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MAXIMUM A POSTERIORI ESTIMATION OF HAMILTONIAN
SYSTEMS WITH HIGH ORDER SERIES EXPANSIONS

Simone Servadio; Renato Zanetti' and Roberto Armellint

This paper presents a new approach to Maximum A Posteriori (MAP) estimation. Repre-
senting probability density functions through Taylor series expansions and using Differential
Algebra techniques, this work proposes to derive the MAP estimate directly from high order
polynomials. The new method is applied to the nonlinear Orbit Determination problem.

INTRODUCTION

Maximum A Posteriori (MAP) estimation is one where the optimal estimate of the state is given by the
peak of the probability density function conditioned on the measurements; which can be calculated using
Baye’s rules. In the well-known linear and Gaussian case, the posterior distribution remains Gaussian at all
times and it can be fully described by its mean and covariance matrix, which are calculated using the Kalman
filter equations [1, 2]. For this type of problems, Linear Minimum Mean Square Error (LMMSE) and MAP
estimation reduce to the same estimation problem. Most problems of practical interest to aerospace engi-
neering applications, such as obit determination [3], contain nonlinearities in the dynamics which inevitably
result in non-Gaussian posterior distribution; as such, LMMSE and MAP produce different estimators and
for neither a closed form solution to this typically unavailable.

Many techniques have been developed to deal with the nonlinear estimation problem. The most exploited
estimation algorithm is the Extended Kalman Filter (EKF) [4]. The EKF is based on linearization the dynam-
ics and measurement equations around the most current estimate and applying the Kalman filter equations
to the linearized system. In problems with high nonlinearities, such as orbit determination, the linearization
assumption may fail to give a valid estimate [5]. Other approaches that account for system nonlinearities have
been implemented, such as the Unscented Kalman filter (UKF) [6, 7]. Through the true nonlinear propagation
of carefully chosen sample points, the UKF can achieve superior performance with respect to the EKF.

Park and Scheeres [8, 9] developed higher order filters that uses state transition tensors (STT) in the filter’s
prediction step that fully relies on the non linear mapping of the means and covariance matrices to more
accurately represent the uncertainty with respect to the EKF. Valli et al.[10] recreated Park and Scheeres’s
work using Differential Algebra (DA), thus eliminating the need to evaluate high order tensors directly.

This works introduces a new nonlinear filter that approximates the probability distribution functions through
their Taylor expansion series. The time propagation and measurements update phases of the filter operate
directly on the probability density function (PDF). The MAP estimate is then found by polynomial maxi-
mization. The Taylor series are kept centered on the most recent estimate by polynomial evaluation of the
PDF.

MAXIMUM A POSTERIORI ESTIMATION

Let p(x) be the probability density function (PDF) of a random vector x that it is not directly sample-able
and that we are interested in estimating; and let y be another random vector, called the measurement, that
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possesses a joint distribution with x and that it is available to be sampled. The conditional distribution of x
given y, denoted as py|, (x|y) is given by Baye’s rule

py\x(y|x) px(x)

1
py(Y) M

pny(X|y) =

where py |y, (x]y) is called posterior distribution, py (x) prior distribution, and py | (y|x) = L(x|y) likelihood
function.

The Maximum A Posteriori (MAP) estimate X is the, possibly not unique, value of x that maximizes the
posterior distribution

X = m)z(ixpx|y(x\y) 2)

We notice that the denominator of Eq. (1) does not contain x, therefore we obtain the same answer if we
instead maximize the un-normalized posterior distribution, i.e. the joint distribution evaluated at the mea-

surement value: py v (X,y) = pyx(¥[X) px(%).
X = Max Py y (x,y) 3)

Rather than maximizing the joint distribution directly, we might decide to maximize its logarithm:

x = max (logpx(x) + A(x|y)) 4)
where A(x|y) = log L(x[y) is the log-likelihood function.
UNCERTAINTY EVOLUTION OF HAMILTONIAN SYSTEMS

Let’s look at the evolution of the following dynamic system
x(t) = £(t, x); x(to) = %o ®)

this is an ODE, and let’s denote its solution flow as x(t) = ¢(x0; ¢, to); clearly

0
§¢(Xo;t7to) = f(t, Pp(x0;t,t0)) (6)

