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The Cygnus vehicle, built by the Orbital Sciences Corporation, is being developed to 
perform autonomous rendezvous with International Space Station (ISS) and to provide 
cargo services to the faculty.  Safety through fault management has been a primary 
consideration in the design of the trajectories, GN&C algorithms, and software.  This paper 
describes the approach used to design and validate a fault management system required to 
meet the ISS visiting vehicle safety requirements.  The nominal mission trajectory and abort 
maneuvers were designed using linear covariance analysis and were validated to provide a 
combination of passive and active collision avoidance and requirement satisfaction through 
semi-analytical methods and extensive simulation.  Hardware faults, such as IMU, LIDAR, 
and GPS sensor faults, are managed using a highly reliable backup propagation system and 
Fault Detection and Isolation (FDI) algorithms.  These algorithms ensure that key sensor 
systems are fault tolerant and that faulty measurement sources are detected and identified 
before they significantly corrupt the navigation system.  Critically, the FDI system ensures 
that sufficient measurements will be available to execute an abort maneuver safely at any 
time.  The IMU, LIDAR and GPS FDI algorithms employ standard parity methods to detect 
sensor measurement errors and a Maximum Likelihood Estimation (MLE) approach for 
fault identification when sufficient measurement redundancy exists. In the case of GPS FDI, 
parity space algorithms are utilized for GPS receiver redundancy as well as measurement 
redundancy within a particular GPS receiver.  This allows independent detection and 
identification of receiver faults and measurement faults arising from GPS satellite faults or a 
degraded multipath environment. Fault thresholds for FDI were validated using Monte 
Carlo analysis in a high fidelity 6DOF simulation. 

Nomenclature 
AE = Approach Ellipsoid 
AI = Approach Initiation 
ATP = Authority To Proceed 
ATV = Automated Transfer Vehicle 
CCDL = Cross-Channel-Data-Link 
CM = Crew Module 
COTS =  Commercial Orbital Transportation Services 
CW = Clohessy Wiltshire 
FDI = Fault Detection and Isolation 
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GN&C = Guidance, Navigation, and Control 
GPS = Global Positioning System 
HP = Hold Point 
HTV = H-II Transfer Vehicle 
IRD = Interface Requirements Document 
ISS = International Space Station 
JEM = Japanese Experiment Module 
KDR = Key Driving Requirement 
KOS = Keep Out Sphere 
LIDAR = LIght Detection And Ranging 
LinCov =  Linear Covariance  
MLE   = Maximum Likelihood Estimator 
RAIM  =  Receiver Autonomous Integrity Monitoring 
SCM = Safe Corridor Monitoring 
SIGI = Space Integrated GPS/INS 
SM = Service Module 
 

I. Introduction  
his paper demonstrates how the Cygnus addressed critical safety requirements using two fault tolerant sensors, 
and anytime abort trajectories.  Key fault management requirements are explained and the validation actives are 

discussed. 
Section II provides a mission overview which outlines Cygnus’ approach to the ISS.  This section will discuss 

the vehicle layout including sensors, actuators, and computer systems.  In addition, this section will cover sensor 
utilization and the nominal approach trajectory in the context of driving safety requirements. 

Section III focuses on navigation fault management.  First an overview is provided of the navigation filter 
software and its interface to the sensor systems.  This is followed by a description of the fault detection system for 
the IMU, LIDAR and GPS measurements.  Key mathematical foundations are provided, as well as validation 
methodology. 

Section IV is dedicated to the design of the abort maneuvers.  This section explains how the onboard Safe 
Corridor Monitoring (SCM) software uses the fault tolerant navigation estimates from Section III to trigger aborts 
necessary to meet the key safety requirements in Section II. An overview of the abort verification methodology is 
also presented. 

II. Cygnus Mission Overview 
The Commercial Orbital Transportation Services (COTS) Cygnus vehicle will conduct an autonomous 

rendezvous with the ISS. The rendezvous and approach trajectory has been determined by the ISS to COTS 
Interface Requirements Document (IRD) requirements,1 by the capabilities of the unmanned vehicle, and by the 
desire to remain safe in the event of an off-nominal situation.  The mission concept of operations is shown in Figure 
1. 

