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A FRAMEWORK FOR SCALING IN FILTERING AND LINEAR
COVARIANCE ANALYSIS

Christopher D’Souza; Renato Zanetti{ and David Woffinden!

Scaling is used extensively for numerical optimization and trajectory optimization.
Its use in the estimation community is almost nonexistent. This paper creates the
framework for practical scaling in space navigation, in general, and linear covari-
ance analysis, in particular.

INTRODUCTION

It has been known since Apollo that changing the units of elements of the state-space can have a
favorable affect on the accuracy of state estimates. Because of word-length limitations in the Apollo
era, the units of position was chosen to be ‘Earth-radii’. However, it was believed that with 32-bit
and 64-bit processors, the need for such techniques had vanished. In fact, it was believed that the
need for square-root filters had gone the way of slide-rules. However, recent analysis on the NASA
Orion Exploration Missions 1 and 2 (EM-1 and EM-2) trajectories have uncovered a need to revisit
scaling, at the very least for Linear Covariance (LinCov) analysis. It was observed that even with a
square-root implementation in LinCov, that numeric issues arose which introduced unexpected and
initially unexplained behavior in the covariance matrices. In light of this, we began an investigation
into whether these numeric issues could be avoided. We took a page from the optimization commu-
nity where scaling is routinely practiced to avoid numeric issues; in the optimization community the
Hessian is chosen as the focus and source of the scaling parameters.:> We thus began developing
the mathematics of scaling as applied to navigation practice.

In Section 2, the motivation behind scaling is presented. Section 3 contains the mathematics of
scaling as applied to Kalman Filtering. Section 4 extends these mathematics to Linear Covariance
Analysis. Section 5 treats scaling in batch filtering. Section 6 addresses the question of how/what
scaling to choose. Section 7 contains a discussion of scaling philosophies. Section 8 contains an
example from the EM-1 trajectory and the results of scaling are compared with those when scaling
is not performed. Finally, Section 9 contains a few concluding comments.

THE MOTIVATION

One major source of numeric issues in Kalman filtering is ill-conditioning of the covariance
matrix, which is required to be at least positive semidefinite. This is particularly acute in LinCov
where a very large state space is used and the covariance matrices exhibit numerical issues and small

* Aerospace Engineer, EG6, NASA JSC, 2101 NASA Parkway, Houston, TX 77058.

f Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX
78704

iAerospace Engineer, EG6, NASA JSC, 2101 NASA Parkway, Houston, TX 77058.



negative eigenvalues. One measure of the ill-conditioning of the covariance matrix is the condition
number. The condition number of a matrix is defined as the ratio of the largest to the smallest
singular value. For a square, symmetric matrix P, this is equivalent to the ratio of largest to the
smallest eigenvalue, or
A A P
cond(P) = Pmaa (P)] (1)
|)‘min(P)|

A well conditioned covariance matrix has a small condition number and the absolute minimum a
condition number could be is 1.

A spacecraft navigation state usually contains elements such as position (thousands of kilometers)
and sensors scale factor errors (parts per million). As such, a spacecraft LinCov analysis routinely
exhibits covariance matrices with condition numbers approaching 104, which are dangerously close
to the double float accuracy of 16 digits of accuracy. This results in a loss of precision (in the
benign case), or worse, in negative eigenvalues. Even the use of square root factorization methods
(P = SST) does not solve this problem since

cond(S) = y/cond(P) ()

and if the condition number of the (full) covariance matrix is, say, on the order of 104, the condition

number of the (square-root) factorized covariance matrix is merely 107, an improvement but still a
large number.

The UDU factorization doesn’t improve this situation at all because the D matrix has the same
condition number as the original. The situation with the UDU factorization is somewhat ameliorated
because the U matrix has a lower condition number; however the D matrix still retains a high
condition number.

This has exposed the need for a scaling methodology that improves the numeric issues associated
with the condition number of the covariance matrix by transforming the problem into one which has
better numerics.

THE MATHEMATICS OF SCALING IN KALMAN FILTERING
Given an X 1 state X, the scaled state, x; (which is also of dimension n) is defined as

0
Xs = Mgx <— x = MS_IXS — 5;8 = M; 3)

where the non-singular n X n matrix M is the scaling matrix. The variation of x thus becomes
ox = M;l 0Xg 4
and the covariance Py is*

P = M'P,M;T (5)

*That this is the case can be seen as follows:

P = E[0xéx"] = EM; ' dx.0x'M;"] = M, 'E[sx.0x/M; " = M, ' P, M; "



or

P, = M,pM?!

