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UNCERTAINTY ESTIMATION THROUGH POLYNOMIAL MAP
INVERSION

Simone Servadio∗, Renato Zanetti†

This paper investigates the estimation of the uncertainties of a system using poly-
nomial map inversions. The measurement noise influence on the observations
from the sensors can be mapped back into the initial state probability density
function. Therefore, a new technique that analyzes which portion of the ‘a pri-
ori’ distribution could have generated the measurements is proposed. The algo-
rithm is tested in different applications, under either a square map and a case with
measurement deficit.

INTRODUCTION

Estimation of the state of a stochastic dynamic system from noisy measurements is a research
area that has attracted considerable interest. The optimal state estimate, in a Minimum Mean Square
Error sense, is the mean of the state conditioned on all measurements. For the linear and Gaussian
case, the conditional distribution remains Gaussian at all times and it can be parameterized by its
mean and covariance matrix. The well-known Kalman Filter [1, 2] provides the mechanization to
calculate the conditional mean and covariance matrix. Systems of practical interest, however, are
typically characterized by nonlinear dynamics observed via nonlinear measurements. A closed form
solution to calculate the conditional mean of systems undergoing nonlinear dynamics and nonlinear
measurements is typically unavailable.

Different algorithms have been proposed to approximate the conditional mean of nonlinear sys-
tems. One common approach is to simply perform a linearization of the measurement and dynamics
functions centered at the current estimate, and apply the Kalman filter equations as if the system
were linear; the so-called Extended Kalman Filter (EKF) [3]. However, when the system is highly
nonlinear, this simple linearization fails to convergence [4].

An approach typically more robust than linearization is using the unscented transformation to
better approximate the nonlinear transformation of mean and covariance matrices, the so-called
Unscented Kalman Filter (UKF) [5, 6]. Both the EKF and UKF approximate the conditional mean as
a linear function of the current measurement outcome. In the presence of nonlinearties, a nonlinear
function of the measurement typically produces more accurate estimates. Estimation algorithms
using a nonlinear function of the current measurement are computationally more expensive than the
EKF and UKF as they usually require a representation of the entire conditional distribution, rather
than just its mean and covariance matrix. These algorithms include the Gaussian Sum Filter [7, 8]
(which approximates the conditional distribution as a Gaussian Mixture Model) and the Particle
Filter [9] (which approximates it with a finite number of samples).
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The algorithms mentioned above offer different approximations of the nonlinear transformation
of random vectors through the measurement function. These approximations are then used to com-
pute the estimator function. Armellin et al. [10] take a different approach. They collect a small
batch of measurements and invert the measurement function to obtain a “measured” state. They
then apply a linear estimator to this linear “measurement”. The transformation of mean and co-
variance matrix through the nonlinear functional inverse is still approximated, but the algorithm
provides very good accuracy as it is a nonlinear function of the original measurement but only re-
quires approximating the nonlinear transformation of mean and covariance rather than carrying the
entire conditional distribution.

This work expands the results of [10] by processing measurements at every time without the need
of collecting small batches of measurements at different times to make the measurement function
square and invertible.

POLYNOMIAL APPROXIMATION

Different nonlinear filters are characterized from how they approximate the nonlinear transfor-
mation of random vectors. In this work nonlinear functions are approximated with their high order
Taylor series expansions and then polynomial transformations of random vectors are computed.

The Taylors series and all polynomial operations are performed with Differential Algebra (DA)
techniques [11]. DA supplies the tools to compute the derivatives of functions within a computer
environment [12]. In DA, each variable and function is expressed as the Taylor series expansion up
a selected arbitrary order c and given a valid center for the expansions. The software implemen-
tation used to produce the numerical results of this paper is the Differential Algebra Core Engine,
DACE2.0 [13]. By representing each function as an array of coefficients and exponents, the evalu-
ation of derivatives, integration, gradients, are rapidly computed in the DA framework. Therefore,
once a center point of the Taylor series expansion is selected, any function can be represented into
its polynomial approximation (up to the selected order c), where the polynomial variable is the
deviation from the expansion series itself.

