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APPLICATIONS OF UNSCENTED AND QUADRATURE CONSIDER
FILTERS USING A MODIFIED JOSEPH FORMULATION

Kyle J. DeMars* and Renato Zanettif

Consider filters provide an approach for accounting for tifects of uncertain parameters
within the measurement function when performing state tgsdaThe consider parameters
are the set of parameters which yield statistically impure&ffects in updating the state of
a system, but for which improved estimates are not requeef,a sensor bias. This paper
develops a general covariance update equation via a Josephlétion that is valid when
considering nonlinear measurements and studies the piesperf the developed method.
Simulation studies for both linear and nonlinear measurgésnare considered and compared
for both unscented and quadrature formulations of theifiliestep.

INTRODUCTION

The Joseph formulas a general covariance update equation valid not only ferkthlman gain, but for
any linear unbiased estimator under standard Kalman fifesssumptions. The Joseph formula is given
by P* = (I - KH)P~ (I - KH)T + KRKT, wherel is the identity matrix K is the gain,H is the
measurement mapping matri, is the measurement noise covariance matrix, Bngd P+ are the pre and
post measurement update estimation error covariancea@sitrespectively. The optimal linear unbiased es-
timator (equivalently the optimal linear minimum mean sguarror estimator) or Kalman filter often utilizes
simplified covariance update equations sucRas= (I-KH)P~ andP™ = P~ - K(HP H" +R)K".
While these alternative formulations require fewer corafiahs than the Joseph formula, they are only valid
whenK is chosen as the optimal Kalman gain. In engineering apjgics, situations arise where the op-
timal Kalman gain is not utilized and the Joseph formula niigsemployed to update the estimation error
covariance. Two examples of such a scenario are undenimigimieasuremerntsand considering statés.
Even when the optimal gain is used, the Joseph formulatistiligoreferable because it possesses greater
numerical accuracy than the simplified equation.

In this paper, an equivalentto the Joseph formulais defwdthear estimators but without the assumption
of linear measurements. The formula is applied to the quadrdilte® and the unscented filin the
presence of consider parameters.

Schmidt's approach for consider states (Schmidt-Kalmgerfils based on minimum variance estimation.
Jazwinski details the derivation of the consider Kalman filter in thegence of linear measurements. For
nonlinear measurements, the standard extended Kalmarefijpgoach is used, i.e. linearization around the
conditional expectation is performed.

Woodbury and Junkifigperformed a careful analysis of both the Schmidt-Kalmaarféind the consider
analysis approach as derived by Tapd\al® The analysis by Woodbury and Junkins shows the differences
and the benefits of each of the two approaches. The consitderHds received considerable attention in
recent years. Woodbust al. provide new insight into considering parameters in the measent modet?
Equivalent formulations to the consider filter were alsalgd'! 12 and applied to Mars entry navigatith
and orbit determinatioft: Lisano"® introduced an unscented formulation of the covarianceyaisshpproach
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by Tapleyet al. As described by Woodbury and Junkins that approach is diftéfrom that of the Schmidt-
Kalman filter.

Instead of deriving the consider filter for linear measurets@nd then extend the results to nonlinear
measurements, this work derives the general linear cansptinal filter in the presence of nonlinear mea-
surements. The optimal estimator reduces to the consitarifilthe case of linear measurements and it can
be approximated by linearization around the conditionamte obtain the well known consider filter results.
However, this work does not approximate the general consiltler equations via linearization around the
mean, but through the use of a set of deterministic pointgebding on the scheme chosen for the points
selection, the consider quadrature filter and the considasranted filter are obtained.

GENERALIZED JOSEPH FORMULA AND LINEAR MINIMUM MEAN SQUARE C ONSIDER
FILTER

Given ann,-dimensional random vectoy, the mean is denoted by, = E{x}, and the covariance is
denoted byP,, = E{(x — my)(x — my)T}. Additionally, given an,-dimensional random vectgr, the

covariance betweer andy is Pxy = E{(x — my) (y — my)T}.

Let x be the random vector to be estimated gnlde a random vector whose samples are availgbis;
potentially a nonlinear function of, as well as other non-estimated random stateend zero-mean white
noisev. Thus, in generaly may be of the form

y =h(x,c,v).