S

Given an affine nonlinear system of the form
x = f(x,t)+B(t)w
the perturbed system can be expressed as
0x = A(t)ox+ B(t)w

where A (t) and dx are

_of (x,1)
A(t) = ox |,
X = xXx—X

In terms of dx, we find that Eq. (8) is
6%, = MGA(H)M; 'ox, + M B(t)w

so that we get

where A(t) and Bg(t) are

Alt) = MAM)M;!
Bs(t) = M;B(t)
Given ®(t,ty) which satisfies
®(t,to)) = A(t)®(to, o), ®(t,t0) =1

we can surmise that there is a ®4(t, ty) which satisfies
B,(t,t)) = A ()®s(t, o), B,(t,tg) = I
so that

®,(t,tg) = M®(tg,to)M;?

To see that this is the case, begin with the Taylor series approximation to ®(¢, tg) as

®(t,tg) = I+ At)(t—to)+ %A2(t)(t —19)% + %Ag’(t)(t —t)3 -

(6)
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and premultiply the above by M and postmultiply by M ! to get

S

1
M, ®(t,to)M; 1 = T+ M,A()M; - (t—ty) + EMSA(t) AWML (t = tg)?

+%MSA(t) CA(t) - AM - (E—t)® 4 -

1
= T+MAOM! - (t—to) + EMSA(t)MglMSA(t)Mgl - (t — to)?

1
3

= T+ AL~ to) + A~ t0)? + S XD~ 1) 4+

= q)s(t> tO)

Recall that the covariance propagation equations are
P(t) = AMWP®EH) +PHAT(t)+B(H)QB (1)

whose solution is

i,
~—~
o~
SN—

B(t,10)P(to)®" (¢, t0) + Q(t)
where Q(t) is

Q1) - / &, ()B(r)QBT (1)&7 (r.t) dr

to
With this in hand, differentiate Eq. (6) to get
Py(t) = M,P(t)M]
= M,A)PHML + M,P)AT ()M + M,B(t)Q BT (t)MT
MA ()M 'MP(t)M] + MP(t)MIM;TAT (t)M]
+M,B(t)QB” ()M
= A, (t)Ps (t) + Ps(t)AZ (t) + Bs (t)Q BZ(t)
The solution of the above equation is
Py(t) = ®(t,t0)Ps(to)®; (t.t0) + Q.(t)
where Q,(t) is
t
Q)= [ @.(nOBNQBI(S! (r.1)dr
to
which can be further expressed as
t

Q,(t) = M,®(7,t)M; ' M,B(r)QB” (r)M; "M ®T (r,t)MT dr

to

- M, ( / "B(r./B(HQBT (1)@ (r.1) d7> M7

to

= Msa(t)Mz

+ o MG A ()M MGA ()M MGA (DM - (= t0)” + - -
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which is consistent with Eq. (6). Thus, the scaled covariance propagation (time update) equation
takes the form

P, = ®(trtr )Pl B (th,th1) + Qy, 27

where

Qr. = Qi(tw) (28)

For the case of square-root filters (and covariance matrices), the scaled square-root covariance
propagation (time update) equation takes the form

S, = qr([«bs(tk,tk,l)s,j_ls : MSQ}C/QD (29)

The (nonlinear) measurement equation, which is affine in the measurement noise, can be ex-
pressed as

z(t) = h(x,t)+rv(t) (30)

whose linearized counterpart is
dz(t) = H(t)ox+ v(t) (31)

Proceeding as before we find
6z(t) = H(t) M ox, +v(t) (32)

so that the linearized measurement equation becomes

dz(t) = Hy(t)ox, +v(1) (33)
where
H(t)M;! (34)

The Kalman Gain at time t, is defined as
A - _ -1
K. = P, H} (H,P,H] +Ry) (35)
which can be expressed in terms of the scaled quantities as

_ _ _ —1
K, = M;'P, H! (H, P, H +Ry) (36)

so that upon defining K, as

1>

K, MK}, (37)

s

_ _ —1
K, = P, H[ (H, P, Hl +Ry) (38)
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and recalling that covariance update is
P; = (I-KH,)P, (I- Kka)T + KRy K?! (39)

