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ANALYSIS OF RELATIVE GPS NAVIGATION TECHNIQUES
Matthew Fritz∗, Renato Zanetti†, and Srinivas R. Vadali‡

Relative global positioning system (GPS) navigation is currently used for au-
tonomous rendezvous and docking of two spacecraft as well as formation flying
applications. GPS receivers’ measurements are used by the navigation subsystem
to determine estimates of the current states of the spacecraft. The success of au-
tonomous proximity operations in the presence of an uncertain environment and
noisy measurements is highly dependant on the navigation accuracy. This paper
presents the comparison of four Kalman filter architectures to be used for relative
GPS navigation. A trade study is performed with the advantages and disadvan-
tages of the four different Kalman architectures used for relative GPS navigation
presented and compared.

INTRODUCTION

Relative global positioning system (GPS) navigation is an area of interest currently being stud-
ied [1]. The next generation of GPS satellites known as Block IIF GPS will be launched over the
next few years, paving the way for GPS navigation to be used for many years to come. Relative nav-
igation for two spacecraft is concerned with determining estimates of both the position and velocity
of one spacecraft with respect to the other [2]. Some form of GPS navigation is currently used on
multiple orbiting spacecraft [1, 3–6]. With the emergence of formation flying in the past decade,
multiple studies have been performed on the use GPS and differential GPS for relative spacecraft
navigation for formation flying [7, 8].

The primary focus of this work is the implementation of specific Kalman filter architectures for
relative GPS navigation during proximity operations involving a chaser and target vehicle. The four
architectures considered for relative GPS navigation are:

1. Position Velocity (PV) Extended Kalman Filter (EKF)

2. Relative Pseudorange (RGPS) EKF

3. Pseudorange (GPS) EKF

4. Reduced GPS EKF

A GPS sensor model is used introducing various errors to the modeed pseudorange measure-
ment [9–12]. Position and velocity estimation algorithms based on pseudorange and range rate
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measurements are implemented [13], [14]. The chaser vehicle is also assumed to have a star tracker
and inertial measurement unit (IMU) located onboard. The star tracker is used to determine the
orientation of the chaser vehicle. The IMU is used to determine changes in the angular velocity and
translational acceleration.

With the focus on relative GPS navigation, it is expected that the RGPS and two GPS architectures
will perform the best in relative state estimation while the PV architecture will perform the worst in
relative state estimation. Although inertial state estimation is not the primary focus, there is a need
for some inertial state information when algorithms such as Lambert targeting are used. The PV
EKF and two GPS architectures are expected to perform well in inertial state estimation while the
RGPS EKF is expected to perform the worst. Each architecture makes use of a dual-inertial filter
where relative information is determined as the difference of the two inertial state estimates.

In this paper, models for the mentioned measurements are briefly presented, the four architec-
tures are then introduced. Analysis of each architectures performance in relative GPS navigation is
performed and advantages and disadvantages of each architectures used for relative GPS navigation
are drawn through a comparison of sample covariances determined from 100 Monte Carlo runs.
A single trajectory is considered for a rendezvous of a chaser vehicle with the International Space
Station (ISS).

MEASUREMENT MODELS

This section presents the models of the measurements employed in the simulation. The analysis
is done on the open loop navigation system. The trajectory is provided externally and consists of
two altitude adjusts and four primary burns.

GPS Sensor

The GPS sensor provides the user with pseudorange measurements as well as an estimated posi-
tion and velocity of the current location of the receiver based upon the pseudorange measurements.
The pseudorange is defined as the distance between a particular GPS satellite at the time of signal
transmission and the GPS receiver at the time of signal reception. There are six primary sources of
error that affect the calculation of the pseudorange: ionosphere, troposphere, receiver clock noise,
GPS satellite clock bias, multipath and ephemeris. Ionosphere, troposphere and multipath errors are
all the result of time delays and therefore are always positive. Receiver clock noise, GPS satellite
clock bias and ephemeris errors are due to data and clock drifting resulting in both positive and
negative values. In addition to these six error sources, there is also a bias in the onboard clock of
the GPS receiver. The measured pseudorange is modeled by the following equation [12]:

ρi = ‖rrec − (rgpsi + εephi)‖+ c(εionoi + εtropi + εmulti + εrcb + εscbi) + εη (1)
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rrec : position of receiver at time of signal reception (m)
rgpsi : position of the ithGPS satellite at time of signal transmission (m)

c : speed of light = 2.99792458 · 108 m
s

εionoi : error due to ionosphere time delay of the ithGPS satellite (s)
εtropi : error due to troposphere time delay of the ithGPS satellite (s)
εmulti : error due to multipath time delay of the ithGPS satellite (s)
εrcb : error due to receiver clock bias (s)
εscbi : error due to GPS satellite clock bias of the ithGPS satellite (s)
εephi : error due to ephemeris data variations of the ithGPS satellite (m)
εη : error due to receiver clock noise (m)

The receiver clock bias is modeled using a second order random walk [9]. The ionosphere time
delay is modeled using the Klobuchar Ionosphere model [16]. With the current altitude and ori-
entation of the GPS receivers, the troposphere time delay is assumed to be zero for the current
application. The ephemeris error is modeled as a second order Gauss-Markov process. The multi-
path, satellite clock bias, and receiver clock bias are modeled as first order Gauss-Markov processes.
Table 1 gives the statistical information used for each Gauss-Markov model pertaining to each error
source.