The linear estimators of from y is the family of functions given bgx = £(y) = Ay + b. The goal is to
find optimal values forA andb in a minimum mean square error (MMSE) sense. The optimaficaits
are denoted with an asterisk. The orthogonality prinéfpie valid when the family of estimation functions
is closed under addition and multiplication by a scalar. &mithis hypothesis the orthogonality principle
establishes that the optimal estimation ereo; x—(A*y+b*), is perpendicular to every possible estimator,
ie.

E{[x—A*y—b*]T [Ay+b]}:o v A,b 1)
bTE {x — A*y — b*} + trace (AE {y[x— A*y—b*]T}) —0 VA,b. )

Noting that the orthogonality condition must be satisfieddib A andb it follows that the coefficients db
andA in Eq. (2) must be zero

E{x—A'y—-b*} =0 3)
Bf{yx-Ay-b'} -0 (4)

The first condition implieb* = E{x} — A*E{y} = mx — A*m,. The linear MMSE (LMMSE) estimator
therefore has the form = m, + A*(y — my ), from which it is established that the estimate is unbiased (
the estimation erroe = x — x is zero mean). Combining Eqg. (3) and Eq. (4) we obtain thaafgr vector
m of appropriate dimensions

E{(y_m)[x_A*y_b*]T}:o Vm )
The optimal gaimA* can be derived by substituting the optinhel = m, — A*m, into Eq. (5) to obtain
E{(y -~ my)[(x—my) - A*(y =m,)]"} = O,
the optimal matrix is therefore given by

A" =P, P! 6)

yy >’



whereP, ] is the matrix inverse oPy, . The LMMSE estimator is therefore given by
X =my + Py Py (y —my) . (7)

When introducing consider statesit is necessary to know their covariance and the correidt@ween them
andx in order to calculat®, andP,,. When measurements are linear and in the absence of costitks

y=Hx+v
Py = Py HT
Py, = HP,H' + R,

whereR is the covariance of the zero-mean measurement roi¥éhen substituting the above equations in
Eq. (7) the familiar Kalman filter emerges.

The family of all linear unbiased estimators is givernsby- m, + A(y — my) and their estimation error
has covariance matriR.. given by

Pee = Pyx — Pxy AT — AP + AP, A" (8)

Eq. (8) is the equivalent to the Joseph formula in the cas@plfimear measurements; the equation is valid
for any value ofA, not just the optimal value. When measurements are lineiretihe absence of consider
states Eq. (8) reduces to the familiar Joseph formula

Pee = (I - AH)P, (I— AH)T + ARAT.
In the presence of nonlinear measurements and consides stat define an augmented state vegfor=
[xT cT], and the linear consider estimator is given by
z=b+ Kconya

where the rows oK., corresponding t@ are zero. The family of all linear consider estimators iselb
under addition and multiplication by a scalar, therefoedhthogonality principle holds, and the same steps
previously used in determining optimal values loandK.,,, can be repeated to obtain the optimal consider
state update

z2=m, + Keon(y — my) = [ 2" } + [ jg } (y —my) = [ m"+A:n(cy_my) )

where A* is defined in Eq. (6). The update of the estimation error damae is given by the generalized
Joseph formula
Paug = Puz — Py K, — KconPyy, + Poy Pyy Py (10)

con

For linear measurements and consider states Eqgs. (9) ancetiie to the consider filter.
IMPACT OF ERRORS IN GAIN
From Eg. (8), the equivalent Joseph formulation when camsid nonlinear measurements is
P =Py — APy, — Py, A" + AP, AT

whereA is any linear gain, not just the optimal valueAaf. WhenA = A*, i.e. whenA is given by Eq. (6),
it is straightforward to show that the covariance update bwawritten as

P =Py — APy AT



which is the more conventionally used formulation for the@arance update as it requires fewer computa-
tions than the equivalent Joseph formulation does. As pusly discussed, however, this formulation is not
appropriate for use when a gain that is not the optimal gamigloyed. Moreover, as will be seen shortly, the
conventional formulation of the covariance update is masesptible to numerical errors introduced through
variations in the calculation of the gain than the equival@seph formulation is.