Upon substituting for Py, from Eq. (5), for Hy, from Eq. (34) and K, from Eq. (37) and simplifying,
the scaled covariance update is

P/ = (I-K.H)P, I-K;H)" +K;R.K] (40)
Finally, for the scaled state update we begin with the Kalman state update as
oxi = ox; + Ky (07, — Hyox;)) (41)
Substituting for dx from Eq. (4), for Hg from Eq. (34) and K;, from Eq. (37), we get
ox; = ox; + Ky, (07 — Hy,0%)) (42)

Scaling and the Square Root Filter

We define the square root of the covariance matrix as

P2SS” and P,28,87 43)
so that the relationship between the scaled and unscaled (square-root) covariance as
S = M;!s, (44)
or
Ss = M;,S (45)

As was stated in Section 2, the condition number of S is
cond(S) = +/cond(P) (46)
and therefore
cond(Ss) = cond(Py) (47)
Thus, whereas the very act of formulating the navigation filter in terms of the square root reduces
the condition number by the square root of the condition number of the (full) covariance, scaling

the square root of the covariance matrix further reduces the condition number of the square root of
the covariance matrix.

To demonstrate this, given a covariance matrix (obtained from a LinCov analysis EM-1 radiometric-
based onboard covariance at Mission Elapsed Time = 170 hours) whose condition number

cond(P) = 2.009 x 10% (48)
the condition number of the square root of the covariance matrix is

cond(S) = 1.417 x 10'° (49)

If ‘powers-of-10’ scaling is performed,
cond(Py) = 1.327 x 10° (50)
and the condition number of the scaled square root covariance is

cond(S,) = 1.152 x 10° (51)



Scaling and the UDU7 Filter

From Eq. (6) we recall that
P, = M,PM!
and substituting for P = UD U7 we get
P, = U,D, Ul = Mm,uDU"M? (52)
Now, inserting M; ! M (and it’s transpose) in the middle of the above equation we get
U,D,U! = M, U (M;'M,)D (M M;T)U" Mm! (53)
so that we find that

Us
D,

M,UM;! (54)
M,DM?” (55)

e >

If M is diagonal, we retain the structure of the U DU factorization, particularly the upper trian-
gular nature of the U matrix (with 1’s on the main diagonal) and the diagonal structure of the D
matrix. This is the heart of scaling in the U DU filter.

One method of scaling that emerges directly from the U DU factorization paradigm is to use the
D matrix itself to determine the scaling factors so that the entries of the diagonal My matrix are

1
M, =

If this is done the condition number of Dy is precisely 1. The condition number of the U matrix is
similarly reduced.

(56)

In order to demonstrate the efficacy of scaling in the U DU filter, as in the square root filter, given
a covariance matrix (obtained from a LinCov analysis EM-1 radiometric-based onboard covariance
at MET = 170 hours) whose condition number is

cond(P) = 2.009 x 10% (57)
the condition number of the U and D factors of the covariance matrix is

cond(U) = 7.697 x 10'¢ (58)
cond(D) = 1.992 x 10'¢ (59)

With the same (diagonal, ‘powers-of-ten’) scaling as in the previous section, the scaled U and D
factors of the covariance matrix are

cond(Uy) = 8.761 x 10 (60)
cond(Dy) = 2.919 x 10* (61)

At the very least, this demonstrates that scaling significantly reduces the condition number of the
U and D factors of the covariance matrix.



THE APPLICATION TO LINEAR COVARIANCE ANALYSIS

With the above in hand, we can use the same machinery as is already available in the LinCov
framework to recast the covariance equations in scaled form without affecting the computation of
the partials and process noise matrix. In the current LinCov framework, we compute ®(t, ),

Q(t), and H(t). We now recast the scaled analogs (®5(t,%), Q,(t), and H(t)), in terms of the

aforementioned quantities (® (¢, to), Q(t), and H(¢)) as

®,(ttg)) = M®(t,t)M;" (62)
Q.(t) = M,Qt)MT (63)
H,(t) = H(t)M;" (64)

with
P,(ty) = M,P(to)M? (65)

and
P(t) = M;'P,(t)M;T (66)