Active Steady State Time
Error Standard Constant

Sources Deviation (m) (s)

Ephemeris 1e−3

 0.3748
0.5271
0.1407

 1800

Receiver Noise 0.7 0.1

Satellite Clock 1.8 1800

Multipath Chaser: 0.5 200
Target: 2.0

Table 1. Gauss-Markov Error Statistics

The total pseudorange error is modeled following References [9–12]. The multipath error on the
target vehicle is modeled to be slightly higher. Table 2 shows the error values used in the simulation
as well as the expected values from the literature. It is assumed that only code pseudorange is used,
carrier-phase and integer cycle ambiguity estimation are not used to improve the measurement.

3



Active Expected Chaser Sensor Target Sensor
Error Error Error Error

Sources References [9–12] (Simulation)

Ionosphere 2.0-15.0 6.9 7.2
Troposphere 0.0-1.0 0.0 0.0
Ephemeris 2.0-2.5 2.1 2.1

Receiver Noise 0.0-0.7 0.7 0.7
Satellite Clock 1.0-2.0 1.8 1.8

Multipath 0.0-1.0 0.5 2.0

Total Error (RMS) 3.0-15.4 7.3 8.7

Table 2. Pseudorange Errors

Star Tracker

The star tracker is assumed to provide the attitude quaternion parametrization of the rotation from
the inertial frame i to the star tracker sensor frame st. The measurement model is given as follows

q̄sti = q̄stb ⊗ q̄error ⊗ q̄bi ⊗ q̄η (2)

where

q̄sti : inertial to star tracker quaternion
q̄stb : body to star tracker quaternion

q̄error : quaternion derived from alignment error
q̄bi : inertial to body quaternion
q̄η : quaternion derived from tracker noise and bias, random walk

The matrix that transforms one frame to another frame, derived from Euler parameters (quater-
nions) relating the two frames, is given by Equation 3 [17].

T(q̄ ) = I3×3 − 2q0[qv×] + 2[qv×]2 (3)

The values for the star tracker errors are given in Table 3.

Error Type 1σ Values Units
q̄error 0.1 deg

q̄η 0.0002 rad

Table 3. Star Tracker Errors

Gyroscopes

The rate gyroscopes on-board the spacecraft measure the integrated angular velocity of the vehi-
cle. Three-axis gyroscopes are used. The mathematical model used to describe the rate gyroscopes
mounted on-board the spacecraft is given by Equation 4 [18].
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∆θb =

∫ t+∆t

t

{
ωb + ηv + wmv

}
dτ (4)

ωb = [Tb
i(q̄

b
i)]ω

i (5)

where

∆θb : change in angle vector given in body coordinate system
ωb : angular velocity vector in body coordinate system
Tb

i : transformation matrix from inertial to body coordinate system
ηv : noise and bias vector associated with angular velocity, random walk

wmv : first-order Markov process vector associated with angular velocity

The sample time, ∆t, is 0.1 seconds. Table 4 gives the error parameters present on the gyroscopes
of the IMU [19], [20].

Parameters 1σValues Units
σIMUmis 0.05 deg

σmv 0.3 deg
hr

τmv 3600 sec

σηv 0.0025 deg√
hr

Mean error, mηv 0.5 deg
hr

Table 4. Gyroscope Model Errors

Accelerometer

The accelerometer located on-board the spacecraft measures the change in the translational veloc-
ity. The mathematical model used to describe the accelerometer mounted on-board the spacecraft is
given by Equation 6 [18].

∆vimu =

∫ t+∆t

t
{aimu + ηa + wma} dτ (6)

where

aimu : translational acceleration vector in IMU coordinate system
∆vimu : change in the velocity vector in IMU coordinate system

ηa : noise and bias vector associated with acceleration, random walk
wma : first-order Markov process vector associated with acceleration

The sample time, ∆t, is 0.1 seconds. The error parameters present in the accelerometer of the
IMU model are given in Table 5 [21].

