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APPLICATIONS OF UNSCENTED AND QUADRATURE CONSIDER
FILTERS USING A MODIFIED JOSEPH FORMULATION

Kyle J. DeMars∗ and Renato Zanetti†

Consider filters provide an approach for accounting for the effects of uncertain parameters
within the measurement function when performing state updates. The consider parameters
are the set of parameters which yield statistically important effects in updating the state of
a system, but for which improved estimates are not required,e.g. a sensor bias. This paper
develops a general covariance update equation via a Joseph formulation that is valid when
considering nonlinear measurements and studies the properties of the developed method.
Simulation studies for both linear and nonlinear measurements are considered and compared
for both unscented and quadrature formulations of the filtering step.

INTRODUCTION

The Joseph formula1 is a general covariance update equation valid not only for the Kalman gain, but for
any linear unbiased estimator under standard Kalman filtering assumptions. The Joseph formula is given
by P+ = (I − KH)P−(I − KH)T + KRKT, whereI is the identity matrix,K is the gain,H is the
measurement mapping matrix,R is the measurement noise covariance matrix, andP−, P+ are the pre and
post measurement update estimation error covariance matrices, respectively. The optimal linear unbiased es-
timator (equivalently the optimal linear minimum mean square error estimator) or Kalman filter often utilizes
simplified covariance update equations such asP+ = (I−KH)P− andP+ = P−−K(HP−HT+R)KT.
While these alternative formulations require fewer computations than the Joseph formula, they are only valid
whenK is chosen as the optimal Kalman gain. In engineering applications, situations arise where the op-
timal Kalman gain is not utilized and the Joseph formula mustbe employed to update the estimation error
covariance. Two examples of such a scenario are underweighting measurements2 and considering states.3

Even when the optimal gain is used, the Joseph formulation isstill preferable because it possesses greater
numerical accuracy than the simplified equation.4

In this paper, an equivalent to the Joseph formula is derivedfor linear estimators but without the assumption
of linear measurements. The formula is applied to the quadrature filter5 and the unscented filter6 in the
presence of consider parameters.

Schmidt’s approach for consider states (Schmidt-Kalman filter) is based on minimum variance estimation.7

Jazwinski8 details the derivation of the consider Kalman filter in the presence of linear measurements. For
nonlinear measurements, the standard extended Kalman filter approach is used, i.e. linearization around the
conditional expectation is performed.

Woodbury and Junkins3 performed a careful analysis of both the Schmidt-Kalman filter and the consider
analysis approach as derived by Tapleyet al.9 The analysis by Woodbury and Junkins shows the differences
and the benefits of each of the two approaches. The consider filter has received considerable attention in
recent years. Woodburyet al. provide new insight into considering parameters in the measurement model.10

Equivalent formulations to the consider filter were also studied11, 12 and applied to Mars entry navigation13

and orbit determination.14 Lisano15 introduced an unscented formulation of the covariance analysis approach
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by Tapleyet al. As described by Woodbury and Junkins that approach is different from that of the Schmidt-
Kalman filter.

Instead of deriving the consider filter for linear measurements and then extend the results to nonlinear
measurements, this work derives the general linear consider optimal filter in the presence of nonlinear mea-
surements. The optimal estimator reduces to the consider filter in the case of linear measurements and it can
be approximated by linearization around the conditional mean to obtain the well known consider filter results.
However, this work does not approximate the general consider filter equations via linearization around the
mean, but through the use of a set of deterministic points. Depending on the scheme chosen for the points
selection, the consider quadrature filter and the consider unscented filter are obtained.

GENERALIZED JOSEPH FORMULA AND LINEAR MINIMUM MEAN SQUARE C ONSIDER
FILTER

Given annx-dimensional random vectorx, the mean is denoted bymx , E{x}, and the covariance is
denoted byPxx , E{(x −mx)(x −mx)

T}. Additionally, given anny-dimensional random vectory, the
covariance betweenx andy isPxy , E{(x−mx) (y −my)

T}.

Let x be the random vector to be estimated andy be a random vector whose samples are available;y is
potentially a nonlinear function ofx, as well as other non-estimated random statesc, and zero-mean white
noisev. Thus, in general,y may be of the form

y = h(x, c,v) .