The augmented and onboard covariance measurement updates (dropping the k subscript) require
careful consideration. Begin with the onboard measurement Kalman Gain matrix

_ _ —1
Koy = P, H, (HyuP, JHL, + Ronp) (67)

onb™onb onb

so that the scaled onboard measurement Kalman Gain matrix (in terms of the prior development) is

Kos, = P, HL, (How P, HY o + Row) (68)

onbs~onbs onbs ™ —onbs

where K.p., Ponp,, and Hy,,p, are defined in terms of the onboard scaling matrix, M, , as

A

Ponb, = Mo, Pons Mg, (69)
A

I<onbS - MonbsKonb (70)
A _

Honbs = HonbM(mlbs (71)

With this in hand, the scaled onboard covariance matrix measurement update is

P+ = (I - Konbs Honbs) P

onbs

(I - Konbs Hoan)T + Konbs Roan(Y;nbs (72)

onbs

and defining the square-root of the covariance matrix as

_ A _ _

1:)onbS = SonbS (Soan)T (73)
A

onbe = Sonp, (Sgu,)" (74)

the scaled onboard square-root covariance matrix measurement update is

Sjnbs = qar <|: (I - KonbsHonbs) SoinbS KonbsR(l)’f/l?) ]) (75)



The augmented covariance matrix measurement update is

pr [ I 0 ]P_ [ I 0
aug KoanenU (I_Koannav) aug Koanenv (I_K(manav

T
0 0
+ |: Konb :| Ronb |: Konb :|

and the scaled augmented covariance matrix measurement update is

I 0
Pl =M _ _ M, P,
e o |: MonleKonbsHenv (I - MonleKonbanav) :| aug augs
X [ ! 0 r M7
M;nlbs I<onb5 Heny (I - M;nlbs Konbs Hnav) g
T
0 0 -
+Maug |: Mo_nleKoan :| Ronb |: Mo_nlbsKOnbs :| Maug

where we note that the unscaled H.,,, and H,, appear in the above equation.

Defining Aqyg and Bgyg as

A I 0 -1
A = M - - M
s o |: MonlbsKonbsHenv (I B MonlbsKonbanav) :| o
A 0
B = M -
aug aug [ MonlbsKO"bS ]

the scaled augmented covariance matrix measurement update becomes

P+ = -AaugP;ugS-AT +BaugRoanT

augs aug aug

and defining the square-root of the augmented covariance matrix as

— A — — T
Paugs = Saugs (Saugs)
A T
2_ugs = St—zi_ugS ( ;_ugs>

the scaled augmented square-root covariance matrix measurement update becomes
+ _ _ : 1/2
SGUQS = qr ( [ -Aaugsaugs : BGUQRO':/mb } >

THE APPLICATION TO BATCH FILTERING

(76)

7

(78)

(719)

(80)

81)
(82)

(83)

A similar process can be carried out for the case of batch filtering. To this end, begin with the
normal equation (with a priori information at an epoch %) after processing m measurements is

m -1 m
oo (Rt Smm ) (Caw
i=1 j=1

(84)



As before we recall the relationship between the scaled and unscaled quantities as

xs = M;x
P, = M,PM!
H, = HM;'

so the normal equation becomes

m -1 m
%o =M, |MIP, "M, + > M7 HZ;Ri_lHSiMSI S MTHI R+ MIP, "M, M; '%,, | (85)

i=1

=1

which, after factoring the M1 and M out of the square bracket and cancelling, leads to

m -1 m
. —1 _ Z _ =—1_
XsO - (PSO + E :Hz:RZ 1Hsi> HZ;RJ ! + PSo X50 (86)
i=1 j=1

CHOICE OF THE SCALING MATRIX, Mg

So far we haven’t said anything about how to choose the scaling matrix, M. It turns out that
there is no limit to the choice of the scaling matrix, so long as it is is invertible. Whereas in Apollo,
they scaled by the so-called ‘canonical’ units (Earth radii for distance and earth rotation rate for
time), there is no need to restrict ourselves to this. Wouldn’t it better to let the problem itself dictate
the scaling parameters instead of imposing it a priori? To this end, each component of, say, position
would be allowed to have a different scaling if the problem dictates it. These have been recently
called ‘designer units’.? In fact, there is no requirement that the scaling matrix needs to be diagonal
— it can be a full matrix if needed. We ought to allow the covariance matrix to dictate the scaling
parameters. But how to choose a proper scaling matrix?