5



Parameters 1σ Values Units
σIMUmis 0.05 deg

σma 7 µg

τma 3600 sec

σηa 40 µg
√
s

Mean error, mηa 40 µg

Table 5. Accelerometer Model Error Parameters

PROPAGATION MODEL

The state model for estimated state propagation of both the chaser and target vehicles is given by

˙̂r = v̂ (7)
¨̂r = g (r̂) + â (8)

The gravitational acceleration is given by g (r̂) and includes effects due to the oblateness of the
Earth. The gravitational acceleration is defined as [22]:

g1 (r̂) = ur + k1

(
1− 5U2

)
ur + 2k1Uup

g2 (r̂) = g1 (r̂) + 5k2U
(
3− 7U2

)
ur − 3k2

(
1− 5U2

)
up

g3 (r̂) = g2 (r̂) + 3k3

(
1− 14U2 + 21U4

)
ur + 4k3U

(
3− 7U2

)
up

g (r̂) =
−µ
r̂ · r̂

g3

where

k1 =
3

2
J2

(
Re

r̂ · ur

)2

k2 =
1

2
J3

(
Re

r̂ · ur

)3

k3 = −5

8
J4

(
Re

r̂ · ur

)4

U = (ur · up)

ur =
r̂

‖r̂‖
up = [0 0 1 ]T

and perturbation coefficients J# and parameters are defined as follows.
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J2 : J2 perturbation coefficient, 1.08263× 10−3

J3 : J3 perturbation coefficient, −2.56× 10−6

J4 : J4 perturbation coefficient, −1.58× 10−6

Re : radius of the Earth, 6378.1363 km
µ : gravitation constant

The estimated acceleration of the chaser vehicle during thruster firings is given by Equation 9.
Equation 10 gives the acceleration each vehicle experiences due to atmospheric drag. Equation 10
is used during instances of free drift.

âc = âimu (9)

âc,t = −Dc,t
v̂c,t
‖v̂c,t‖

(10)

where

Dc : chaser atmospheric drag, 6.2× 10−6 m
s2

Dt : target atmospheric drag, 12.4× 10−6 m
s2

The state dynamics matrix for the chaser vehicle is given by Equation 11.

Fc =


03×3 I3×3 03×3 03×3

J2 03×3 [â×] Ti
imu

03×3 03×3 −[ω̃×] 03×3

03×3 03×3 03×3 03×3

 (11)

The matrices [â×] and [ω̃×] are the skew symmetric matrices of the estimated acceleration and
measured angular velocity vectors respectively. The transformation matrix Ti

imu is derived from
q̄iimu. The matrix J2 is given as

J2 =


−m
r3 + 3r2

x
r2

(
m
r3 + Λ(p− 1)

) 3rxry
r2

(
m
r3 + Λ(p− 1)

)
3rxrz
r2

(
m
r3 + Λ(p+ 4)

)
3rxry
r2

(
m
r3 + Λ(p− 1)

) −m
r3 +

3r2
y

r2

(
m
r3 + Λ(p− 1)

) 3ryrz
r2

(
m
r3 + Λ(p+ 4)

)
3rxrz
r2

(
m
r3 + Λ(p+ 4)

) 3ryrz
r2

(
m
r3 + Λ(p+ 4)

)
−(J2(1, 1) + J2(2, 2))


where

Λ =
µJ2R

2
e

r5

m = µ

(
1 +

3J2R
2
ep

4r2

)
p = 2

(
1− 5r2

z

r2

)
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with the perturbation coefficient J2 and parameters definitions defined the same as above. Equa-
tion 12 gives the state matrix of the target vehicle.

Ft =

[
03×3 I3×3

J2 03×3

]
(12)

The covariance matrix Qxk is

Qxk =


Qpck

Qpvck
03×3 Qpctk

Qpvctk

Qpvck
Qvck

03×3 Qpvctk
Qvctk

03×3 03×3 Qqk 03×3 03×3

Qpctk
Qpvctk

03×3 Qptk
Qpvtk

Qpvctk
Qvctk

03×3 Qpvtk
Qvtk


The definition of each individual covariance matrix in Qxk remains the same for all four Kalman

filters studied. The individual covariance matrices are given as follows where s denotes the space-
craft [22].

Qpsk
=

1

3
Qvsk

∆t2

Qpvsk
=

1

2
Qvsk

∆t

Qvsk
= Ti

lvlhQsv(t)T
lvlh
i ∆t

Qθk = Qθ(t)

Qpctk
=

19

20
Qpsk

Qpvctk
=

19

20
Qpvsk

Qvctk
=

19

20
Qvsk

Table 6 gives the spectral densities corresponding to each individual covariance matrix for each
Kalman filter studied where s denotes chaser or target.

Spectral Value Units
Density

Qsv(t) 9× 10−6 I3
(
m
s1.5

)
Qθ(t) 1× 10−11 I3

(
rad√
s

)
Table 6. Spectral Density Values for all Kalman Filters

KALMAN FILTER DEVELOPMENT

Four Kalman filter architectures are studied to determine the advantages and disadvantages of
each architecture for relative GPS navigation. The four architectures employ dual inertial states
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that represent position and velocity of both chaser and target vehicles. Other states include the
orientation of the chaser vehicle and the accelerometer bias. The architecture is an extended Kalman
filter (EKF) which is a sequential state estimator that utilizes a continuous propagation of the system
dynamics and a discrete update logic. The model for the states and measurements is given by
Equations 13-14.