Assume that the applied gain is described by
Aapp = A" +0A

whereA* is the optimal gain previously described ahAl is a small error introduced in the computation of
the gain. Consider the second form of the covariance updaltsbstitute the applied value of the gain, such
that the effective covariance update is

Per = Pyx — AuppPyy Al

app
=Pux — (A" + 5A)P,, (A" +6A)T
= (Pxx — A*Pyy A*T) — APy, A*" + A*Py 0AT) — AP, 5AT.

Neglecting second-order terms, the deviation from the nahdovariance update, i.6P = P.g — P, may
be written as

6P = —5AP,,A*" — AP, 6AT.
Substituting in for the optimal gain from Eq. (6), it followisat
6P = —0AP,, — PyydA",

and thus, small errors in the computed Kalman gain may intarge errors in the covariance update, de-
pending on the the cross-covariance magnitude.

Now, consider the first form of the covariance update, i.e.efjuivalent Joseph formulation of the covari-
ance update given by

P =Py — AP, — P,y AT + AP, AT,
Substituting for the previously described applied valuthefgain yields the effective covariance update as

Per = Pxx — AappPEy - nyAanp + AappPyyAanp
=Pyux — (A" + 6A)PL, — Pyy (A" + 6A)T + (A" + 6A)P,, (A" + 5A)"T
= (Pux — A"Py, — Pyy AT + APy A*T)
+ 5A(Pyy A*" — PL) 4+ (A"Pyy — Pyy)dA™ + AP, 0A" .
Neglecting second-order terms, the deviation from the nahtiovariance update may be written as
§P = SA(Pyy A" — P )+ (A*Pyy, — Pyy)dAT.
Substituting in for the optimal gain from Eq. (6), it followisat
P =0,

and thus, small errors in the computed optimal gain do ndirgtorder, influence the effective covariance
update when the equivalent Joseph formulation is used. \Hesgonventional covariance update is em-
ployed, however, small errors in the computed gain do infteghe computation of the covariance update.



NEW CONSIDER FILTER ALGORITHMS

In order to implement the consider filter that is describe&bgy. (9) and (10), the valuesnoi,, Py, Py,
andP,, need to be determined. First, define a composite inputp the measurement function such that
ul = [xT cTvT]. Givenx € R"+, ¢ € R"¢, andv € R™, it follows thatu € R" wheren = n, + n. + n.,
and that the measurement function may be expressed as

y =h(u).

Recalling thaty € R™ and given a value dPy, it follows thatP,, is the uppefn, + n.) x n, block of
P,y. FurthermorePy, is the uppemn, x n, block of P,,. Therefore, given the values af,, Py, and
P, the necessary components required in Egs. (9) and (10yaitatsle.

Thea priori mean and covariance of the composite inpot, andP,,,, are known, and are given by

my Pxx ch va
m, = me and Puu = Pex Poe Poy ;
my va Pvc va

whereP., = P, P,y = PL , andP,. = Pl . For zero-mean noise with covarianBe m, = 0 and

xc!? xXv!

P, = R. Additionally, when the noise is not correlated with theatar consider state®,,, = Pfx =0
andP., = PI = 0.

The a priori probability density function ofx is denoted ag(u); from it, the mean, covariance, and
cross-covariance are obtained as

my = [ h(wp(u)du (11)
Pyy = [ (hlu) -~ my)(0(w) — my) plwyd
Puy = [ (u = mu)(blu) —m,) p(w)du.

The covariance terms admit a simplificationRg, = Py, — mym; andP,, = Py — m,m], where

Py, = / ) h(u)h™ (u)p(u)du (12)
Puy = /n uh” (u)p(u)du. (13)

Therefore, the three integral terms of Egs. (11)—(13) nedaktevaluated in order to evaluate the consider
filter that is described by Egs. (9) and (10), where each oftthee terms has the form

1= [ tptu)du; (14)

the quadrature and unscented filters approximate thesgrafdeby the summation of a finite number of
deterministic points.

The Consider Quadrature Kalman Filter

The quadrature Kalman filter assumes thatahmiori density is Gaussian with mean,, and covariance
Puu, i.€.

1
p(u) = |27Pyu| "% exp {—§(u —my) P l(u— mu)} .