The linear estimators ofx from y is the family of functions given bŷx = ℓ(y) = Ay + b. The goal is to
find optimal values forA andb in a minimum mean square error (MMSE) sense. The optimal coefficients
are denoted with an asterisk. The orthogonality principle16 is valid when the family of estimation functions
is closed under addition and multiplication by a scalar. Under this hypothesis the orthogonality principle
establishes that the optimal estimation error,e = x−(A∗y+b∗), is perpendicular to every possible estimator,
i.e.

E
{

[x−A∗y − b∗]
T
[Ay + b]

}

= 0 ∀ A,b (1)

bTE {x−A∗y − b∗}+ trace
(

AE
{

y [x−A∗y − b∗]T
})

= 0 ∀ A,b. (2)

Noting that the orthogonality condition must be satisfied for all A andb it follows that the coefficients ofb
andA in Eq. (2) must be zero

E {x−A∗y − b∗} = 0 (3)

E
{

y [x−A∗y − b∗]
T
}

= O (4)

The first condition impliesb∗ = E{x}−A∗E{y} = mx −A∗my. The linear MMSE (LMMSE) estimator
therefore has the form̂x = mx+A∗(y−my), from which it is established that the estimate is unbiased (i.e.
the estimation errore = x − x̂ is zero mean). Combining Eq. (3) and Eq. (4) we obtain that forany vector
m of appropriate dimensions

E
{

(y −m) [x−A∗y − b∗]T
}

= O ∀ m (5)

The optimal gainA∗ can be derived by substituting the optimalb∗ = mx −A∗my into Eq. (5) to obtain

E
{

(y −my) [(x−mx)−A∗(y −my)]
T
}

= O ,

the optimal matrix is therefore given by

A∗ = PxyP
−1
yy

, (6)
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whereP−1
yy

is the matrix inverse ofPyy. The LMMSE estimator is therefore given by

x̂ = mx +PxyP
−1
yy

(y −my) . (7)

When introducing consider statesc, it is necessary to know their covariance and the correlation between them
andx in order to calculatePxy andPyy. When measurements are linear and in the absence of considerstates

y = Hx+ v

Pxy = PxxH
T

Pyy = HPxxH
T +R ,

whereR is the covariance of the zero-mean measurement noisev. When substituting the above equations in
Eq. (7) the familiar Kalman filter emerges.

The family of all linear unbiased estimators is given byx̂ = mx +A(y −my) and their estimation error
has covariance matrixPee given by

Pee = Pxx −PxyA
T −APT

xy
+APyyA

T . (8)

Eq. (8) is the equivalent to the Joseph formula in the case of nonlinear measurements; the equation is valid
for any value ofA, not just the optimal value. When measurements are linear and in the absence of consider
states Eq. (8) reduces to the familiar Joseph formula

Pee = (I−AH)Pxx(I−AH)T +ARAT.

In the presence of nonlinear measurements and consider states, we define an augmented state vectorzT =
[xT cT], and the linear consider estimator is given by

ẑ = b+Kcony ,

where the rows ofKcon corresponding toc are zero. The family of all linear consider estimators is closed
under addition and multiplication by a scalar, therefore the orthogonality principle holds, and the same steps
previously used in determining optimal values forb andKcon can be repeated to obtain the optimal consider
state update

ẑ = mz +Kcon(y −my) =

[

mx

mc

]

+

[

A∗

O

]

(y −my) =

[

mx +A∗(y −my)
mc

]

, (9)

whereA∗ is defined in Eq. (6). The update of the estimation error covariance is given by the generalized
Joseph formula

Paug = Pzz −PzyK
T
con −KconP

T
zy

+PzyPyyP
T
zy

. (10)

For linear measurements and consider states Eqs. (9) and (10) reduce to the consider filter.

IMPACT OF ERRORS IN GAIN

From Eq. (8), the equivalent Joseph formulation when considering nonlinear measurements is

P = Pxx −APT
xy

−PxyA
T +APyyA

T ,

whereA is any linear gain, not just the optimal value ofA∗. WhenA = A∗, i.e. whenA is given by Eq. (6),
it is straightforward to show that the covariance update maybe written as

P = Pxx −A∗PyyA
∗T ,
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which is the more conventionally used formulation for the covariance update as it requires fewer computa-
tions than the equivalent Joseph formulation does. As previously discussed, however, this formulation is not
appropriate for use when a gain that is not the optimal gain isemployed. Moreover, as will be seen shortly, the
conventional formulation of the covariance update is more susceptible to numerical errors introduced through
variations in the calculation of the gain than the equivalent Joseph formulation is.