ẋ(t) = f(x(t),u(t), t) + w(t) (13)

ỹk = h(xk) + νk (14)

where the vector w(t) is a zero mean white process. The measurement model is corrupted by a zero
mean white sequence νk [23]. The process noise w(t) and the measurement noise νk are assumed
to be uncorrelated to each other. The spectral density of the process noise is given by Q(t) while
the covariance matrix corresponding to the measurement noise is given by Rk.

E
{
w(t)wT (τ)

}
= Q(t)δ(t− τ)

E
{
νkν

T
j

}
=

{
0 k 6= j

Rk k = j

where δ(t− τ) is the Dirac delta function.

Given an initial state vector and error covariance matrix

x̂(t0) = x̂0

e = x− x̂

P0 = E
{
e0e

T
0

}
the Kalman gain at a given time step, Kk, can be computed as

Kk = P −k HT
k (x̂ −k )[Hk(x̂

−
k )P −k HT

k (x̂ −k ) + Rk]
−1 (15)

where

Hk(x̂
−
k ) ≡ dh

dx x̂ −k
(16)

The state and error covariance update is

x̂ +
k = x̂ −k + Kk[ỹk − h(x̂ −k )] (17)

P +
k = (In×n −KkHk(x̂

−
k ))P −k (In×n −KkHk(x̂

−
k ))T + KkRkK

T
k (18)

The states are propagated as
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˙̂x(t) = f(x̂(t),u(t), t) (19)

P−k+1 = ΦkP
+
k ΦT

k + Qk (20)

The discrete form of error covariance propagation is used where P−k+1 refers to the preupdate
value of the error covariance matrix and P+

k is the postupdate covariance matrix at the previous
time step. The state transition matrix is determined solving the following differential equation

Φ̇(t, tk) = F(t)Φ(t, tk) Φ(tk, tk) = I (21)

F(x̂(t), t) ≡ df

dx x̂(t) (22)

The covariance matrix Qk is determined from the spectral density Q(t).

Position Velocity Kalman Filter

The position velocity (PV) EKF processes estimated positions and velocities of each receiver’s
current location provided by the GPS sensor which are corrupted by colored noise. Since the EKF
development assumes zero mean white process and measurement noise, additional states are aug-
mented to the state vector to compensate for colored measurement noise. The state and measurement
vectors are given as follows.

x =
[
rTc vTc θT rTt vTt ξTrc ξ

T
vc ξ

T
rt ξ

T
vt aTb

]T
ỹ =

[
r̃Tc ṽTc r̃Tt ṽTt

]T
The chaser’s accelerometer bias is modeled as first order Gauss-Markov processes with a steady

state standard deviation of 40µg and time constant τa of 1 hour for each axis [21]. The accelerometer
bias vector is given by:

ab =
[
abx aby abz

]T
The PV filter uses a linear measurement equation.

ẋ(t) = f(x(t),u(t), t) + w(t) (23)

ỹk = Hkxk (24)

where w(t) is the white process noise and Hk is the measurement sensitivity matrix. There is no
white measurement noise since all the measurement error is modeled as a first order Gauss-Markov
process. The measurement sensitivity matrix is:
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Hk
′ =

[
I6×6

dxc
dθ 06×6

06×6
dxt
dθ I6×6

]
(25)

Hk =
[
Hk
′ I12×12 012×3

]
(26)

where

dxs
dθ

=

[
dxs
dθ
dxs
dθ

]
=

[
[(TT (q̄s)ros)×]

[(TT (q̄s)vos)×]

]
and roc , rot are the position vectors corresponding to the offset of the GPS sensor from the center
of gravity of the vehicle and [u×] denotes the skew symmetric matrix corresponding to the vector
u.

w(t) = [wx(t) ν(t) wa(t) ]T (27)

ξk = 012×1 (28)

The vector ν(t) is a zero mean white process corresponding to the colored measurement noise
states. The colored noise is modeled as a first order Gauss-Markov process for all 12 states. Table 7
gives the statistics of the Markov process corresponding to colored noise.

Vehicle σss, 1σ Values Time

Position (m) Velocity (m/s) Constant (s)
Chaser 20 0.3 50

Target 15 0.2 50

Table 7. Statistics for Position and Velocity Errors

The process noise spectral density is given by

Q ′(t) =

 Qx(t) 015×12 015×3

012×15 Qξ(t) 012×3

03×15 03×12 Qa(t)


where Qx(t) is the spectral density corresponding to the white process noise present on the position,
velocity and attitude states, Qξ(t) is the spectral density of the colored noise, and Qa(t) is the
spectral density corresponding to the accelerometer bias states. The spectral density corresponding
to the colored noise states is

Qξ(t) =


Qpc(t) 03×3 03×3 03×3

03×3 Qvc(t) 03×3 03×3

03×3 03×3 Qpt(t) 03×3

03×3 03×3 03×3 Qvt(t)



11



The first subscript defines the measurement, either position or velocity, and the second subscript
defines the vehicle, either chaser or target. The spectral density corresponding to a first-order Gauss-
Markov process is given by

Qstate(t) =
2

τ
σ2
ssI3×3 (29)

The discrete form of Equation 29 is given by

Qk = σ2
ss

(
1− e−

2∆t
τ

)
I3×3 (30)

The covariance of each position and velocity error as well as the accelerometer bias is found using
Equation 30.