Three choices rise to the forefront for consideration: ‘Powers of 10’ scaling, eigenvalue decom-
position scaling, and Cholesky scaling. Each will be considered in turn.

‘Powers of 10’ Scaling

This rather straightforward scaling constructs a diagonal matrix whose elements are scaled by the
power of the diagonal elements of the covariance matrix as

mSii — 107ﬁ00r(10g10(\/137u‘) (87)
m_l _ 10ﬂ001‘(10g10(\/P7ii) (88)

Sii

In the above equation, ms_“1 populates the (diagonal) elements of the diagonal matrix M. Whereas
this type of scaling is simple, it does not take into account the correlations of the covariance matrix.
As well, while it does reduce the condition number of the transformed covariance matrix, it does not,
in general, reduce it to anywhere near 1. However, it does provide a great deal of insight/intuition
in scaling the covariance matrix by only scaling by powers of 10 (essentially changing units from,
say, meters to kilometers).
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Eigenvalue Decomposition Scaling

This type of scaling is an eigenvalue decomposition of the covariance matrix and takes into ac-
count the correlations of the covariance matrix. Thus, if the eigenvalues and eigenvectors of P are
placed in D and V (P = VDV, with VVT = I), respectively, with D being a diagonal matrix
whose entries are the eigenvalues (usually sorted from smallest to largest), the scaling matrix in this
paradigm is

M, = D V/2yT (89)
and
M:! = VvD (90)

This has the benefit of reducing the condition number of the scaled covariance matrix to 1 at the
cost of a loss of intuition as to the elements of the full scaling matrix. That the condition number of
the transformed matrix is 1 is seen because

P, = M,PM! = DV2vT(VvDVT)VD /2 = DV/2DD % = 1 91)

and the condition number of the identity matrix is 1. As well, the transformed covariance matrix at
the time of the conditioning is the identity matrix, a rather intriguing result and something we were
after. So this is an ‘optimal’ scaling matrix if we are seeking the optimal condition number of the
covariance matrix.

Cholesky Scaling

This scaling is a Cholesky decomposition of the covariance matrix. Recall that the Cholesky
decomposition of the covariance matrix is

P = ss” (92)
where S is the square-root of the covariance matrix, so that were we to choose the scaling matrix as
M, = S! (93)

the scaled covariance matrix becomes
P, = M,PM! = §s7!88Ts 7 =1 (94)

whose condition number is 1. Generally this scaling matrix is a triangular (upper or lower) matrix,
but it doesn’t have to be, for there are an infinite number of square root factorizations of a square
matrix.

SCALING PHILOSOPHIES

A myriad of scaling methodologies can be brought to bear on conditioning the covariance matri-
ces. A short list includes: initial scaling, continuous scaling, scaling at the time of measurements,
and occasional scaling.

Initial scaling is just as it sounds: scale the onboard and the augmented covariance matrices once
at the initial time. Continuous scaling denotes computing and applying the scaling matrices at every

11



time step. Alternatively, the scaling can be calculated and applied only at the time of measurements.
Finally, the scaling matrices can be computed and applied at discrete/isolated epochs. These epochs
may include (but are not limited to) times of the maneuvers. Any or all of these methodologies can
be utilized.

We note that the goal is to have a well-conditioned covariance matrix (i.e. close to 1). Limited
experience to date has demonstrated that keeping the condition number of the covariance matrices
to be under 10° is the sweet spot. Heroic efforts to reduce the condition number below this are not
worth the sweat.

As well, our limited experience with scaling a system with a large state-space indicates that eigen-
value scaling, while it may be intuitive to our sensibilities, actually does not work well because of
the condition number of the matrices at hand — ironically the very issue we were trying to remedy.
Our experience has shown that if the condition number of the covariance matrix is large, the compu-
tation of the eigenvalues and eigenvectors could themselves introduce errors to the scaling matrices.
In light of this, it is not recommended that eigenvalue scaling be utilized, as much as one may want
to use it.