Assume that the applied gain is described by

Aapp = A∗ + δA ,

whereA∗ is the optimal gain previously described andδA is a small error introduced in the computation of
the gain. Consider the second form of the covariance update and substitute the applied value of the gain, such
that the effective covariance update is

Peff = Pxx −AappPyyA
T
app

= Pxx − (A∗ + δA)Pyy(A
∗ + δA)T

= (Pxx −A∗PyyA
∗T)− (δAPyyA

∗T +A∗PyyδA
T)− δAPyyδA

T .

Neglecting second-order terms, the deviation from the nominal covariance update, i.e.δP = Peff −P, may
be written as

δP = −δAPyyA
∗T −APyyδA

T .

Substituting in for the optimal gain from Eq. (6), it followsthat

δP = −δAPT
xy

−PxyδA
T ,

and thus, small errors in the computed Kalman gain may inducelarge errors in the covariance update, de-
pending on the the cross-covariance magnitude.

Now, consider the first form of the covariance update, i.e. the equivalent Joseph formulation of the covari-
ance update given by

P = Pxx −APT
xy

−PxyA
T +APyyA

T .

Substituting for the previously described applied value ofthe gain yields the effective covariance update as

Peff = Pxx −AappP
T
xy

−PxyA
T
app +AappPyyA

T
app

= Pxx − (A∗ + δA)PT
xy

−Pxy(A
∗ + δA)T + (A∗ + δA)Pyy(A

∗ + δA)T

= (Pxx −A∗PT
xy

−PxyA
∗T +A∗PyyA

∗T)

+ δA(PyyA
∗T −PT

xy
) + (A∗Pyy −Pxy)δA

T + δAPyyδA
T .

Neglecting second-order terms, the deviation from the nominal covariance update may be written as

δP = δA(PyyA
∗T −PT

xy
) + (A∗Pyy −Pxy)δA

T .

Substituting in for the optimal gain from Eq. (6), it followsthat

δP = O ,

and thus, small errors in the computed optimal gain do not, tofirst-order, influence the effective covariance
update when the equivalent Joseph formulation is used. Whenthe conventional covariance update is em-
ployed, however, small errors in the computed gain do influence the computation of the covariance update.
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NEW CONSIDER FILTER ALGORITHMS

In order to implement the consider filter that is described byEqs. (9) and (10), the values ofmy,Pyy,Pxy,
andPzy need to be determined. First, define a composite input,u, to the measurement function such that
uT = [xT cT vT]. Givenx ∈ R

nx , c ∈ R
nc , andv ∈ R

nv , it follows thatu ∈ R
n wheren = nx + nc + nv,

and that the measurement function may be expressed as

y = h(u) .

Recalling thaty ∈ R
ny and given a value ofPuy, it follows thatPzy is the upper(nx + nc) × ny block of

Puy. Furthermore,Pxy is the uppernx × ny block ofPuy. Therefore, given the values ofmy, Pyy, and
Puy, the necessary components required in Eqs. (9) and (10) are available.

Thea priori mean and covariance of the composite input,mu andPuu, are known, and are given by

mu =





mx

mc

mv



 and Puu =





Pxx Pxc Pxv

Pcx Pcc Pcv

Pvx Pvc Pvv



 ,

wherePcx = PT
xc

, Pvx = PT
xv

, andPvc = PT
cv

. For zero-mean noise with covarianceR, mv = 0 and
Pvv = R. Additionally, when the noise is not correlated with the state or consider states,Pxv = PT

vx
= O

andPcv = PT
vc

= O.

The a priori probability density function ofu is denoted asp(u); from it, the mean, covariance, and
cross-covariance are obtained as

my =

∫

Rn

h(u)p(u)du (11)

Pyy =

∫

Rn

(h(u)−my)(h(u) −my)
Tp(u)du

Puy =

∫

Rn

(u−mu)(h(u) −my)
Tp(u)du .