The solution flow has the following properties

@(x0;to,t0) = %o @)
d(P(x05t,10);t0, ) = Xo )

this second property just states that the functional inverse is obtained by inverting the time arguments (exactly
like the state transition matrix)

xy = @(xo5lf,t0) )
Xo = @(Xs;to,ty) (10)
From
d(P(x05t,t0);t0, ) = Xo (11)
we have that
d
£¢(¢(Xo;t7to);fo7t) =0
—8 it to); to, t 4 'tta it t 12
- 5 (¢(X0a ) 0)7 05 >+87€¢(£7 0, )&q{)(XOa ) 0) ( )



or

(it 1) = 605(5;750,75)’ £(t,%) (13

9
ot o€ e

Taking the initial condition x as a random vector with PDF py, (x) the PDF evolves in time according to
the Fokker-Plank-Kolmorov (FPK) equation without diffusion

i=1

Oraalt) _ g O fi(x,t) pucn (x.1))

n Ipx () (X, t n ofi(x,t
= —Zfi(& (t) pr(t) (x,t) 8fi(x,)
i=1

— 0x;
Oy (X, of (x,t
= _p(gix(x) f(x,t) — pxy (%, 1) trace( (8); )) (14)
For Hamiltonian systems the Jacobian of f is traceless and we are left with
apx(t) (X, t) 8px(t) (Xa t) . dpx(t) (Xv t)
= = 15
o T ax  ° dt 0 (1)
hence for all ¢
Px(t) (@ (%05 T, t0), 1) = Px(to) (X0, to) = Pxo(X0) (16)
or
Px(t) (X, 1) = Dxeo) (D(Xi t0, 1), t0) = Dxo (@ (X3t,20)) 17)

This is easy to show since

dpx(t) (Xv t) o dpxo (¢(X; t07 t)) _ apxo (5) <8¢(x, th t) + 8¢(X; tOv t) X> (18)

dt N dt ¢ ot Ox

But the term in parenthesis is identically zero because of Eq. (12), so the FPK equation is satisfied.

MAP ESTIMATION OF HAMILTONIAN SYSTEMS WITH DIFFERENTIAL ALGEBRA

Let the initial state x(to) be distributed as a Gaussian random vector with mean X and covariance matrix
Py. We initialize the algorithm with

1 . _ N
log px, (%X0) = —§(x0 — XO)TPO 1(xo —%0)+ Cy (19)

we can safely ignore the constant Cjy and we recognize that the above equation is a quadratic polynomial
function. Let’s define

dXO = X0 — )A(() (20)

and
1
Zo(dxo) = log px, (X0 + dxg) — Co = —§dngaldx0 21)

Cy is subtracted because all normalizing constants of the PDFs are removed.



Time Propagation
Assume x is a Hamiltonian system evolving as
x(t) = £(t,x)
then, from the prior results we have that (dropping the explicit time dependency)
Do (Xk) = Dy, (&7 (%83 tr 1)) (22)

Suppose we integrate x = f(t,x) from ¢;_; to ¢} using a polynomial approach and a Taylor series centered
at X;_1, we obtain that

Xp = Q(Xp—1;th, the1) = P(Xp—1 + dXp—1; s th—1)

= O(Xp—1,th, th—1) + Mg, (dxp_1) = X, + dx, (23)

where we defined
X, = ¢(Xp—1,th, tk—1) (24)
dxk = Mf(kq (ka_1) (25)

we can now invert the map to get
Xpo1 =@ (Xpi by th—1) = X—1 + M- (dxy) (26)

so that
Pxy, (Xk) = Pxp—1 (¢71(X/€§ tk, tk—l)) = Pxp—1 ()A(k—l + Mfc; (ka)) (27)

Using Eq. (27) and the definition of =1 (xx_1)

Zp1(dxi1) = Spor (Mg (dxi) ) = log g, (Re1 + My (dx1))
= log px, (X}, + dxi) = E (dx) (28)

where again, additive constants are discarded. Therefore, 2, (dx;) = Zp_1 (Mﬁ; (dxk)> is the Taylor

series approximation of the logarithm of the prior distribution of x; (modulo a constant) centered at X;_.

Measurement Update

We assume the measurement yy, is a (possibly) nonlinear function of the state x;, corrupted by zero-mean,
additive Gaussian noise 77, ~ N (0, Ry,)

yi = h(xg) +my, (29)

The likelihood and log-likelihood functions are given by

L(xklyr) = N (h(xx), Ry) (30)
AGeelye) = — 5 (vi —~ hix) "Ry, (v — h(xi) + Ci a1

we can once again safely ignore the constant C,. We will now approximate h(xy), and hence A(x|yx), as
a Taylor series expansion centered at X, , and we will then compute

2 (dxi) = Zj, (dxi) + A(xklyr) (32)

therefore EZ‘ (x1) is the Taylor series approximation of the logarithm of the posterior distribution of xj

(modulo a constant) centered at X, .