The method is based on the Gauss-Hermite quadrature ruleh vehgiven by

1 i 2 m
ﬁ /_OO flu)e ™ du = ;wif(%‘),

whereg; andw; are the quadrature points and weights, respectively, anelghality holds for all polynomials
of degree up t@m — 1, wherem is the chosen order of the quadrature rule. The quadratimesgnd weights
can be determined via an eigenvalue problem as followsJ lbeta symmetric, tridiagonal matrix with zeros
on the main diagonal. The elements of the first upper and |olegyonals are given by; ;11 = Jiy1,; =
\/z'/_2 for 1 < i < m — 1. Then, the quadrature points are the eigenvalugsafd the quadrature weights
are given byw; = |(v;)1|?, where(v;); is the first element of thé" normalized eigenvector @f.> 1’

Consider a scalar random variablg which is distributed according to a standard normal diation (i.e.
a Gaussian distribution with zero mean and unit varian¢egaldily follows by a change of variables that the
Gauss-Hermite quadrature rule may be employed as

- ; u—L - ue_“2/2u:mw» Ki
| rNtsode= o= [ fwea > wif),

wherer; = v/2¢;. In the case of an-dimensional vector-valued random variahk, with zero mean and
identity variance, the univariate Gauss-Hermite quadeatule is extended to a multivariate quadrature rule
by successive application to the mutually uncorrelatechelgs ofu’, yielding®

n

/ f(u' )N (u';0,I)du’ = Z Wi, * - Z wiy £ (Kiys - Ki,) = Z Aif (ki)
" in=1 i1=1 i=1

wherek; = [k, -k, |7 and)\; = ]'[;;1 w;;. Thus, anm-point univariate quadrature rule generates an
m™-point quadrature rule for-dimensional integral evaluations. While the previousagigun represents an
n-dimensional quadrature, it is not of the form expressedjn(E4). Since an arbitrary multivariate Gaussian
distribution is a linear transformation from a zero-meanit-variance Gaussian distribution, the final step is
to perform a linear change of variables, which yields

m"

F(w)N (4 my, Pyy)du = > AFU;) (15)

R i=1

whereld; = m,, + Syuk; andS,, is a square-root factor @, such thalP,, = SyuSL,-

In order to utilize the quadrature approach for the condiitter, first select the quadrature rule via the
parametefn. Using the previously described approach, generate-thienensional quadrature rule, yielding
the m™ quadrature points; and associated weighfs. Compute the square-root factS,, from P,
(e.g. using a Cholesky factorization) in order to deterndie= m, + Suuk;. Then, the integral terms of
Egs. (11)—(13) are computed via Eq. (15) as

P,y andPy, are then given by, = Pyy — mym] andPyy = Pyy — mum], from whichP,y, and
P, may be extracted. Finally, use Egs. (9) and (10) to compfetejuadrature consider filter.



The Consider Unscented Kalman Filter

Given ann-dimensional random variable with mean and covariancen,, andP,,, respectively, and a
nonlinear transformation

y =h(u),

the unscented Kalman filter, like the quadrature Kalmanrfikenploys a set of deterministically selected
points in order to compute the mean and covariancg, @fs well as the cross-covariance betweesndy.
Unlike the quadrature Kalman filter, the unscented Kalméerfilelects its points based on moment matching.
That is, a set of sigma-poin®,; and associated weights;, are selected so that the momentyaire well
approximated. In general, given a setfofsigma-pointsi{;, and the transformed value¥, = h(i;), the
mean, covariance, and cross-covariance are computed as

€L

Py =Y wy.y! (16b)
i€l

Puy =Y wU (16c)
i€l

with Py, = Pyy — mym] andPyy, = Py, — mym}, and where the cardinality of is K, i.e. the
number of sigma-points. It should be noted that the unsdeédman filter can employ different weights
for the mean and covariance calculations. Three methodsofwstructing the input sigma-points and their
associated weights are reviewed: the symmetric, extenaeohstric, and scaled extended symmetric sigma-
point selection schemes.

The symmetric sigma-point selection scheme chooses a $ét-of2n sigma-points that are on théﬁth
covariance contour &

Z/li:mu—i-\/ﬁsi i1=1,....n
U, =my —\/nsi_n t=n+1,...,2n,

with associated weights 0b§m) = wz@ = 1/2nfori = 1,...,2n, andZ = {1,...,2n}. Here,s;
represents th&® column of the square-root factor of the covariance matrix si; is the:*" column ofS .,
whereS,uSE, = Puu.