As an illustrative example, consider variable x and the sin(·) function. After selecting center
x̂ = 1, the DA framework approximates sin(x) around x̂ as a function of the deviation from the
center of the expansion; δx = x− x̂ (coefficients precision has been reduced for length purposes).

sin(x)|x=1 = 0.84147 + 0.54030δx− 0.42735δx2 + . . .

= sin(x̂) +Mx̂(δx) (1)

where the series can be truncated at any order. Equation (1) shows that the first term of the series is
the function evaluated at the given center. All the remaining terms depend on the initial deviation
from the center, δx, and they represent the polynomial map, Mx̂(δx), of the function connecting
deviation in x to their value sin(x).

It is therefore possible to operate with the Taylor approximation of functions likewise with the
regular Floating Points (FP) algebra. Moreover, the DACE2.0 [14, 15] has embedded polynomial
operations such as evaluation, center shifting, map inversion, and so on.

For a more complete and detailed explanation on Differential Algebra, please refer to the refer-
ences [16, 17].

2



THE TRACE BACK NOISE FILTER - TBNC

The section describes the new filtering technique. The Trace Back Noise filter (TBNc) uses DA
techniques to create the polynomial map of the flow of the dynamics, connecting state deviations
at time step k + 1 to state deviations at time step k, and to create the polynomial map of the
measurement equations, that connects deviation in the measurement space to deviations in the state
space.

Consider the following equations of motion, describing a nonlinear dynamic system affected by
process noise. The information about the system is a set of measurements, related to the state vector,
acquired at discrete times

xk+1 = fk[xk] + νk (2)

yk+1 = hk+1[xk+1] + µk+1 (3)

where xk is the n components long state vector at time step k, yk+1 is the m components long
measurement vector at time step k + 1, fk[·] is the process model, and hk+1[·] is the measurement
function. The system is subject to process noise νk and measurement noise µk+1 that are potentially
non-Gaussian zero-mean random sequences that satisfy the conditions ∀i, j > 0:

E {νi} = E {µi} = 0 (4)

E
{
νiµ

T
j

}
= 0 (5)

E
{
νiµ

T
j

}
= Qiδi,j (6)

E
{
µiµ

T
j

}
= Riδi,j (7)

The probability density function at time step k is approximated as Gaussian, with knowledge of
the state estimate, x̂k, and its uncertainty spread around the mean in terms of covariance matrix Pk.
The state polynomial xk is initialized as

xk(δxk) = x̂k + δxk (8)

where the DA variable δxk indicates the deviation from the center of the series.

Time Propagation

The state polynomial is propagated in time in the DA framework according to the equation of
motion

xk+1(δxk) = fk[xk(δxk)] (9)

Differential Algebra replaces the classic integration scheme with corresponding operations in the
DA framework. The results of the DA ODE integration is the propagated Taylor series expansion of
the flow forward in time [18]. Therefore, Equation (9) represents the forward map of the dynamics
that connects deviations at time step k to deviations at time step k + 1. Thanks to the Gaussian
approximation of the PDF of the state at time step k, all the central moments of xk can be easily
calculated using the Isserlis’ formulation [19], starting from Pk. Therefore, the central moments
of xk+1 are calculated by working directly on the monomials of the polynomial itself, since it is a
function of the deviations δxk. The polynomial expressed by Equation (9) can therefore be written
putting in evidence each single monomial: for the ith component of the state

xk+1,i(δxk) = fk,i[x̂k] +

c∑
r=1

1

r!

∑ ∂rfk,i[xk]

∂xγ11 . . . ∂xγrn
δxγ11 (k) . . . δxγrn (k) (10)
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where the second summation is over all the possible permutations of γi ∈ {1, . . . , n} with i ∈
{1, . . . , r}, and it indicates all the derivatives up to the selected order c. Hence, the summation of
fk,i[xk] expresses all the higher-order partial derivatives of the solution of the flow, which directly
connect deviations from time step k to time step k + 1. Consequently, each function needs to be
c-times differentiable in the selected support.

The predicted mean is calculated by applying the expectation operator on the propagated polyno-
mial;

x̂−k+1 = E {xk+1(δxk)} = fk,i[x̂k] +
c∑

r=1

1

r!