MAP Estimate

To find the MAP estimate X;, we need to find the value of dx;, that maximizes E; (dxy) in Eq. (32), a good
initial guess for the search is dxj = 0.

dx; = max EZ‘ (dxg) (33)
Xk
then the MAP estimate is simply given by

at this point we shift the center of the Taylor series of = (dxy,) from X, to X}, to obtain Z(dxy); the Taylor
series approximation of the logarithm of the posterior distribution of x;, (modulo a constant) centered at the
MAP estimate X,.

We are now ready to go back to the time propagation to advance to the k£ + 1 step.

THE DIFFERENTIAL ALGEBRA MAXIMUM A POSTERIORI FILTER (DAMAP)

This section deeply analyses how the Differential Algebra Maximum A Posteriori filter (DAMAP) has
been implemented using the Differential Algebra Core Engine (DACE) [11, 12].

Differential Algebra

A brief review on DA is now presented and it follows the development in Ref. [13].

The key idea of DA is to define algebraic operations between polynomials similar to those commonly
used with real numbers [14] by suppling the tools to compute the derivatives of functions within a computer
environment [15]. More specifically, by substituting the classical implementation of real algebra with the
implementation of a new algebra of Taylor polynomials, any function f[-] of n variables is expanded into its
Taylor polynomial up to an arbitrary order c.

Rather than approximating analytic functions with a collection of points, they can be represented via their
Taylor coefficients. For dynamic systems, this approach results in potentially replacing thousands of integra-
tions with evaluations of the Taylor expansion of the flow. As a result, in many applications, the computational
time reduces considerably without any significant loss in accuracy [16].

DA techniques find their origin in the attempt to solve analytical problems by an algebraic approach.
Rather than representing a function as a collection of its values at specific points, DA approximate it with the
coefficients of a monomial basis functions. Using this framework in a computer environment allows to treat
functions and their operations similarly to real numbers. Of particular interest is the efficient calculation of
Taylor series expansions of the flow of ordinary differential equations (ODEs) in terms of its initial conditions.
Numerical ODE solvers are based on algebraic operations, involving the evaluation of the derivative at several
integration points. Starting from the DA representation of the initial conditions and carrying out all the
evaluations in the DA framework, the flow of an ODE is obtained at each step as its Taylor expansion centered
at the initial conditions.

Figure 1 depicts a graphical representation of the DA framework. Consider two real numbers a and b: in
order to operate in a computer environment, they are represented by their floating points (FP) representation,
a and b respectively. Then, given any operation “x” in the set of the real numbers, an adjoint operation “@®”
is defined in the set of the FP numbers such that the diagram in Figure 1 commutes. Consequently, the same
result is obtained if the real numbers a and b are represented in their FP representation prior to operating
on them, or if the operation is carried out between the real numbers and subsequently the result expressed
in its FP representation (refer to the left portion of Figure 1). Analogously, starting from two different,
sufficiently regular, functions f and g, using the DA framework, the computer environment operates on them
by representing them with their Taylor series expansions, referred respectively as F' and G. Similarly to the
representation of real numbers with their FP expression, we now substitute represent the functions f and g



a.be R —— a, be FP f.g — F.G
. ® X @
axb ——— > gab fXg — > Fapd

Figure 1. Analogy between the floating point representation of real numbers in a
computer environment (left figure) and the introduction of the algebra of Taylor poly-
nomials in the differential algebraic framework (right figure). Image from [16, 17, 18]

with their truncated Taylor series expansion up to a user-selected order c. For each operation in the space of
function, an adjoint operation in the space of Taylor polynomials is defined such that the diagram in Figure
1 commutes. As for real numbers, the same end result is obtain by extracting the Taylor expansions of f and
g and operating on them in the set of Taylor polynomial, then operating on f and g in the original space and
then extracting the Taylor expansion of the resulting function.