The covariance terms admit a simplification asPyy = P̃yy −mym
T
y

andPuy = P̃uy −mum
T
y

, where

P̃yy =

∫

Rn

h(u)hT(u)p(u)du (12)

P̃uy =

∫

Rn

uhT(u)p(u)du . (13)

Therefore, the three integral terms of Eqs. (11)–(13) need to be evaluated in order to evaluate the consider
filter that is described by Eqs. (9) and (10), where each of thethree terms has the form

I =

∫

Rn

f(u)p(u)du ; (14)

the quadrature and unscented filters approximate these integrals by the summation of a finite number of
deterministic points.

The Consider Quadrature Kalman Filter

The quadrature Kalman filter assumes that thea priori density is Gaussian with meanmu and covariance
Puu, i.e.

p(u) = |2πPuu|−1/2 exp

{

−1

2
(u−mu)

TP−1
uu

(u−mu)

}

.
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The method is based on the Gauss-Hermite quadrature rule, which is given by

1√
π

∫ ∞

−∞

f(u)e−u2

du =

m
∑

i=1

wif(qi) ,

whereqi andwi are the quadrature points and weights, respectively, and the equality holds for all polynomials
of degree up to2m−1, wherem is the chosen order of the quadrature rule. The quadrature points and weights
can be determined via an eigenvalue problem as follows. LetJ be a symmetric, tridiagonal matrix with zeros
on the main diagonal. The elements of the first upper and lowerdiagonals are given byJi,i+1 = Ji+1,i =
√

i/2 for 1 ≤ i ≤ m − 1. Then, the quadrature points are the eigenvalues ofJ and the quadrature weights
are given bywi = |(vi)1|2, where(vi)1 is the first element of theith normalized eigenvector ofJ.5, 17

Consider a scalar random variable,u, which is distributed according to a standard normal distribution (i.e.
a Gaussian distribution with zero mean and unit variance). It readily follows by a change of variables that the
Gauss-Hermite quadrature rule may be employed as

∫ ∞

−∞

f(u)N (u; 0, 1)du =
1√
2π

∫ ∞

−∞

f(u)e−u2/2du =

m
∑

i=1

wif(κi) ,

whereκi =
√
2 qi. In the case of ann-dimensional vector-valued random variable,u′, with zero mean and

identity variance, the univariate Gauss-Hermite quadrature rule is extended to a multivariate quadrature rule
by successive application to the mutually uncorrelated elements ofu′, yielding5

∫

Rn

f(u′)N (u′;0, I)du′ =

m
∑

in=1

win · · ·
m
∑

i1=1

wi1 f(κi1 , . . . , κin) =

mn

∑

i=1

λif(κi) ,

whereκi = [κi1 · · ·κin ]
T andλi =

∏n
j=1 wij . Thus, anm-point univariate quadrature rule generates an

mn-point quadrature rule forn-dimensional integral evaluations. While the previous equation represents an
n-dimensional quadrature, it is not of the form expressed in Eq. (14). Since an arbitrary multivariate Gaussian
distribution is a linear transformation from a zero-mean, unit-variance Gaussian distribution, the final step is
to perform a linear change of variables, which yields

∫

Rn

f(u)N (u;mu,Puu)du =

mn

∑

i=1

λif(U i) , (15)

whereU i = mu + Suuκi andSuu is a square-root factor ofPuu, such thatPuu = SuuS
T
uu

.

In order to utilize the quadrature approach for the considerfilter, first select the quadrature rule via the
parameterm. Using the previously described approach, generate then-dimensional quadrature rule, yielding
the mn quadrature pointsκi and associated weightsλi. Compute the square-root factorSuu from Puu

(e.g. using a Cholesky factorization) in order to determineU i = mu + Suuκi. Then, the integral terms of
Eqs. (11)–(13) are computed via Eq. (15) as

my =

mn

∑

i=1

λih(U i)

P̃yy =
mn

∑

i=1

λih(U i)h
T(U i)

P̃uy =

mn

∑

i=1

λiU ih
T(U i) .