THE EFFECT OF SCALING ON EM-1 LINEAR COVARIANCE ANALYSIS

To demonstrate the efficacy of this methodology, an EM-1 Trajectory (with optical navigation)
was analyzed. In this case, scaling was performed for Py, and P,pp0arq at the initial time and
after that it was performed only on P ,,404¢- To this end, periodic scaling was performed whenever
a measurement was taken and whenever a maneuver was performed. The scaling chosen was the
‘Powers of 10’ paradigm.

Figure 1 shows the effect of scaling on P,,;; the left panel contains the condition number of
the unscaled onboard covariance matrix while the right panel contains the condition number of the
scaled onboard covariance matrix. Note that the condition number for the scaled P4 is 5 orders
of magnitude less than for the unscaled P, 4. Nevertheless, the magnitude of the condition number
for either is still troublesome. Likewise Figure 2 contains the condition number for the Unscaled
(left) and Scaled P ,pp0arq- Here we note that the condition number for the scaled P ,p0q0:q 1S 10
orders of magnitude less than that of the unscaled P ,,,p04:d-

Figure 3 shows the effect of scaling on S,,,; the left panel contains the condition number of
the unscaled onboard square-root covariance matrix, while the right panel contains the condition
number of the scaled onboard square-root covariance matrix. Note that the condition number for
the scaled S, is about 5 orders of magnitude less than for the unscaled S,4.

Figure 4 shows the effect of scaling on S,;,504rq; the left panel contains the condition number of
the unscaled onboard square-root covariance matrix, while the right panel contains the condition
number of the scaled onboard square-root covariance matrix. Note that the condition number for
the scaled S,;,p04rq 18 about 7 orders of magnitude less than for the unscaled S,;,p04-q- In particular,
since we have particularly focused on the condition number of S, With respect to scaling, the
condition number of the scaled S04 remains below 10!

We now investigate the effects of scaling on the EI parameters, particularly the four EI constraints.
Figure 5 shows the comparison of the downrange versus flight path angle delivery statistics. There
is a very noticeable difference between the two, indicating that scaling does significantly affect
the performance of the solution. Figure 6 contains the comparison between effect on the entry
interface velocity magnitude versus downrange position delivery ellipses the unscaled and scaled

12
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Figure 6. Comparison of Entry Interface Velocity Magnitude Vs Downrange Position
Delivery Ellipses for Unscaled and Scaled Covariance Matrix

covariance formulations Figure 7 contains the comparison between effect on the entry interface
velocity magnitude versus flight path angle delivery ellipses the unscaled and scaled covariance
formulations Figure 8 contains the comparison between effect on the entry interface out-of-plane
delivery ellipses the unscaled and scaled covariance formulations

We note that in Figures 6-8, the scaled and unscaled formulations show no discernible difference;
that is most definitely not the case in Figure 5 where there is a noticeable difference. To further drive
home the point, the Downrange Position Vs Flight Path Angle delivery constraint is the driving
constraint and any improvement in the conditioning is significant. As well the delivery ellipse for
the scaled formulation is ‘ellipse-like’ in contrast to its unscaled counterpart whose ellipse is rather
linear. How do we know that the scaled formulation is the correct one? Simply because the condition
numbers of the scaled S,y and S,,p04rq are substantially smaller than their unscaled counterparts.

This also introduces a new metric which ought to be considered: the time-history of the condition
number of the covariance matrix along the trajectory. Usually, navigators are just interested in
ensuring that the covariance matrix stays positive definite. Now we may have a need to look at
the condition number of the covariance matrix as well!!! This is most certainly the case for linear
covariance analysis.

CONCLUSIONS

This paper presents a development of scaling for Kalman filtering and linear covariance analysis
(as well as for batch filtering). It is recommended that ‘Powers of 10° or ‘Cholesky’ scaling (or a
combination of the two) be used as a matter of course whenever the condition numbers rise above,
say, 10% in order to preclude numerical errors in representing the covariance and hence the state up-
date. Significant improvements in the analysis of the NASA Orion Exploration Mission 1 trajectory
are observed.
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Figure 7. Comparison of Entry Interface Velocity Magnitude Vs Downrange Position
Delivery Ellipses for Unscaled and Scaled Covariance Matrix
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Figure 8. Comparison of Entry Out-of-Plane Position Vs Out-of-Plane Velocity De-
livery Ellipses for Unscaled and Scaled Covariance Matrix
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