For a more complete and detailed explanation on Differential Algebra, please refer to the references.
DAMAP
Given the following filtering statement
Xpt1 = O(Xk) 35)
Zi+1 = M(Xkt1) + Vg1 (36)

where ¢ is the process model, x;, is the n components long state vector of the system at time-step k, zjt1
is the m components long measurement vector at time-step k + 1, and h is the measurements function.
Measurement noise v is a Gaussian random sequence with covariance

E{v(i)v"(k)} = Réi (37)

The initialization of the filtering algorithm is performed by assuming a normal prior distribution of the
state with mean X and covariance Py.

v PR S
pxo(X)_ (27T)"/2\/(FP0€XP< 2(X0 XO) PO (XO XO)) (38)

Differential Algebra (DA) works with deviations from the mean: the initialization of the DA variable is
dXO = X0 — 5(0 (39)

where, indeed, x is the Taylor expansion series of the state at time step O centered in Xg. By considering the
logarithm of the distribution, the prior can be expressed as a quadratic form.

1 _
Zo(dxo) = —§dx0TPO Laxq (40)

where all constants have been safely ignored. It is important to point out that after selecting the expansion
order c of the Taylor series, the creation of the prior requires to set the DA order to 2c¢ since each time
the polynomial multiplies itself the order increases of a factor c¢. Equation (40) is the representation of the
Gaussian exponent as a 2c order polynomial where each DA variable is the deviation of the state from the
initial mean.



Propagation

The prediction part of the filter starts with the time propagation of the distribution. The expansion order of
the DACE is set to be c.

X1 = $(x)) 1)
The propagated polynomial can be divided into its constant part and the map that connects the deviations at
time step k to time step k£ + 1.
_ ae %
X1 = Ry + M) (@Xpg1) (42)

where the superscript indicates where the map is centered and the subscripts the expansion direction: forward
or backwards. Indeed, the map can be now inverted:

-1

% %
Wit (X)) = (M(;i;kﬂ)(dxkﬂ)) (43)
The Taylor series approximation of the logarithm of the prior distribution of x_ is the polynomial evaluation
of 2" (dxy,) using the inverted map.

E;+1(ka+1) = E'k""’_ (W(kk_:llﬁk)(dxk+l)) (44)

where the expansion order is doubled due to the quadratic nature of the exponent, and Eg*(dxk) is the
updated distribution from the previous step.

Measurements Update

The prior is now centered at X, ;, thus a new DA variable initialization around the propagated mean is
requested:

Xpy1 = Xjqy T X (45)
and the predicted measurements can be computed in the DA framework (order c)
Zrp1 = M%) (46)

Given the measurements from the sensors y 1, the log-likelihood is computed (order 2c¢)

1 _
A(Xpg1|Yr41) (dXpy1) = —§(Yk-+1 —z11) "Ry (Va1 — Za41) (47)

where, again, constants can be safely ignored. MAP estimators consist in the maximization of the posterior
distribution of the state; however, since the posterior PDF is proportional to the joint distribution, maximizing
the latter means finding the estimate. Working with logarithms, the joint distribution is evaluated easily as
the sum of the exponents; thus

S (dxnr1) = Ep (dxr1) + A [yarn) (dXe1) (48)
is the Taylor series expansion of the posterior distribution of xj1 centered in X, ;.

Maximization

In order to find the MAP estimate, we need to find the deviation that maximizes the posterior distribution:

dx = max E;H(dka) 49)
dxk+1



Maximization in the DA framework is performed at first by evaluating the gradient of the function it is desired
to maximize.

@(dxk_H) = VEZ_Jrl(ka_;,_l) (50)

Any solver algorithm can be used. In this case, it has been decided to implement a straightforward Newton’s
method to find the root of the gradient ©(dxy41). After evaluating, at each iteration j, the Jacobian 7 of the

gradient at dxgil, the solution is found by applying iteratively the following algorithm

dxgill] = dxgcjll - j_lg(dxgﬁrﬁ (5D
until a certain level of tolerance is reached. The deviation that maximizes the posterior distribution is therefore
evaluated as the output of the Newton’s method. Indeed, the MAP estimate is given by

Ry =Ry +dx (52)

Before starting the next time-step, the filter needs to recenter the Taylor expansion series around the updated
estimate, performing an additional shift of the polynomials. Therefore, a new DA variable is initialized with
center dx.

dx;f, | = dx + dxj4 (53)

such that the state Taylor expansion series x,  ; and the distribution Eﬁ 41(dxg1) can perform the center
shift to their final versions.