Pyy andPuy are then given byPyy = P̃yy − mym
T
y

andPuy = P̃uy − mum
T
y

, from whichPzy and
Pxy may be extracted. Finally, use Eqs. (9) and (10) to complete the quadrature consider filter.
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The Consider Unscented Kalman Filter

Given ann-dimensional random variableu with mean and covariance,mu andPuu, respectively, and a
nonlinear transformation

y = h(u) ,

the unscented Kalman filter, like the quadrature Kalman filter, employs a set of deterministically selected
points in order to compute the mean and covariance ofy, as well as the cross-covariance betweenu andy.
Unlike the quadrature Kalman filter, the unscented Kalman filter selects its points based on moment matching.
That is, a set of sigma-points,U i and associated weights,wi, are selected so that the moments ofy are well
approximated. In general, given a set ofK sigma-points,U i, and the transformed values,Y i = h(U i), the
mean, covariance, and cross-covariance are computed as

my =
∑

i∈I

w
(m)
i Y i (16a)

P̃yy =
∑

i∈I

w
(c)
i Y iY

T
i (16b)

P̃uy =
∑

i∈I

w
(c)
i U iY

T
i , (16c)

with Pyy = P̃yy − mym
T
y

andPuy = P̃uy − mum
T
y

, and where the cardinality ofI is K, i.e. the
number of sigma-points. It should be noted that the unscented Kalman filter can employ different weights
for the mean and covariance calculations. Three methods forconstructing the input sigma-points and their
associated weights are reviewed: the symmetric, extended symmetric, and scaled extended symmetric sigma-
point selection schemes.

The symmetric sigma-point selection scheme chooses a set ofK = 2n sigma-points that are on the
√
n
th

covariance contour as18

U i = mu +
√
n si i = 1, . . . , n

U i = mu −√
n si−n i = n+ 1, . . . , 2n ,

with associated weights ofw(m)
i = w

(c)
i = 1/2n for i = 1, . . . , 2n, andI = {1, . . . , 2n}. Here, si

represents theith column of the square-root factor of the covariance matrix, i.e. si is theith column ofSuu,
whereSuuS

T
uu

= Puu.

The symmetric sigma-point selection scheme guarantees matching of the mean and covariance of the input
distribution. Additionally, since the scheme is symmetricby construction, the third moment for symmetric
distributions is also matched; however, introduction of a tuning parameter (and another sigma-point) enables
the sigma-points to capture up to4th moments. This is done by extending the symmetric sigma-point set to
include an additional sigma-point that is the mean, yielding the extended symmetric sigma-point selection
scheme as19

U i = mu i = 0
U i = mu +

√
n+ κ si i = 1, . . . , n

U i = mu −√
n+ κ si−n i = n+ 1, . . . , 2n ,

with weights given byw(m)
i = w

(c)
i = κ/(n+κ) for i = 0, andw(m)

i = w
(c)
i = 1/2(n+κ) for i = 1, . . . , 2n,

and withI = {1, . . . , 2n+ 1}. Choosingκ such thatn+ κ = 3 ensures that the4th moment matches.19

Whenκ = 3 − n < 0, the weight forU0 becomes negative, and the calculated covariance can become
non-positive semidefinite.20 This effect motivated the development of the scaled unscented transform which
replaces the extended symmetric sigma-points with the scaled extended symmetric set of sigma-points as

U
′

i = U0 + α(U i − U0)
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for i = 1, . . . , 2n, whereα is a positive scaling parameter such that0 ≤ α ≤ 1. Additionally, since the
weighting of the mean sigma-point directly affects the magnitude of the errors in the fourth and higher order
terms for symmetric prior distributions, a third parameter, β is introduced to allow for the minimization
of higher order errors in the presence of knowledge of the prior distribution. Thus, the scaled extended
symmetric sigma-point selection scheme is given by20

U i = mu i = 0

U i = mu +
√
n+ λ si i = 1, . . . , n

U i = mu −
√
n+ λ si−n i = n+ 1, . . . , 2n ,

whereλ = α2(n+ κ)− n, and the weights are given byw(m)
i = λ/(n+ λ) for i = 0, w(c)

i = λ/(n+ λ) +

(1−α2+β) for i = 0, andw(m)
i = w

(c)
i = 1/2(n+λ) for i = 1, . . . , 2n. Additionally,I = {1, . . . , 2n+1}

for the scaled symmetric sigma-point selection scheme.