A. Cygnus Architecture Overview  
The Cygnus vehicle is composed of a Service Module (SM) and a Cargo Module (CM). The Cygnus GN&C 

subsystem consists of the two-fault tolerant flight control computer, Star Tracker, LIDAR Assembly, Space 
Integrated GPS/INS (SIGI), Three Axis Magnetometer, three independent strings of reaction control jets, and one 
main engine.  During proximity operations the GN&C sensors are selected as a function of range. Figure 2 shows 
the navigation sensor utilization as a function of distance from ISS. The link with the PROX system onboard the ISS 
will be established approximately 50 km from ISS. Once the link is established, the PROX system transmits the 
JEM SIGI raw measurements to Cygnus. The onboard Relative GPS filter starts fusing the JEM SIGI and Cygnus 
SIGI raw measurements to generate the relative navigation solution. The Relative GPS filter is the primary source of 
relative measurements up to about 700 m, at which point the LIDAR starts providing range and bearing 
measurements to the Relative LIDAR filter. Once the quality of the LIDAR measurement has been established and 
the filter is converged to a stable solution, the LIDAR filter becomes the primary navigation system.  

T
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Figure 1 Mission Overview 

The Flight Computer consists of four BAE RAD750 single-board computers interconnected via the Draper 
Network Element (NE) card and the Cross-Channel-Data-Link (CCDL). The NE asserts that all four computers 
operate upon identical (congruent) data and that all commands to effectors are agreed upon (voted) prior to being 
issued. All single and dual failures within the processing system are detected, isolated and removed. 

 

 

Figure 2 Navigation Sensor Utilization & Transition 

B. Cygnus Approach to ISS  
The Cygnus trajectory design and analysis considers three distinct mission phases: Long Range Rendezvous, 

Approach, and Departure. Each of the trajectories within these mission phases are designed to satisfy the 
requirements in the ISS to COTS IRD. Figure 3 shows the nominal approach trajectory and its major events.  

The Approach mission phase begins approximately one hour before Cygnus is within range of the Proximity 
Communication System (PROX). Cygnus is on a co-elliptic orbit 4 km below ISS, having previously performed 
several maneuvers to adjust the height, orbit plane and phase with respect to the ISS. Upon entering PROX range, 
Cygnus establishes communication and begins to perform relative GPS navigation using the GPS receiver within the 
PROX subsystem on the ISS and the Cygnus GPS receiver. Cygnus will compute and execute a maneuver sequence 

300 m3 km50 km Lidar 

1.5 km
20 km R-bar 

500 m

Relative GPS

State Vector Differencing

Relative Navigation w/Lidar

Navigation transition criteria

• GPS check-out

• GPS measurement consistency

• Residual editing

• Prox link acquisition

• Filter  convergence

Navigation transition criteria

• Lidar check-out

• Lidar acquisition

• Lidar measurement consistency

• Residual editing

• Filter convergence

�Navigation Transition

Not available

Primary

Back-up

Initialization

Transition

10 m



 
4 

“Copyright © 2011 by Draper Laboratory and Orbital Sciences Corporation. Published by the American Institute of 
Aeronautics and Astronautics, Inc., with permission.” 

 

to acquire a co-elliptic orbit 1.4 km below the ISS provided an Authority to Proceed (ATP-1) has been granted. 
Once on the 1.4 km co-elliptic, Cygnus will drift until arriving at the Approach Initiation (AI) point.  

The final approach begins when ATP-2 is given for the ADV-3 burn to transfer to the R-bar. The Cygnus 
onboard targeting will compute and execute the ADV-3 maneuver. The ADV-3 maneuver, shown in Figure 4, is 
targeted to bring the Cygnus inside the AE and to arrive with a predefined velocity at a designated location on the R-
bar below ISS. Prior to arriving at the R-bar, the LIDAR will have been powered on and the Cygnus vehicle will be 
appropriately oriented toward ISS in order to acquire and track the target reflectors. The transition from relative GPS 
navigation to LIDAR relative navigation will occur in the vicinity of the R-bar acquisition point. The Cygnus 
vehicle will ascend the R-bar at a predefined closing rate. Multiple Hold Points (HPs) are positioned on the R-bar 
prior to entering the Keep Out Sphere (KOS) and reaching the capture volume.  Once in the capture volume, the 
SSRMS grapples Cygnus and securely connects the two vehicles. The two sides of the CBM then form a pressure 
tight seal, and the Cygnus vehicle will be electrically connected to ISS.  