X;:+1 = Xl;+1(dxz+1) 54

Em—l(dxkﬂ) = EZ_-H(de-H) (55)

Equation 54 and Equation 55 are simple polynomial evaluation where the variable is substituted by the center
shift value added to the new DA variable. A check that the gradient of the updated distribution is null at its
center is performed before starting the following step.

NUMERICAL EXAMPLES

The proposed filter has been tested on an orbit determination problem. The equations of motion governing
the spacecraft are associated to the Keplerian dynamics

dr "

- =—= 56

dt 3T (56)

where r is the position vector and  is the Earth gravitational parameter. Following the example from [17],

the problem has been normalized to be non-dimensional with length scaled by the orbit semi-major axis,
3

a = 8788 km, and time by the scaled orbital period % The initial conditions and uncertainties values are

coherent with previous works [15, 19], where the initial estimates for the state have a 10% offset from the
true initial state
—0.68787
—0.39713
ro 0.28448
0= (v0> ~ | -0.51331 7
0.98266
0.37611



As regarding the measurements equations, range and bearing angles are taken with respect of the center of
planet at different acquisition frequencies.

y1 =7+ (58)
€2

Yo = arctcm(f> + 12 59)
1

Y3 = arcsin(%) + 13 (60)

where 7;, ¢ = 1,2, 3, is the measurement noise, assumed to be Gaussian. The standard deviation of the error
is assumed to be 0.1m in range and 0.1arcsec for the angles. The initial uncertainty is assumed to be Gaussian
as well, with a diagonal initial error covariance matrix: the value of the variance for the position part of the
state vector components is 0.01, while the variance for the velocity components is 10~%. Therefore

o, =102 61)

o, =104, /2 (62)
a

In this examples, DAMAP is compared to the DA-Based High Order Extended Kalman Filter (EKFDA)
implemented in previous works [19, 17]. This comparison is of importance since it underlines the main
differences between a MAP estimator (DAMAP) and a Linear Minimum Mean Square Error (LMMSE) one.
After performing a high order prediction step using DA techniques, the update step of the EKFDA resemble
the classical Kalman filter. Performance of different orders of Taylor series approximation are investigated.
In the figures below, the filter referred as DAMAP2 indicates that all polynomials have been truncated to the
second power, while DAMAP1 performs a simple linearization of the dynamics. Therefore, DAMAPI1 (1%
order truncation) behaves exactly like the classical Extended Kalman Filter (EKF), and EKFDAI.

5 Position 5 Velocity
10°% : , : 107 ‘ ‘ :
‘ EKF | » EKF
—EKFDA2 [ —+EKFDA2 ||
—~DAMAP1|: 10-3£S —~—DAMAP1 |
[ ——DAMAP2 : [ —~—DAMAP2||
100 L DAMAP3|| DAMAP3||
_ | @ 10
~
£ £
— =,
W >107° |
1072 SERNG |
o T e 10 f / A
104 : : : 10”7 ' ' ‘ :
0 1 2 3 4 0 1 2 3 4
time [h] time [h]

Figure 2. Orbit Determination test: 2 orbits, 12 observations per orbit. Position and
Velocity error profiles of DAMAP1, DAMAP 2, EKFDA1 (EKF) and EKFDA2.

Figure 2 shows the position and velocity error profiles obtained with the two filters using first, second
and third order in a single test run. The position and velocity errors, expressed respectively as ¢, and €,
are defined as the Euclidean norm of the difference vector between the estimated position, and velocity,



with the corresponding true values. The figure represents the time duration of two orbits, with a total of 12
observations each orbit separated by the same time interval. As expected, the DAMAPI line is equivalent to
the performance of the classical EKF since the two filters share the same approximation of the propagated
PDF. On the contrary, second order filters show a significant improvement in the state estimation accuracy,
having both DAMAP2 and EKFDAZ2 settling on the same error level, two orders of magnitude below with
respect to filters based on linearization. Indeed, high order filters are able to extract more information form
nonlinear equations with respect to the first order. However, by looking at DAMAP3, there appears to be no
influential benefits by upgrading to a third order filter. Furthermore, EKFDA3 would have given the same
estimates of EKFDA?2 because the filter describes the propagated statistics using only the first and second
order moments, that is intrinsic in the Kalman approach [19].