In contrast to the extended symmetric sigma-point selection scheme, the scaled extended symmetric sigma-
point selection scheme has three tuning parameters:κ, α, andβ. Choosingκ ≥ 0 guarantees positive
semidefiniteness of the covariance matrix, so a good defaultvalue isκ = 0.20 Sinceα controls the spread
of the sigma-points, choosing smaller values ofα ensures the avoidance of non-local sampling; choosing
α = 1, however, produces the same set of sigma-points as the extended symmetric method. Finally,β is a
non-negative parameter that can be used to incoporate priordistribution knowledge; in the case that the prior
is Gaussian, the optimal choice isβ = 2.21

In order to utilize the unscented approach for the consider filter, first select the sigma-point scheme and any
associated tuning parameters. Using the square-root factor Suu of Puu, determine the sigma-points,U i, and
the associated weights,w(m)

i andw(c)
i , according to the chosen scheme. After computing the transformed

sigma-points viaY i = h(U i) for i ∈ I, the integral terms of Eqs. (11)–(13) are computed using Eqs. (16).
Pyy andPuy are then given byPyy = P̃yy − mym

T
y

andPuy = P̃uy − mum
T
y

, from whichPzy and
Pxy may be extracted. Finally, use Eqs. (9) and (10) to complete the unscented consider filter.

RESULTS

To test the proposed Joseph formulation of the consider filter using both unscented and quadrature methods,
a space object tracking problem is considered. The dynamical system is taken to be a planar two-body
problem, such that the governing equations of motion are

ṙi = vi

v̇i = − µ

r3
ri ,

whereri is the inertial position of the target,vi is the inertial velocity of the target,r = ‖ri‖, andµ is the
gravitational parameter of the Earth. Furthermore, the motion of the vehicle is confined to the equatorial
plane, which allows the position to be described by two scalar values,rx and ry, and the velocity to be
described by two scalar valuesvx andvy. Therefore, the state vector and equations of motion that describe
the nonlinear dynamical system are

x(t) =









rx
ry
vx
vy









and f(x(t)) =









vx
vy

−µrxr
−3

−µryr
−3









,

wherer =
√

r2x + r2y. In addition to the nonlinear dynamical system described above, nonlinear measure-

ments are generated from a ground-based observer via

y = s tan−1 ry − yo
rx − xo

+ v ,
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whererx andry are the position of the object,xo andyo are the position of the observer,v is the measurement
noise, ands represents a scale-factor. The position of the observer is computed via

xo = Re cos θs

yo = Re sin θs ,

whereRe is the radius of the Earth andθs is the hour angle of the observer at the observation epoch, which
is given by

θs = θ0 + ω(tk − t0) .

Here,θ0 is the sidereal time of Greenwich at timet0, ω is the angular velocity of the Earth, andtk − t0 is the
time past epoch.

The object that is being tracked has an initial mean which is characterized by the orbital elements of semi-
major axis, eccentricity, argument of periapse, and mean anomaly of

a = 42164.173 [km]

e = 0

ω = 0 [deg]

M = 0 [deg].

The orbital elements are transformed into Cartesian coordinates to describe the initial mean of the object
and the initial covariance matrix is taken to be diagonal with position uncertainties of1 [km2] and velocity
uncertainties of1 [m2/s2]. Additionally, the measurement noise is taken to be zero-mean with a standard
deviation of1 [arc-sec], and the scale-factor is taken to have a mean of0.99 with a standard deviation of
1 [ppm].

Four filtering implementations are considered. The first twoimplementations use the unscented Kalman
formulation: a symmetric sigma-point unscented Kalman filter which neglects the presence of the scale-factor
and a symmetric sigma-point unscented Kalman filter which uses the consider formulation and generalized
Joseph formula to take the effects of the scale-factor into account. The last two implementations use the
consider formulation and generalized Joseph formula to take the effects of the scale-factor into account while
employing the quadrature Kalman filter approach with quadrature rules ofm = 3 andm = 5. In each
case, the first measurement occurs three hours after the initial conditions and additional measurements are
taken every ten seconds for a duration of five minutes. All four filters are run on 250 sets of data and the
state estimation error is computed along with the filter covariance. The results from the 250 monte carlo
simulations are summarized in Figs. 1–4, with each figure representing a different element of the state and
the subfigures representing each of the different filters applied to the space object tracking problem.

