPF follows both paths from the initial PDF. Therefore, in
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Fig. 12: Position and Velocity error standard deviations comparison with 200
Monte Carlo runs.

the first steps, the corresponding estimate is in conflict on which path of the
bifurcation to take, and the filter fails. The remaining two filters, DAEnKF-2
and EMDAZ2-3, converge and they reach steady state with consistency. These
are the filters that approximate the PDFs with clustering, where the mea-

surement likelihood better weights, and picks, which one of the two modes
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the true state belongs to. However, as in the previous example, EMDA2-3
shows an improvement in accuracy and its precision levels are superior to its
single-Gaussian counterpart. Indeed, the blue lines lie below the red lines dur-
ing the whole simulation, both for position and velocity. EMDA2-5 achieves
convergence with consistency, and it is slightly more accurate than EMDA2-3.

However, it is not reported in the figure for clarity purposes.

A computational time analysis is performed on the L2 orbit determination
problem in order to underline the benefits of using DA evaluation techniques
for the propagation of an ensemble of points. The time analysis studies the
average computational time requested by the processor to perform one single

run of the Monte Carlo analysis:

Zi\/lc Zjvsfﬂps tite'r‘
T = VT (55)

where t;;.,- is the computational time requested for one single iteration of the
algorithm, Ngseps is the total number of steps for each Monte Carlo run, and
MC' is the number of runs. Table 1 reports the values of 7 among different
filters and for three sizes of particles in the ensemble. The table reports the
BPF, EMDA2-3, EMDA2-5, DAEnKF-2, and the MCKF. The MCKEF is the
classical Monte Carlo Kalman Filter, implemented without differential algebra
techniques. Consequently, the particles in MCKF are individually propagated.
Figure 13 gives a visual representation of 7 through a bar graph. The figure
proves that DA reduces the computational time of the filtering algorithm. The

three filters based on DA are the fastest, while the BPF is the slowest. DA uses
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Filter 1-10* | 2-10* | 3-10%
BPF 11.798 | 21.454 | 35.512
MCKF 12.022 | 20.135 | 26.915
EMDA2-5 | 8784 | 17.504 | 26.698
EMDA2-3 | 6.613 | 13.096 | 19.432
DAEnKF-2 | 1.659 | 3.311 | 4.865

Table 1: Computational time 7 analysis among different filters for different
ensemble size.

the polynomial map of deviations to propagate all the points with a singe DA
integration and n evaluations, while classic particle based filtering techniques,
such as the BPF and the MCKF, perform n propagations. Therefore, the
main advantage of leveraging DA is appreciated by comparing the DAEnKF-2
computational time with that of the MCKF. The two filters have the same
accuracy and robustness levels, but DAEnKF-2 is considerably faster. It is
important to re-emphasize that DAEnKF-c is equivalent to EMDAc-1, by
selecting N = 1 the filter skips the clustering (K-means and the EM) part
of its algorithm. Therefore, in the figure, DAEnKF-2 is the fastest algorithm,
and the computational time increases as we increase the number of Gaussian
kernels. Increasing the number of kernels produces a more precise estimate
at the cost of a heavier computational burden. As expected, as the number
of particles n becomes larger, the computational effort increases as well. The
value of 7 requested by EMDAc-N depends also on the tolerance selected to
stop the EM iterations. Initializing EM with the output of K-means typically

requires only few iterations.
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Fig. 13: Computational time comparison among different filters.
6 Conclusions

A new differential algebra particle filter has been presented. The nonlinearity
of the dynamics and measurements is approximated by high order Taylor se-
ries expansions using differential algebra (DA) techniques. Using a truncated
Taylor series representation of the dynamics, the propagation step of each
particle is replaced with a faster polynomial evaluation. Working in the DA
framework significantly reduces the computational burden required by stan-
dard approaches to propagate particles forward in time [7] [19], while retaining

high accuracy [24] [20]. The proposed algorithm, named EMDAc-N, utilizes
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soft clustering, thought Expectation Maximization. As a consequence, dur-
ing the measurement update, each model works with the whole set of points.
Clustering the propagated PDF improves the estimation of the state of the
system: multiple models better represent the shape of the distribution espe-
cially for long time intervals, better than a single Gaussian. In the numerical
examples considered, it is shown that increasing the number of Gaussian com-
ponents achieves satisfactory accuracy and robustness levels in the challenging
situation of having sporadic measurements, where filters with a Gaussian ap-

proximation fail to converge.
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