∑ ∂rfk,i[xk]

∂xγ11 . . . ∂xγrn
E {δxγ11 (k) . . . δxγrn (k)} (11)

where, being a linear operator, the expectations work directly on each single monomial of the series.
The predicted mean is therefore evaluated by substituting, to each deviation product, the relative
Isserlis’ moment evaluated from Pk, since the polynomial map is a function of the original deviation
initialized in Equation (8).

The predicted state covariance matrix is evaluated likewise the mean, by considering the deviation
of the propagated polynomial with respect to the estimated mean.

P−k+1 = E
{(

xk+1(δxk)− x̂−k+1

) (
xk+1(δxk)− x̂−k+1

)T}
+ Q (12)

where the argument of the expectation are polynomials in δxk whose expected value are, again, the
central moments of the initial Gaussian PDF. The state distribution has been propagated in time in
terms of its mean and covariance, having considered the influence of the process noise.

Measurement Update

The time prediction step is followed by the measurement update. The update starts by initializing
a new polynomial, with a new DA variable (deviation) around the current predicted mean.

xk+1(δxk+1) = x̂−k+1 + δxk+1 (13)

The measurement equation is applied to the state polynomial, following the same procedure used in
the time propagation step:

yk+1(δxk+1) = hk+1[xk+1(δxk+1)] = ȳk+1 +Mx̂−k+1
(δxk+1) (14)

The cth order measurement polynomial yk+1(δxk+1) has been divided into its center (or constant
part) ȳk+1, and the polynomial map of deviations,Mx̂−k+1

(δxk+1), centered at x̂−k+1, that connects
deviations from the state space to deviations in the measurement space. Let initially assume a square
invertible map, wherem = n, which implies at every time there are as many measurements as states.
Under these conditions, the map can be inverted using standard DA techniques [20] to obtain

Mȳk+1
(δyk+1) =

(
Mx̂−k+1

(δxk+1)
)−1

(15)

That is, the inverted polynomial map connects deviations from the measurement space to the state
space. Let ỹk+1 be the actual noisy observation coming from the sensors, whose value is influenced
by measurement noise with known distribution. The intuition behind the TBNc filter is depicted in
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Figure 1. The figure shows the Taylor polynomial maps. The forward map h[x], in red, describes
the approximation of the the measurement distribution from the state predicted PDF. The map can
be inverted, in blue, to trace back deviations from the measurement space to deviations in the state
space. Considering the observation ỹk+1 from the sensors and the known distribution of the mea-
surement noise, it is possible to highlight the portion of the measurement PDF that generated the
observation received. Assuming Gaussian measurement noise with covariance matrix R, and cen-
tering the Gaussian at ỹk+1, we construct a distribution (the blue ellipse in Figure 1) of the true
measurement. The true measurement is the perfect measurement value in the absence of measure-
ment noise. Applying the inverse map to this measurement distribution we obtain the distribution
of the state that could have generated the measurements, the orange region in the figure.

Figure 1. Sketch of the Taylor maps involved in the TBNc filter and the connection
between deviations in the state space and in the measurement space.

The procedure described by Figure 1 is achieved numerically by sampling particles in the mea-
surement space. Considering Gaussian measurement noise,N particles are drawn fromN (ỹk+1,Rk+1).
It is now possible to evaluate the deviation of each particle from the center of the polynomial map

dy[i] = y[i] − ȳk+1 (16)

where y[i] is the measurement particle, with i = 1, . . . , N . Each particle has the same weight, since
they are drawn directly from the measurement noise PDF. Using the inverted map, it is possible to
solve for the state deviation that generates each sample y[i]

dx[i] =Mȳk+1
(dy[i]) (17)

The corresponding particles in the state space are simply calculated by adding the center of the state
polynomial

x[i] = x̂−k+1 + dx[i] (18)

with i = 1, . . . , N . These particle describe the orange region in Figure 1 and they circumscribe
the region where the true state lies. However, these particles are missing information from the
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prior distribution, assumed as a Gaussian with mean x̂−k+1 and covariance P−k+1. Therefore, at each
particle is assigned a weight proportional to its likelihood given the prior

w
[i]
+ = N

(
x[i]; x̂−k+1,P

−
k+1

)
(19)

After normalizing the N weights w[i]
+ , the estimate and the updated state covariance are calculated

as a weighted mean among all the particles:

x̂+
k+1 =

N∑
i=1

w
[i]
+x[i] (20)

P+
k+1 =

N∑
i=1

w
[i]
+ (x[i] − x̂+

k+1)(x[i] − x̂+
k+1)T (21)

The filter is ready to perform the following iteration, constructing a new state polynomial from
x̂+
k+1, and central moments from P+

k+1 with the Isserlis’ formulation.