 

 

Figure 3 Cygnus Nominal Approach Trajectory 

The departure mission phase begins with release of Cygnus from the Space Station Remote Manipulator System 
(SSRMS). The Cygnus will stay in free drift for about five minutes and after that it will perform a predefined burn. 
The burn is pre-calculated and designed to bring the Cygnus vehicle in front and above the ISS.  

C. Overview of Safe Trajectory Design  
Although the unmanned vehicles ATV, HTV, and Cygnus, follow different trajectories to rendezvous with ISS, 

all of those trajectories are subject to many of the same safety considerations. In this paper, a safe trajectory will be 
defined as a trajectory that will not violate trajectory requirements in the presence of a class of off-nominal 
conditions. Although the ATV follows a Vbar approach while the HTV and Cygnus follow an Rbar approach, the 
trajectories of all three vehicles must consider several common issues in order to meet the safety requirements. 
These elements are missed burns, partial burns, drag uncertainty, navigation error, and the ability to perform an 
abort safely. A missed burn is a burn that is planned, but does not occur. Missed burns are a critical consideration 
during early phases of the rendezvous approach. During the Cygnus mission, missed burns that occur within a 
certain distance of the ISS must be guaranteed to passively avoid the ISS for a minimum of 24 hours. A partial burn 
is a thrust that ends early or late, resulting in an underburn or an overburn, respectively. Trajectories are designed to 
meet minimum separation requirements from ISS in the presence of missed or partial burns by using orbits with drift 
biases that naturally cause the vehicles to separate. This task is complicated by atmospheric drag, which will either 
accelerate the drift rate or cause one vehicle to reverse its motion relative to the other. To compensate for drag 
effects, the drift biases must be adjusted. This increase is often at the expense of maneuver cost. The trajectory 
design is further complicated by uncertainty in the atmospheric drag and navigation error, both of which will result 
in trajectories that deviate from the nominal trajectory.  
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Figure 4 Cygnus Nominal R-bar Ascent Trajectory 

 
1. Cygnus Proximity Operation Trajectory Overview 

The Cygnus proximity operations trajectory is implemented using three types of trajectory generation and the 
following algorithms: Co-elliptic Transfers, Rbar Acquisition, and the Rbar Ascent. Co-elliptic transfers are planned 
using a converging algorithm that employs long-term horizon planning and a high fidelity dynamics model. The 
Rbar Acquisition Guidance Algorithm is used to implement ADV3 and is comprised of several different closed loop 
guidance modes, which require minimal computation and rely on the CW equations. The Rbar Ascent is performed 
using the Glideslope algorithm, a low-computation, closed-loop guidance routine, which yields predictable, 
constrained trajectories with low fuel use. 

 
2. Co-elliptic Transfers 

A targeting routine is used to calculate co-elliptic transfers on-orbit. This routine is first called in advance of the 
anticipated burn time in order to determine a burn attitude. As the Cygnus approaches the burn time, the targeting 
algorithm is called again to refine the burn duration estimate. Each co-elliptic transfer is comprised of an initiation 
burn to place the Cygnus on a transfer orbit and a termination burn to place the Cygnus on a new co-elliptic orbit 
relative to the ISS.  

 
The key driving requirements during the rendezvous phase in which the targeting algorithm is used are: 
1. The GN&C subsystem shall maintain a trajectory prior to Approach Initiation (AI) that remains outside of 

the Approach Ellipsoid (AE) including expected dispersions (99.73 percent of the trajectories with 50 
percent confidence level). 

2. The GN&C subsystem shall perform an Approach Initiation (AI) maneuver that results in the vehicle 
trajectory remaining outside of the Keep Out Sphere (KOS), including expected dispersions (99.73 percent 
of the trajectories with 50 percent confidence level).  

3. The GN&C subsystem shall compute translational maneuvers prior to Approach Initiation (AI) such that 
any resulting free drift trajectory during or after the execution of such a maneuver remains outside of the 
AE for a minimum of 24 hours. 