The symmetric sigma-point selection scheme guaranteeshingtof the mean and covariance of the input
distribution. Additionally, since the scheme is symmelrjcconstruction, the third moment for symmetric
distributions is also matched; however, introduction afi@ing parameter (and another sigma-point) enables
the sigma-points to capture up48* moments. This is done by extending the symmetric sigmatseirto
include an additional sigma-point that is the mean, yigjdime extended symmetric sigma-point selection
scheme &8

Z/ti:mu 1=0
U, =my++/n+EKs; i=1,...,n
U, =my —V/n+KS,_pn i=n+1,...,2n,

with weights given bys!™ = w( = k/(n+x)fori = 0, andw!™ = w'? = 1/2(n+x)fori =1,...,2n,
and withZ = {1,...,2n + 1}. Choosings such that: + x = 3 ensures that thé¢'" moment matche¥
Whenx = 3 — n < 0, the weight foldy becomes negative, and the calculated covariance can become

non-positive semidefinité’. This effect motivated the development of the scaled unscemansform which
replaces the extended symmetric sigma-points with thedeaitended symmetric set of sigma-points as

U; = uO + Oé(ul — Z/lo)



fori = 1,...,2n, wherea is a positive scaling parameter such thak « < 1. Additionally, since the
weighting of the mean sigma-point directly affects the nmagte of the errors in the fourth and higher order
terms for symmetric prior distributions, a third parameters introduced to allow for the minimization
of higher order errors in the presence of knowledge of therpistribution. Thus, the scaled extended
symmetric sigma-point selection scheme is giveffby

Z/ti:mu 1=0
U, =my+Vn+As; i=1,....n
U, =my —vVn+As;_, i=n+1,...,2n,

where) = a2(n + k) — n, and the weights are given g™ = \/(n + A) fori = 0, w(? = A/(n + \) +
(1—a2+8)fori =0,andw™ = w!” = 1/2(n+X)fori = 1,...,2n. Additionally,Z = {1,...,2n+1}
for the scaled symmetric sigma-point selection scheme.

In contrast to the extended symmetric sigma-point seleciihieme, the scaled extended symmetric sigma-
point selection scheme has three tuning parametersi, and 5. Choosingx > 0 guarantees positive
semidefiniteness of the covariance matrix, so a good defalle isx = 0.2° Sincea controls the spread
of the sigma-points, choosing smaller valuesaoénsures the avoidance of non-local sampling; choosing
a = 1, however, produces the same set of sigma-points as thedextaymmetric method. Finallg is a
non-negative parameter that can be used to incoporatedisioibution knowledge; in the case that the prior
is Gaussian, the optimal choicefs= 2.2

In order to utilize the unscented approach for the consiller,ffirst select the sigma-point scheme and any
associated tuning parameters. Using the square-root fagtoof P, determine the sigma-poinitd,, and
the associated Weightmgm) and wz@, according to the chosen scheme. After computing the toamsfd
sigma-points vidy; = h(U;) for i € Z, the integral terms of Eqgs. (11)—(13) are computed using @¢8.
Pyy andP,y are then given by, = Py, — mym] andPy,, = Pyy — mym, from whichP,, and
P, may be extracted. Finally, use Egs. (9) and (10) to compteteihscented consider filter.

RESULTS

To test the proposed Joseph formulation of the considertitieg both unscented and quadrature methods,
a space object tracking problem is considered. The dynamsystem is taken to be a planar two-body
problem, such that the governing equations of motion are

wherer? is the inertial position of the target;! is the inertial velocity of the target, = ||r?||, andy is the
gravitational parameter of the Earth. Furthermore, theionadf the vehicle is confined to the equatorial
plane, which allows the position to be described by two scadues,r, andr,, and the velocity to be
described by two scalar values andv,. Therefore, the state vector and equations of motion thedriee
the nonlinear dynamical system are

Tz Uz
_ | Ty _ Uy
x()= | | and fx()=| _ " o |
Uy —;u"yrf?’
wherer = /r2 +r2. In addition to the nonlinear dynamical system describea/apnonlinear measure-

ments are generated from a ground-based observer via

1"y — Yo
Ty — To

y = stan— +v,



wherer, andr, are the position of the object, andy, are the position of the observeris the measurement
noise, and represents a scale-factor. The position of the observengpated via

T, = Re cosfy

Yo = Resinby

whereR, is the radius of the Earth arf is the hour angle of the observer at the observation epodichwh
is given by

0y = 6y —|—w(tk —to).