The position and velocity estimation algorithms of the GPS sensor require at least four GPS
satellites visible in order to provide an estimate. If less than four a visible, no estimates are provided
and the PV EKF propagates the current states only.

Relative Pseudorange Kalman Filter

The relative pseudorange (RGPS) EKF processes relative pseudorange measurements. Two addi-
tional states are modeled, the relative clock bias and clock drift (∆b, ∆f ). As many as six relative
pseudorange measurements are processed during each update. The measurement vector is populated
by relative pseudoranges, δρ, found by differencing the chaser and target pseudoranges correspond-
ing to the same GPS satellite with each pseudorange assumed acquired at exactly the same time.
The communication time delay between the two vehicles is neglected from this analysis. The state
and measurement vectors for the RGPS EKF are defined as follows.

x =
[
rTc vTc θT rTt vTt ∆b ∆f aTb

]T
ỹ = [δρi · · · δρn]T

The scalar n is the total number of processed pseudorange measurements. The accelerometer bias
is modeled as previously described. The relative clock bias and drift are modeled by a second order
random walk [12] and the covariance matrix Qbfk is

Qbfk =

[
4× 10−19∆t+ 16π2 × 10−20 ∆t3

3 16π2 × 10−20 ∆t2

2

16π2 × 10−20 ∆t2

2 16π2 × 10−20∆t

]

Under the assumption that the bias and drift of the two receivers are uncorrelated to each other,
Equation 31 gives the covariance matrix Q∆bfk .

Q∆bfk = Qbf1 + Qbf2 (31)

The covariance matrix Qk is
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Qk =

 Qxk 015×2 015×3

02×15 Q∆bfk 02×3

03×15 03×2 Qak


The covariance matrix Qxk corresponds to the position and velocity states of both vehicles and

orientation of the chaser vehicle. The covariance matrix, Q∆bfk , is defined in Equation 31 and the
covariance matrix, Qak , corresponds to the noise on the accelerometer bias. The measurement noise
covariance matrix is given as:

Rk = 2σ2
δρIn×n

where σδρ is 7 meters. The steady state standard deviation is high due to the remaining measure-
ment noise being colored instead of white. Since the measurements are relative pseudoranges, the
measurement noise covariance matrix corresponding to each pseudorange is added together hence
the factor of two.

The components of the measurement sensitivity matrix, Hk are

dδρi
drc

=
(rgpsi − rc)

T

ρc
(32)

dδρi
drt

= −(rgpsi − rt)
T

ρt
(33)

dδρi
dvc

= [0 0 0] =
dδρi
dvt

(34)

Line of sight vectors are defined as

lci =
(rgpsi − rc)

ρc
(35)

lti =
(rgpsi − rt)

ρt
(36)

The derivatives of the relative pseudorange measurements with respect to the attitude angles of
the chaser vehicle involves a knowledge of the location of the GPS receiver antenna. Given the
location of the GPS receiver antennas as roc and rot , the velocities are given by:

voc = ωc × roc

vot = ωt × rot

The partial derivatives of the position and velocity of the chaser and target vehicles with respect

13



to the chaser attitude parameters are given by

drc
dθ

= [(TT (q̄c)roc)×] (37)

dvc
dθ

= [(TT (q̄c)voc)×] (38)

drt
dθ

= [(TT (q̄t)rot)×] (39)

dvt
dθ

= [(TT (q̄t)vot)×] (40)

The partial derivatives of the relative pseudorange with respect to the chaser attitude is given by

dδρi
dθ

= lci
drc
dθ
− lti

drt
dθ

(41)

The measurement sensitivity matrix is constructed as

Hki =
[
dδρi
drc

dδρi
dvc

dδρi
dθ

dδρi
drt

dδρi
dvt

1 01×4

]
(42)

Pseudorange Kalman Filter

The pseudorange (GPS) EKF processes up to twelve pseudorange measurements, six from the
chaser and six from the target. Measured pseudoranges from common GPS satellites are processed
first. If there are less than six common satellites, pseudorange measurements from non-common
satellites are then processed. In cases when one or both vehicles see four or less satellites, less than
twelve pseudorange measurements are processed. Ten additional states are added to the existing
state vector to estimate the common pseudorange errors unique to each GPS satellite and the clock
bias and drift of each vehicle. The state and measurement vectors used for the GPS EKF are given
as follows.

x =
[
rTc vTc θT bc fc rTt vTt bt ft aTb ξTρ

]T
ỹ = [ρc1 ρc2 · · · ρcn ρt1 ρt2 · · · ρtn ]T

The common pseudorange errors are modeled using a first order Gauss-Markov process with a
steady state standard deviation, σξρ , of 6 meters and a time constant, τξρ , of 100 seconds.