4. The GN&C subsystem shall perform rendezvous and proximity maneuvers to arrive at the capture volume 
within 6 hours or less from the start of Integrated Operations (IO).  

5. The GN&C subsystem shall perform the dual Co-Elliptic Transfer (CT) maneuver provided authorization 
to proceed has been received from mission control.  

6. The GN&C subsystem shall compute translational maneuvers prior to receiving authorization to enter the 
KOS such that any resulting free-drift trajectory during or after the execution of such a maneuver remains 
outside of the KOS for a minimum of 4 orbits. 
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3. Rbar Acquisition 
The ADV3 maneuver is executed using Rbar Acquisition Closed-loop Guidance. This routine operates by 

calculating delta-V commands to place a vehicle on a reference trajectory.2  The reference trajectory is chosen by 
back-propagating using the CW equations from a position and velocity state on the glideslope path. When the 
Cygnus is behind (i.e., the Vbar direction) the reference trajectory, a phantom-targeting algorithm is used to shift the 
targeted point after each time step to correct for any dispersions that occur due to process noise or navigation error. 
If the Cygnus is ahead of the reference trajectory, vertical tangent targeting routine is used to guide the vehicle back 
to the glideslope using a bisection search algorithm.  

 
The key driving requirements during the Rbar Acquisition phase are: 
1. The GN&C subsystem shall perform the Approach Initiation (AI) maneuver provided authorization to 

proceed has been received from mission control.  
2. The GN&C subsystem shall perform an Approach Initiation (AI) maneuver that results in the vehicle 

trajectory remaining outside of the Keep Out Sphere (KOS) including expected dispersions. 
 

4. Rbar Ascent 
The Rbar Ascent portion of the approach trajectory uses the glideslope algorithm2.  The glideslope algorithm 

provides a computationally-minimal, economical, and easily implemented method for adhering to a steadily 
shrinking approach corridor using a fixed burn rate. The reference trajectory for a glideslope approach is found by 
reverse propagating from the final range and range-rate along the glideslope path using the CW equations.  

 

Figure 5 Free-drift Trajectories for Varying Glideslope Ascent Rates 

The key driving requirements during the Rbar Ascent phase in which the glideslope algorithm is used are: 
1. The GN&C subsystem shall perform the Approach Continuation (AC) maneuver provided authorization to 

proceed has been received from mission control. 
2. The GN&C subsystem shall maintain a trajectory prior to Approach Continuation (AC) that remains 

outside of the Keep Out Sphere (KOS) including expected dispersions. 
3. The GN&C subsystem shall perform approach maneuvers to arrive at the capture volume within 80 minutes 

or less from initial R-Bar acquisition.  
4. The GN&C subsystem shall maintain a trajectory after Approach Continuation (AC) that remains within 

the assigned approach corridor during nominal approach. 
Figure 5 shows the effect of going into a free-drift at various points in the glideslope approach trajectory for 

several gain scaling selections.  

III. Navigation Hardware Fault Management 
This section describes the three levels of navigation fault management applied to each measurement.  First, each 

sensor system performs internal integrity tests to ensure that the measurement is meaningful and that the sensor is 
operating as expected.  If all sensor system tests pass, a positive validity flag is included with the measurements.  
The second level of navigation fault management is the Fault Detection and Isolation (FDI) algorithms.  These 
algorithms check that the redundant and independent measurements are self consistent using parity space techniques.  
If the measurements are not self consistent, FDI detects a fault and isolates the faulty sensor.  After the 
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measurements are successfully screened by the FDI algorithms, the selected sensor signal is passed on to the 
navigation filter, where the third level of navigation fault management is performed.  Before the measurements are 
processed to provide a navigation solution, the navigation filter compares the solution to the expected measurement 
using a process known as residual edits. 

A. Navigation Algorithm Overview 
The navigation subsystem design consists of two filters, one processing GPS measurements and the other 

processing LIDAR measurements.  The actual performance of the LIDAR sensor is known only within its operating 
range.  Thus, for safety concerns, it is desirable to independently validate the results of the LIDAR navigation filter 
prior to utilizing its solution to guide the vehicle to the ISS.  Therefore the two-filter architecture is an integral part 
of navigation fault management, in the sense that it is designed to identify LIDAR failures. 