Each of Figs. 1–4 indicates that by neglecting the effects ofthe scale-factor, the unscented Kalman filter
cannot accurately track the space object with position errors on the order of several hundred kilometers and
velocity errors on the order of ten meters per second. This issue could be treated by adding the scale-factor to
the state of the system and estimating not only the position and velocity of the object, but also the scale-factor
of the measurement process. However, the alternative explored in this paper is to treat the scale-factor as a
consider parameter, i.e. a parameter which non-negligiblyinfluences the measurement process, but for which
we do not require further refinement. For this reason, the three consider filters were applied: an unscented
Kalman filter and two quadrature Kalman filters. As shown in Figs. 1–4, each of these three approaches
successfully tracks the space object and increases the amount of knowledge on the position and velocity of
the object. In fact, close inspection of Figs. 1–4 shows thateach of the three consider filters applied achieves
almost the same answer for any individual monte carlo run.

CONCLUSIONS

This paper introduces a general covariance update equationwhich is the extension of the well-known
Joseph formula for the nonlinear measurements case. This formula can be used in linear estimators for
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Figure 1. Estimation error (in black) and filter-computed 3σ uncertainty (in red) as
a function of time for rx over 250 monte carlo simulations.

nonlinear measurements that do not rely on linearization around the current estimate; this is the assumption
made by the extended Kalman filter. Two estimation schemes that do not rely on linearization centered the
current estimate are the unscented Kalman filter and quadrature filters. The proposed generalized Joseph
formula is necessary to update the estimation error covariance whenever a non-optimal gain is chosen in
the linear unbiased estimator. Various reasons could dictate the need of a non-optimal gain selection. One
reason for the utilization of the generalized Joseph formula and a non-optimal gain is detailed in this work:
the inclusion of consider states into the linear estimator.The resulting algorithms are the extension of the
well-known consider filter to either the unscented transformation or the Gauss-Hermite quadrature rule.

The classic Joseph formula is known to be more numerically stable than the simplified optimal covariance
update equation. The proposed generalized Joseph formula is potentially preferable over the standard co-
variance update of the unscented and quadrature filters evenin the presence of optimal gains for the same
reason.
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a function of time for vx over 250 monte carlo simulations.

[17] Ito, K. and Xiong, K., “Gaussian Filters for Nonlinear Filtering Problems”,IEEE Transactions on Au-
tomatic Control, Vol. 45, No. 5, May 2000, pp. 910–927.

[18] Uhlmann, J. K.,Simultaneous Map Building and Localization for Real Time Applications, Ph.D. thesis,
University of Oxford, 1994.

[19] Julier, S. J. and Uhlmann, J. K., “Unscented Filtering and Nonlinear Estimation”,Proceedings of the
IEEE, Vol. 92, March 2004.

[20] van der Merwe, R.,Sigma-Point Kalman Filters for Probabilistic Inference inDynamic State-Space
Models, Ph.D. thesis, Oregon Health and Science University, 2004.

[21] Julier, S. J., “The Scaled Unscented Transformation”,Proceedings of the American Control Conference,
May 2002.

12



y
-V

el
o

ci
ty

E
rr

o
r

[m
/s

]

Time Past First Measurement [s]

0 100 200 300

−5

0

5

10

15

(a) Neglect UKF

y
-V

el
o

ci
ty

E
rr

o
r

[m
/s

]
Time Past First Measurement [s]

0 100 200 300
−4

−2

0

2

4

(b) Consider UKF

y
-V

el
o

ci
ty

E
rr

o
r

[m
/s

]

Time Past First Measurement [s]
0 100 200 300

−4

−2

0

2

4

(c) Consider QKF withm = 3

y
-V

el
o

ci
ty

E
rr

o
r

[m
/s

]

Time Past First Measurement [s]
0 100 200 300

−4

−2

0

2

4

(d) Consider QKF withm = 5

Figure 4. Estimation error (in black) and filter-computed 3σ uncertainty (in red) as
a function of time for vy over 250 monte carlo simulations.
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