The covariance matrix, Qk, is given as follows:

Qk =



Qcpvk
06×3 06×2 Qc/tk 06×2 06×3 06×6

03×6 Qcθk
03×2 03×6 03×2 03×3 03×6

02×6 02×3 Qcbfk
02×6 02×2 02×3 02×6

Qt/ck 06×3 06×2 Qtpvk
06×2 06×3 06×6

02×6 02×3 02×2 02×6 Qtbfk
02×3 02×6

03×6 03×3 03×2 03×6 03×2 Qak 03×6

06×6 06×3 06×2 06×6 06×2 06×3 Qξρk


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The covariance matrix corresponding to the pseudorange error states Qξρk
is given by Equation 29.

The process noise covariance matrices Qcpvk
, Qcθk

, Qtpvk
, Qt/ck , and Qc/tk are known. The

covariance matrix corresponding to the clock bias and drift of each GPS receiver is defined as
follows where s denotes the vehicle, chaser or target.

Qsbfk
=

[
h0
2 ∆t+ 2h−1∆t2 + 2

3π
2h−2∆t3 h−1∆t+ π2h−2∆t2

h−1∆t+ π2h−2∆t2 h0
2∆t + 4h−1 + 8

3π
2h−2∆t

]

where the coefficients h# are defined as

h0 : 2× 10−19 (s2)

h−1 : 7× 10−21 (s)

h−2 : 2× 10−20

For instances when less than six satellites are visible, the correlations between the common pseu-
dorange errors of the missing satellites and the remaining states are removed and the steady state
variance of the common pseudorange error is placed in the diagonal. The estimation error covari-
ance matrix and estimated pseudorange error state are also restructured every time new satellites
are acquired, lost or both at which point correlations are removed and the covariance of the new
state is set to the steady state covariance. The pseudorange error not accounted for by the common
pseudorange error is modeled as a white sequence with covariance matrix, Rk, given as follows.

Rkc = 15 · In×n m2

Rkt = 30 · In×n m2

Sequential processing of the pseudorange measurements is used. The measurement sensitivity
matrices are given by

Hkc =

[
r̂c

ρc(r̂c)
01×6 1 01×18

]
(43)

Hkc(i+ 22) = 1 (44)

Hkt =

[
01×11

r̂t
ρc(r̂t)

01×3 1 01×10

]
(45)

Hkt(i+ 22) = 1 (46)

where i is the current pseudorange measurement being processed.
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Reduced Pseudorange Kalman Filter

The reduced pseudorange (GPS) EKF is similar to the GPS EKF in the measurements processed
and the total number of states. However, the common pseudorange error states are considered and
not estimated. The effects of the common pseudorange error states on the other states are considered
but not compensated for. As a result, the reduced GPS EKF is more conservative in state estimation
compared to the GPS EKF. In addition, each of the six states devoted to the common pseudorange
errors are not constantly associated to the same satellite. This process reduces the complexity of the
filter since avoids the bookkeeping associated with which satellites correspond to which states. The
bookkeeping can be omitted since the common pseudorange error states are no longer being esti-
mated. If the states were still being estimated, bookkeeping would be performed otherwise the filter
would fail. By removing the bookkeeping from the reduced GPS filter, more conservatism is also
added to the state estimation errors. The reason is that when a new satellite comes replace a previews
satellite in view, the correlations are not reset, hence the error are not assumed uncorrelated, which
is more conservative when those states are considered only. By considering and not estimating as
well as removing the bookkeeping of the common pseudorange error states, the complexity of the
Kalman filter is reduced at little cost in the means of filter performance.

The measurement vector consists of pseudoranges from as many as six satellites per receiver. The
number of pseudorange measurements available during every update process will vary depending
upon the number of GPS satellites in view of the receiver. Again measurements from common
satellites are processed first followed by measurements unique to each receiver if needed. The state
and measurement vectors are as follows.

x =
[
rTc vTc θT bc fc rTt vTt bt ft aTb ξTgps

]T
ỹ = [ρc1 ρc2 · · · ρcn ρt1 ρt2 · · · ρtn ]T

The subscript n denotes the nth and final visible satellite. The covariance matrix Qk, correspond-
ing to the zero mean white process noise, is the same as given for the full state GPS EKF. The
measurement covariance matrix, Rk, is given by the following equation.