Non-Square Mapping

The main drawback of the filter described in the previous section is that the measurement map
needs to be square in order to be invertible, requirement that translates in the m = n constraint. In
[10], the authors overcome the issue by collecting measurements at different times until the required
amount of measurements is reached. However, this solution requires the number of states to be a
multiple of the number of measurement (as shown in the applications in [10]) and it leads to the
creation of complex polynomial maps that undergo multiple propagations and functions among dif-
ferent time steps. TBNc offers a different solution that allows to perform the measurement update
at each iteration. When the filter is working with fewer measurements than the needed number, the
algorithm creates fictitious polynomials, yF , that make the map invertible. Therefore, the measure-
ment vector is divided into two parts:

yaug,k+1(δxk+1) =
[
yTk+1(δxk+1) yTF (δxk+1)

]T
(22)

The first m components are the polynomials evaluated according to the measurement equation,
while the remaining (n −m) polynomials are adequately constructed by the filter itself according
to some chosen function g[·]:

yF (δxk+1) = g[xk+1(δxk+1)] (23)

The fictitious measurement function g[·] can be chosen freely. It is convenient to select measure-
ments equal to single components of the state, in order not to increase the computational burden of
the filtering technique. The measurement vector from the sensors ỹ needs to be augmented as well
in order to be dimensionally consistent with the number of polynomials:

ỹaug,k+1 =
[
ỹTk+1 ỹTF,k+1

]T
(24)

where the values of ỹTF,k+1 are chosen as

ỹF,k+1 = E {yF (δxk+1)} (25)
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which are calculated as in Equation (11). In the case where the additional measurement polynomials
are a linear combination of the components of the state, the fictitious measurements can be evaluated
directly from the mean of the components of the state vector.

The measurement polynomial map is now invertible according to Equation (15). The TBNc mea-
surement update continues by sampling N particles in the augmented measurement space. The first
m components of y[i]

aug are drawn according to N (ỹk+1,Rk+1). Since the fictitious measurements
add no information to the system, but they are purely a tool to perform the update, the remaining
(n −m) components of y[i]

aug are drawn from a Gaussian with infinite covariance; N (ỹF,k+1,∞).
There is no a priori knowledge of the distribution of the fictitious measurements, therefore, each
particle has the same weight regardless the magnitude of its deviation from the center of the se-
ries. In practice, the components of y[i]

aug connected to the fictitious measurements are drawn from
a uniform distribution, with boundaries chosen at five times the standard deviation of the selected
variable. In the case of a nonlinear selection of yF (δxk+1), the relative covariance can be evaluated
with Equation 12, substituting the measurement polynomial, and mean, to the state variables. The
filter is now able to continue the remaining part of the algorithm as if it was working in normal
conditions.

NUMERICAL APPLICATIONS - LORENZ63

The performance of the presented filtering technique has been tested on a Lorenz63 application
[21, 22], where the state of the system undergoes the following dynamics

dx1(t)

dt
= α(x2(t)− x1(t)) + ν1(t) (26)

dx2(t)

dt
= x1(t)(ρ− x3(t))− x2(t) + ν2(t) (27)

dx3(t)

dt
= x1(t)x2(t)− βx3(t) + ν3(t) (28)

with α = 10, β = 8/3, and ρ = 28. This particular selection of parameter produces a chaotic
behavior of the system, where almost all initial points will tend to the invariant set: the Lorenz
attractor. In the presented application, the initial condition is assumed Gaussian, with parameters

x̂0 =
[
4 5 3

]T (29)