The GPS filter is designed to satisfy requirements that ensure passive collision avoidance, as well as mission 
success.  The GPS filter requirements are derived such that the navigation estimate will not cause targeting to 
command a maneuver that will take the vehicle inside the approach ellipsoid.  The LIDAR filter requirements are 
derived such that the vehicle passively avoids entering the keep out sphere if a failure occurs prior to the 250 meter 
hold point.  At the capture volume, the requirements are driven by bump analysis to ensure collision avoidance with 
the ISS.  The requirements are linearly interpolated between 250 meters and the capture volume. 

The GPS filter is a dual inertial filter that provides an estimate of the relative position and velocity between 
Cygnus and ISS.  The GPS filter can operate in absolute mode or in relative mode.  When in absolute mode, only the 
inertial state of Cygnus is estimated.  The filter operates in absolute mode before the ISS state can be initialized.  
The ISS state is initialized with a ground update, which consists of position and velocity of the ISS at a future time.  
When the ISS state from the ground update becomes current, the filter transitions to relative mode and accepts ISS 
GPS measurements through the communication link.  At any time, the Cygnus state can be re-initialized using the 
PVT solution from one of the onboard receivers.  The filter can also be reset at any time to either absolute mode or 
idle mode.  A reset is needed to accommodate off-nominal scenarios, for example a faulty ground update that needs 
to be overwritten.  When in idle mode, the Cygnus state can be initialized with a ground update.  In order to validate 
the pseudorange measurements, FDI estimates the receivers’ clock biases, which are also used by the filter.  Two 
valid consecutive estimates of the bias from FDI are needed before the filter can process measurements; these values 
are used to initialize the filter’s estimated clock bias and drift.  Since the clock bias and drift are unique to each 
receiver, it is important that FDI always selects the same receiver unless a failure occurs. 

The LIDAR filter is initialized using the GPS filter estimate.  Biases on the LIDAR estimate are estimated and 
carried in the filter’s state, and are initially set to zero.  These biases are also set to zero each time FDI switches to a 
different LIDAR, because these errors are specific to each sensor.  FDI always selects the same LIDAR unless a 
failure occurs. 

The navigation filter carries an estimated state that is propagated between measurements, this integrated state is 

denoted as −x̂ .  Together with the state, the filter also carries a propagated estimation error covariance matrix, 
−P .  

The covariance matrix is symmetric positive definite and represents the uncertainty of the propagated estimate; a 
larger covariance indicates a less precise knowledge of the state.  A covariance matrix is also associated with the 
measurement; again a larger covariance indicates a less accurate measurement.  The navigation filter performs a 
weighted average of the propagated state and the measurement.  The weights are given by the inverses of the 
covariance matrixes.  The filter processes one measurement at a time through a scalar update.  The nonlinear model 
of the scalar measurement, z, is given by (1) 

             n)h(z += x                      (1) 
Where h is a known nonlinear function of the true state vector, x, and n is the zero-mean measurement noise with 

variance
2

nσ .  The expected value of the measurement is given by 

              )h(z −= x̂ˆ                            (2) 

When a measurement becomes available, its value is compared to the expected value to test its validity. This process 
is called residual editing3.  The measurement residual is given by  
              zzz ˆ~ −=                            (4) 
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When the a priori estimation error −− −= xxe ˆ is small and zero mean (two common assumptions), the 
measurement residual is also approximately zero mean and can be expanded in a Taylor series centered at −x̂ to 
obtain 

       n)h(n)h()h(n)h(z +=−++≈−+= −−−−− HexHexxx ˆˆˆ~                      (5) 

where H is the observation partial matrix about −x̂ (i.e. the measurement matrix).  The measurement residual 
variance is therefore given by 

 
22

nm σσ += − THHP     (6) 

The numerical value of the residual is tested to assure it lies between a predetermined range of its standard 
deviation. If the test fails, the measurement is rejected, otherwise the measurement is processed.  For LIDAR 
measurements, all three scalar components (range, azimuth, or elevation) are rejected when any single component is 
failed by FDI.  For GPS measurements, only the failed pseudoranges are rejected.  Any valid pseudoranges are not 
affected and are the processed by the navigation filter.  In each filter a counter keeps track of how many 
measurements have been rejected; this information is available to the ground to identify failures. 