Rk = σ2
ρssIn×n (47)

Sequential measurement processing is used. The steady state standard deviation, σρss , is 5 meters.
The sensitivity matrix corresponding to measured pseudoranges from the chaser vehicle is given by
Equations 43-44 while Equations 45-46 give the sensitivity matrix for pseudorange measurements
from the target.

RESULTS

For each Kalman architecture studied, 100 Monte Carlo runs are performed. The sample co-
variance from the 100 estimation errors is calculated and compared to determine the advantages
and disadvantages of using each architecture for relative GPS navigation. The sample covariances
shown are the root sum square (RSS) of the three directions (x, y, z) and are 1σ values. A 75◦ field
of view is assumed for the GPS antennas located on both the chaser and target vehicles. GPS naviga-
tion is implemented from when the chaser vehicle is approximately 25 kilometers to approximately
0.5 kilometers from the target vehicle.
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Figure 1 provides a comparison of the total sample standard deviation of all four Kalman archi-
tectures for the relative position between the two vehicles. The relative position estimate provided
by the PV EKF is approximately twice as large as compared to the three pseudorange architectures.
The large relative position error is due to the inability of the PV EKF to determine error directional-
ity. Since the PV architecture takes advantage of calculations performed inside the GPS sensors and
processes the estimated position and velocity from the GPS sensors, it cannot determine the magni-
tude of error in each axis. The estimated position and velocity do not provide directly information
about which satellites are used to compute the estimates, therefore leading to the inability to assign
directionality to the error. Therefore, the specification of position error given for the GPS sensor is
assigned to each axis resulting in conservative predicted estimation errors by the estimation error
covariance. Calculations similar to those performed inside the GPS sensor can be performed inside
the PV architecture to determine error directionality but doing so would nullify one main advantage
of the PV EKF which is its simplicity. The relative position estimation error is also higher due to
the incapability to remove common pseudorange errors.

(a) Nominal (b) Zoomed

Figure 1. Relative Position RSS Sample Standard Deviation Comparison

The conservatism of the reduced GPS architecture compared to the GPS EKF is visible in Fig-
ure 1. The estimation error corresponding to the reduced GPS EKF is always slightly above the
GPS EKF estimation error.

Figure 2 gives the RSS of the sample standard deviations for the four architectures correspond-
ing to the relative velocity between the chaser and target vehicles. As is the case with the relative
position error, the PV architecture again performs the worst for relative velocity estimation. Er-
ror directionality and inability to remove common pseudorange errors again result in the elevated
estimation errors. In addition, the conservative nature of the reduced GPS EKF is again apparent
when compared to the estimation errors for the GPS architecture. The RGPS architecture performs
worse in velocity estimation compared to the two GPS architectures. The worse performance in
velocity estimation is attributed to the multipath rich environment modeled. When pseudoranges
from common satellites are differenced, common state errors cancel but errors due to multipath
and receiver noise do not cancel. Since the multipath is relatively high on the target vehicle due to
its assumed complex geometry, the remaining errors on the relative pseudoranges are higher than
expected. Currently the uncommon pseudorange errors are modeled as white noise. With the re-
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maining errors being colored, the filter encounters difficulty modeling the elevated colored errors
as white errors. As a result, higher values are needed for the measurement covariance matrix con-
tributing to the elevated estimation error in relative velocity. In order to achieve results comparable
to the other two pseudorange architectures, additional states are required to estimate the remaining
colored noise on the common pseudorange errors. However, by estimating additional states, the
computational cost associated with the RGPS EKF increases therefore removing an advantage of
the RGPS architecture.

(a) Nominal (b) Zoomed

Figure 2. Relative Velocity RSS Sample Standard Deviation Comparison

CONCLUSIONS

A comparison of four different Kalman filters architectures is provided to further understand the
advantages and disadvantages of using each architecture for relative GPS navigation. While the
PV filter performs well in absolute state estimation, it lacks in the ability to perform as well as the
pseudorange architectures in relative position and velocity estimation. The RGPS EKF is capable
of providing small errors in the relative position and velocity between the two vehicle but cannot
provide the user with any usable inertial state information. In addition, complications arise in the
presence of multipath rich environments. The GPS EKF provides the best overall performance in
both inertial and relative state estimation. However, the high complexity of the filter results in the
highest computational cost of the four Kalman filters studied. The complexity and computational
cost of the reduced GPS EKF are less than the GPS EKF since satellite bookkeeping is avoided and
common pseudorange error states are considered instead of estimated. As a result of both the re-
moval of the bookkeeping and common pseudorange error state consideration instead of estimation,
the estimation errors are more conservative compared to those of the GPS EKF.

REFERENCES

[1] J. Gonnaud, L. Lagarde, S. Strandmoc, and A. Ballereau, “Relative GPS Navigation Implementation for
the ATV Rendezvous,” Proceeding of the 5th ESA International Conference on Spacecraft Guidance,
Navigation and Control Systems, Frascati, Italy, European Space Agency, October 2002, pp. 225–232.