P0 =

0.1 0 0
0 0.3 0
0 0 0.2

 (30)

The state is integrated at 30 Hz, with the addition of progress noise ν ∼ N (03, 10−4I3x3). Observa-
tions are obtained at each time step, and they consist in the range and bearing angles measurements,
according to the following equations:

y1(tk) = arctan

(
x2(tk)

x1(tk)

)
+ µ1(tk) (31)

y2(tk) = arcsin

(
x3(tk)√

x1(tk)2 + x2(tk)2 + x3(tk)2

)
+ µ2(tk) (32)

y3(tk) =
√
x1(tk)2 + x2(tk)2 + x3(tk)2 + µ3(tk) (33)
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Observations are affected by Gaussian noise µ ∼ N (03,R), with

R = 10−6

4 0 0
0 4 0
0 0 400

 (34)

A Monte Carlo analysis with 1000 runs has been performed with TBN2. Figure 2 reports the re-
sults of the performance analysis showing the estimation errors εi, for each of the three components
of the state. The gray lines represent each single Monte Carlo run, while the black lines are the
mean among all of them. Hence, the TBN2 filter is unbiased because the mean of the errors is null
for all time steps. Figure 2 reports also the error standard deviation levels in blue. The continuous
blue lines are the predicted standard deviation levels, that represents the filter’s own uncertainty
estimate, calculated directly from the updated covariance matrix (Equation (21)). The dashed blue
lines are the effective standard deviation levels, that are calculated directly from all the Monte Carlo
runs for each time step. The matching between continuous and dashed lines proves that the filter is
consistent and that its own prediction of the spread of the error is correct.

The filtering technique can be now compared with the most common estimators. As such, a Monte
Carlo analysis of the error state standard deviation has been performed by analyzing the performance
of the Iterated Extended Kalman Filter (IKF), the UKF, the Bootstrap Particle Filter (BPF), and of
the Differential Algebra High-Order filter (DAHO-c) from [23]. The predicted covariance of each
filter is represented in sense of the standard deviation of the whole state

σ2
pred =

n∑
i=1

P+
k+1,ii (35)

where, indeed, σ2
pred is the trace of the updated covariance matrix. This value is compared to the

effective distribution of the error of the state, whose covariance is evaluated, at each time step,
among all the Monte Carlo runs

ε̄i =
MC∑
j=1

εi,j (36)

σ2
eff =

n∑
i=1

(
1

MC

MC∑
j=1

(εi,j − ε̄i)2

)
(37)

with i = 1, . . . , n, and where MC is the number of Monte Carlo runs, selected as 1000 in the
proposed analysis. Therefore, σ2

pred represents the filter’s own prediction of its uncertainties, while
σ2
eff shows the actual performance in terms of the spread of the error. A consistent filtering tech-

nique has a close match between σ2
pred and σ2

eff , meaning that the algorithm can correctly predict
the covariance of the posterior distribution. Figure 3 reports, with a logarithmic scale, the results of
the covariance analysis for the 5 different filters: each dashed line is σ2

eff , while the continuous lines
represent σ2

pred. Notice how all the filters have comparable levels of the predicted uncertainties: the
continuous lines settle to the same level of accuracy. The zoomed part of the figure highlights the
difference, at steady state, among the continuous lines. The first filter to diverge is the IKF, blue
lines in the figure. The dashed blue line separates from the continuous line right after the first it-
eration. The reason behind this behavior was found analyzing the single runs of the Monte Carlo
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Figure 2. Results of the Monte Carlo analysis performed on the Lorenz63 system
with the TBN2 filter for 1000 runs.