Here,d, is the sidereal time of Greenwich at timg w is the angular velocity of the Earth, and— ¢, is the
time past epoch.

The object that is being tracked has an initial mean whiclh#sacterized by the orbital elements of semi-
major axis, eccentricity, argument of periapse, and meamaty of

a = 42164.173 [km]

e=0
w = 0 [deq]
M = 0 [deq].

The orbital elements are transformed into Cartesian coates to describe the initial mean of the object
and the initial covariance matrix is taken to be diagonahwibsition uncertainties df [km?] and velocity
uncertainties ofl [m2/s?]. Additionally, the measurement noise is taken to be zeeamwith a standard
deviation of1 [arc-sec], and the scale-factor is taken to have a me&@n96fwith a standard deviation of

1 [ppm].

Four filtering implementations are considered. The first invplementations use the unscented Kalman
formulation: a symmetric sigma-point unscented Kalmaaerfilthich neglects the presence of the scale-factor
and a symmetric sigma-point unscented Kalman filter whigsuke consider formulation and generalized
Joseph formula to take the effects of the scale-factor intmant. The last two implementations use the
consider formulation and generalized Joseph formula te tiag effects of the scale-factor into account while
employing the quadrature Kalman filter approach with quianlearules ofm = 3 andm = 5. In each
case, the first measurement occurs three hours after tied oohditions and additional measurements are
taken every ten seconds for a duration of five minutes. Alf fdters are run on 250 sets of data and the
state estimation error is computed along with the filter ciewee. The results from the 250 monte carlo
simulations are summarized in Figs. 1-4, with each figureasgmting a different element of the state and
the subfigures representing each of the different filteréieghfo the space object tracking problem.

Each of Figs. 1-4 indicates that by neglecting the effecth@fscale-factor, the unscented Kalman filter
cannot accurately track the space object with positionrewa the order of several hundred kilometers and
velocity errors on the order of ten meters per second. Thigisould be treated by adding the scale-factor to
the state of the system and estimating not only the positidrnvalocity of the object, but also the scale-factor
of the measurement process. However, the alternative eplo this paper is to treat the scale-factor as a
consider parameter, i.e. a parameter which non-negligiffilyences the measurement process, but for which
we do not require further refinement. For this reason, theetleonsider filters were applied: an unscented
Kalman filter and two quadrature Kalman filters. As shown igskil—4, each of these three approaches
successfully tracks the space object and increases therdmibknowledge on the position and velocity of
the object. In fact, close inspection of Figs. 1-4 showsdhah of the three consider filters applied achieves
almost the same answer for any individual monte carlo run.

CONCLUSIONS

This paper introduces a general covariance update equatiarh is the extension of the well-known
Joseph formula for the nonlinear measurements case. Timsufa can be used in linear estimators for
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Figure 1. Estimation error (in black) and filter-computed 3¢ uncertainty (in red) as
a function of time for r,, over 250 monte carlo simulations.

nonlinear measurements that do not rely on linearizationrad the current estimate; this is the assumption
made by the extended Kalman filter. Two estimation schensgdih not rely on linearization centered the

current estimate are the unscented Kalman filter and quadrélters. The proposed generalized Joseph
formula is necessary to update the estimation error cavegiavhenever a non-optimal gain is chosen in
the linear unbiased estimator. Various reasons couldtdith& need of a non-optimal gain selection. One
reason for the utilization of the generalized Joseph foanamd a non-optimal gain is detailed in this work:

the inclusion of consider states into the linear estimaldre resulting algorithms are the extension of the
well-known consider filter to either the unscented transiation or the Gauss-Hermite quadrature rule.

The classic Joseph formula is known to be more numericalylstthan the simplified optimal covariance
update equation. The proposed generalized Joseph formplaténtially preferable over the standard co-
variance update of the unscented and quadrature filtersiewbe presence of optimal gains for the same
reason.
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Figure 4. Estimation error (in black) and filter-computed 3¢ uncertainty (in red) as
a function of time for v, over 250 monte carlo simulations.
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