[2] R. Alonso, J. L. Crassidis, and J. L. Junkins, “Vision-Based Relative Navigation for Formation Flying
of Spacecraft,” Proceeding of the AIAA Guidance, Navigation, and Control Conference, Denver, CO,
American Institute of Aeronautics and Astronautics, AIAA Paper #00-4439, August 2002.

18



[3] P. Kachmar, “Apollo and Space Shuttle On-board Navigation Systems: Application of Kalman Filtering
Techniques,” Proceeding of the Institute of Navigation 58th Annual Meeting/CIGTF 21st Guidance Test
Symposium, Albuquerque, NM, American Institute of Aeronautics and Astronautics, AIAA Paper #
08-7295, June 2002, pp. 24–26.

[4] J. Gonnaud and V. Pascal, “ATV Guidance Navigation and Control for Rendezvous with ISS,” Proceed-
ing of the 4th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems,
Noordwijk, The Netherlands, European Space Agency, October 1999, pp. 501–510.

[5] K. Yamanaka, K. Yokota, K. Yamada, S. Yoshikawa, H. Koyama, K. Tsukahara, and T. Nakamura,
“Guidance and Navigation System Design of R-bar Approach for Rendezvous and Docking,” Proceed-
ing of the International Communications Satellite Systems Conference and Exhibit, 17th, Yokohama,
Japan, American Institute of Aeronautics and Astronautics, February 1998, pp. 23–27.

[6] H. Hu and T. Straube, “Orion GN&C Overview and Architecture,” Proceeding of the AIAA Guidance,
Navigation and Control Conference and Exhibit, Hilton Head, SC, American Institute of Aeronautics
and Astronautics, AAS Paper #07-6678, August 2007, pp. 1–12.

[7] F. Busse and J. How, “Demonstration of Adaptive Extended Kalman Filter for Low Earth Orbit Forma-
tion Estimation using CDGPS,” NAVIGATION, Journal of The Institute of Navigation, Vol. 50, 2003,
pp. 79–94.

[8] M. L. Mitchell, “CDGPS-Based Relative Navigation for Multiple Spacecraft,” Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, June 2004.

[9] J. J. S. Jr., B. W. Parkinson, P. Axelrad, and P. Enge, Global Positioning System: Theory and Application,
Volume I. Reston, VA: American Institute of Aeronautics and Astronautics, Inc., 1996.

[10] E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applications, 2nd Edition. Nor-
wood, MA: Artech House, Inc., 2006.

[11] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, GPS Theory and Practice: Fifth, revised edi-
tion. New York, NY: Springer-Verlag/Wien, 2001.

[12] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and
Integration: Second Edition. Hoboken, NJ: John Wiley & Sons, Inc., 2007.

[13] S. Bancroft, “An Algebraic Solution of the GPS Equations,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-21, January 1985, pp. 56–59.

[14] P. R. Escobal, Methods of Orbit Determination. New York, NY: John Wiley & Sons, Inc., 1965.
[15] D. Gellar, “Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard

Mission Planning,” Journal of Guidance Control and Dynamics, Vol. 21, November-December 2006,
pp. 1404–1414.

[16] J. A. Klobuchar, “Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users,” IEEE Trans-
actions on Aerospace and Electronic Systems, Vol. 3, May 1987, pp. 325–331.

[17] H. Schaub and J. L. Junkins, Analytical mechanics of space systems. Reston, VA: American Institute of
Aeronautics and Astronautics, Inc., 2003.

[18] W. S. F. IV, J. H. Wall, and D. M. Bevly, “Characterization of Various IMU Error Sources and the Effect
on Navigation Performance,” Proceeding of the 2005 ION GNSS, Long Beach, CA, September 13-16
2005.

[19] M. Osenar, F. Clark, and C. D’Souza, “Performance of An Automated Feature Tracking Lunar Navi-
gation System,” Proceeding of the 31st Annual AAS Guidance and Control Conference, Breckenridge,
CO, American Astronautical Society, Paper # AAS 08-101, February 2008.

[20] “GG5300 Three Axis MEMS Rate Gyro Package,” http://www.honeywell.com/
sites/servlet/com.merx.npoint.servlets.DocumentServlet?docid=
D35976465-FA39-F5B2-79C1-F0FD8E49DF03. accessed on April 23, 2009.

[21] “Q-Flex QA-3000 Accelerometer,” https://www.honeywell.com/sites/
servlet/com.merx.npoint.servlets.DocumentServlet?docid=
D35C68575-7711-02ED-121B-93D839D7099D. accessed on April 23, 2009.

[22] M. H. Kaplan, Modern Spacecraft Dynamics & Control. Hoboken, NJ: John Wiley & Sons, Inc., 1976.
[23] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic Systems. New York, NY: CRC Press

LLC, 2004.
[24] R. Stengel, Optimal Control and Estimation. Mineola, NY: Dover Publications, Inc., 1994.

19