The performances of DAMAP?2 have then been tested with a Monte Carlo analysis using 800 samples and
compared to the EKFDA? in order to visualize, again, the differences between a high order MAP estimator
and a LMMSE one. The Monte Carlo analysis has been performed starting each sample with the same 10%
offset of the state. Figure 3 and Figure 4 show the simulation results for the position part of the state, left

Position 10% Velocity

0.005

T

time [h] time [h]

mm=== Single run, === Samples mean, ==== Samples 3¢ covariance, ==== EKFDA2 30 covariance

Figure 3. DAMAP2 position and velocity profiles errors. 4 orbits with 12 observations
per orbit. 800 runs.

column, and the velocity part, right column, of the robustness analysis in a simulation with time duration
of 4 orbits with a total of 12 observations each orbit (separated by the same time step). The estimation
errors are zoomed in to show the reach of steady state. In the figures, the black lines show the means of the
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Figure 4. EKFDA2 position and velocity profiles errors. 4 orbits with 12 observations
per orbit. 800 runs.

estimation errors among all the 800 test runs. The blue lines represent the square root of the mean square
of 800 samples, i.e. \/ (k — Z%)%/Nmonte » While the red lines are the EKFDA2’s estimated 30 standard
deviations. The EKFDA2’s estimated 3o standard deviations are shown in Figure 3 for comparison purposes.
It can be noted how the two filters reach approximately the same level of accuracy and they behave similarly.
However, after an initial transient period, it can be seen that the LMMSE solution has a lower mean square
error than the MAP solution, as theoretically expected.

In the next example, the measurement acquisition frequency is reduced to 4 observations per orbit (Figures
5 and 6); it can be noted how the mean of the EKFDA?2 error is zero (as theoretically expected, which results
in variance and mean square coinciding) while the mean of the DAMAP?2 error is non-zero, i.e. it has a bias
that follows the position of the spacecraft in the orbit.

The MAP estimate is the most likely realization of the posterior distribution, which does not necessarily
coincide with the condition mean, resulting in a, possibly, bias estimate. In Figure 5 it can be noticed more
clearly that, since EKFDA2 minimizes the mean square error (LMMSE), after having reached steady state,
the red lines are noticeably tighter than the blue ones. However, DAMAP?2 reaches steady state level faster
with respect to EKFDA2.

At simulation time ¢ = 10.82 hours of simulation time, the EKFDA2 position error has sample mean (in
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Figure 5. DAMAP?2 position and velocity profiles errors. 8 orbits with 4 observations
per orbit. 800 runs.

km) and sample covariance matrix (in km?) :

0.0395 0.0677 0.0339  0.0691
€ prrpas = 1074 | 0.1234 Prrxrpas =107° [0.0339 0.0702 —0.0365
—0.0848 0.0691 —0.0365 0.1677

while DAMAP?2 has sample mean and covariance matrix:

0.0010 0.0629 0.0315  0.0639
& paniaps = | 0.0011 | Pparape =107 [0.0315 0.0610 —0.0278
—0.0002 0.0639 —0.0278 0.1463

These means and covariance matrices are depicted in Figure 7: EKFDA?2, in red and DAMAP?2 in blue. The
figure shows 3o ellipsoids centered at the mean, as well as their projection on the xy, xz and yz planes.
These data shows a common characteristic of MAP vs. LMMSE estimators. The MAP estimate is often
biased (non-zero mean error) but it often has a smaller spread of the error distribution (i.e. a smaller variance
which represents the spread around the mean). The LMMSE, on the other hand, is unbiased (i.e. zero-mean
estimation error), therefore its estimation error variance coincides with the mean square. The LMMSE mean
square error (or variance) is smaller than the MAP’s mean square error (sum of the variance and the square
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Figure 6. EKFDA?2 position and velocity profiles errors. 8 orbits with 4 observations
per orbit. 800 runs.

of the mean). In summary: LMMSE has, on average, less estimation error, while MAP has, often, a tighter
distribution because it returns the most likely outcome.

CONCLUSIONS

A filter based on the Maximum A Posteriori principle has been presented. The capability of propagating
and updating the PDF by working directly on the exponent of the distribution had given DAMAP?2 the abil-
ity to reach satisfying accuracy levels. Moreover, thanks to the polynomial approximation of the exponent
through DA techniques, the filter is computational light and is able to reach convergence level faster than high
order filters based on the LMMSE, such has EKFDA?2.

At high expansion orders, the curvilinear approximation of the distribution, during maximization, creates
a bias in the state estimate. The behavior of the bias is directly connected to the orbit parameters and future
developments are focused on its estimation in order to further reduce the state estimation error.
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