of the IKF. The initial covariance matrix is excessively large and the runs that start on the edge of
the distribution are not able to reach converge and steady state behavior, diverging. The effective
performance of the DAHO-2, in orange, and of the UKF, in green, is similar. Both filters reach
steady state level and start diverging around the same time step. The particular high nonlinearities
of the system, associated with the influence of the process noise, make the filters fail on their task
to keep track of the state of the system, and they diverge. DAHO-2 and the UKF have been proven
to have similar performances [17, 16], however, while DAHO-2 has a consistent prediction until the
singularity, the predicted covariance of the UKF, continuous green line, decreases monotonically.
The first consistent filter is the BPF, red lines in the figure. At steady state, the continuous and
dashed red lines overlap, indicating a correct estimation of the covariance. However, the dashed red
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line reaches steady state only after a third of the duration of the simulation. During the transient,
the BPF has an incoherent prediction of the uncertainties and the filter believes it is performing
more accurately than the actual performance. Lastly, in black, there is the TBN2 filter. TBN2 is the
only filter that reaches convergence and has a consistent estimation of the error covariance along the
whole simulation. Moreover, looking at the enhanced part of Figure 3, the continuous and dashed
black lines perfectly overlap, while the only other consistent filter at steady state, the BPF in red, is
less accurate. TBN2 shows to be the most accurate filtering technique, for the presented application,
since its dashed line is the lowest among all others.

Figure 3. Error covariance comparison analysis of the square Lorenz63 problem
among different filters. Monte Carlo performed with 1000 runs for 1s.

Non-Square Measurement Map

A more challenging application is now offered. In the previous example, the filter was receiving
a number of measurements equal to the number of states. However, this particular condition limits
the family of problems that the filters can solve. Therefore, a new analysis is here presented, where
the TBNc receives only bearing angles measurements, without range. That is, the new application
resemble the previous one in all the aspects, but the new measurement model is missing Equation
(33). Consequently, by reducing the amount of information the filter receives about the state of the
system, the performance is expected to decrease.

Figure 4 reports the Monte Carlo analysis results. Once again, the figure shows both the effective
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covariance σ2
eff as dashed lines, and the filter’s estimate of the state covariance σ2

pred as continuous
lines. The result shows a similar pattern with the previous application, assessing the reliability of
the TBNc filter for non square measurements maps. More in detail, the angles-only application
has a longer transient with respect to the application with range measurements. This aspect is
expected since the filter is receiving fewer information than before. By looking at each different
filter separately, it can be noted that the IKF diverges from the beginning, having the σ2

eff (dashed
blue) line increasing form the first iteration, out of the grid of the figure. The simple linearization
in the IKF prediction step does not propagate central moments accurately enough for the filter to
achieve a correct tracking. The UKF, green, and the DAHO-2, orange, reach steady state levels with
an analogous behavior, but they both diverge around the same time step. This divergence is due
those runs that start the farthest form the initial estimate mean: the filter is initially able to reduce
the uncertainties, but then the nonlinearities of the system prevails and the tracking fails. Without
range measurement, the filter has problems on selecting which lobe of the Lorenz’s attractor to
follow, due to the pathway symmetry with respect to the origin. Thus, in few Monte Carlo runs,
the filter erroneously track the state of the system in the wrong lobe. The main difference with
respect to the previous case comes from the BPF. The BPF achieves convergence at steady state,
but it shows numerical problems during the transient. Hence, the dashed red line gets interrupted
due to numerical issues during the most challenging runs which, in turns, breaks Equation (35) and
(37). Therefore, even if the BPF is a consistent filter at steady state, knowledge of the state during
the whole simulation is not achieved. Lastly, the TBN2, in black, is once again the only filter that
achieves convergence and consistency correctly for the whole simulation. The black lines overlap
during both the transient phase and at steady state, setting the filter accuracy level with the most
accurate performance.

CONCLUSIONS

A new type of filtering technique has been presented. The update step is performed by mapping
the measurement noise PDF, centered at the given outcome from the sensors, back into the a priori
distribution of the state. The estimate is therefore obtained by studying the fraction that the noise
distribution highlights in the prior. When compared to previous techniques [10], the TBNc is able to
perform the update each time a measurement becomes available, without the drawback of waiting
for the number of measurements to be equal to the number of states. This feature is achieved thanks
to the particle nature of the filter, where the TBNc creates fictitious measurements that square the
measurement map, making it invertible.

Two numerical applications have been selected to test the performance ofTBNc. In both cases,
either square and non-square mapping, the TBN2 has shown high accuracy levels, with a coherent
and consistent estimate of the state error covariance standard deviation. The overall performance is
superior when compared to other nonlinear filtering techniques common in the current state of the
art.
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