B. Fault Detection and Isolation Algorithm  
The purpose of this section is to provide a brief derivation of the FDI algorithm, which monitors redundant 

measurements and analyzes the discrepancies between them.  This algorithm is detailed in depth in multiple 
sources4,5,6, which describe the GPS Receiver Autonomous Integrity Monitoring (RAIM) for aeronautic applications.  
For convenience, the FDI algorithm will be partitioned into two sections: fault detection and fault identification.  
Fault detection strictly refers to the determination of a fault, without identifying the offending sensor.  Fault 
identification is invoked when a fault has been detected and is tasked with determining the culpable instrument.   

 
1. Fault Detection Algorithm 

Presume in Eq. (1) there are M independent measurements, z, of some set of N states, where M is greater than N 
and the measurements span the space of N.  Furthermore, assume that measurements are susceptible to faults.  A 
failure of measurement i is modeled by b = bi where bi is an M x 1 vector with the i th element non-zero and zero 
elsewhere. Accordingly, the measurement vector, z, can be approximated as: 

bnHxz ++≈                                                      (7) 
 
The generalized inverse matrix of H is defined as,  

( ) T1T* HHHH
−=                                                      (8) 

 
The parity space has three key characteristics: 
 

1. The parity space vector, p,  is independent of the state vector, x 
2. If there is no fault, then b = 0, the expected value of p is 0. 
3. If there is a fault, the expected value of p is a function of b. 

 
Note that the parity space method can identify excessive faults, b, present in the measurement vector, z, even when 
the sensor being analyzed is producing non-zero mean data.   

The A-matrix is used to partition the measurement space into the state space and parity space.  The K-matrix (not 
the Kalman gain) is the matrix which spans the null-space of H-matrix, KH = 0.  Additionally, K is defined such that 
rank [K] = M – N, and K KT=0. 
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When the inverse of the A-matrix is used to transform the parity space vector to the measurement space, the fault 
vector, f, is calculated.   
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*

M HHIS −=  

    

 
Refer to Ref. 4 for a derivation of the S-matrix.  Note that the fault vector can be calculated by the flight computer 
using only the measurement vector, z, and the measurement matrix, H.   

The f-vector is used to detect faults because its expected value is the measurement fault vector mapped from 
state space to parity space.  The fault vector covariance is the covariance of the sensor errors mapped from state 
space into measurements space.  Thus, for a set of redundant measurements, the fault vector will increase in 
magnitude when the fault is significantly larger than the measurement noise. 
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=

                                    (11) 

 
Next compute the scalar decision variable, D, as the squared magnitude of the fault vector: 

               ff TD =                                                                           (12) 

 
Using hypothesis testing, the FDI algorithm determines that a fault has occurred when the fault vector is larger than 
a predetermined fault threshold, T.  The fault threshold is a function of the measurement noise variance, the 
probability of false alarm, and the difference between the length of the measurement vector and the length of the 
state vector.   
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 Note that the fault threshold is a function of the measurement redundancy (M-N).  As a result there will be different 
fault thresholds for two redundant and single redundant measurement sets.  Another important conclusion from Eq. 
(13) is that a fault can be detected if at least one redundant measurement exists.  However, as will be learned in the 
subsequent section, fault identification requires two redundant measurements.   
 

2. Fault Identification Algorithm: Maximum Likely Estimator  
The previous section explained how to determine if a fault occurred.  This section explains the procedure for 
determining which instrument is culpable.  The maximum likelihood estimator (MLE) identifies the ith measurement 
as being faulty if 

( ) ( ){ }j
j

i PP bpbp || max=                                                    (14) 

The appendix in Ref. 4 shows that the measurement that maximizes ( )jbpP |  also maximizes
kk
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S
f 2

. Thus, once a 

fault has been detected, D > T, the MLE identification algorithm is defined as: 
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The Skk values can be thought of as the relative parity space observability of the kth measurement, which is the extent 
to which the kth measurement is redundant with the other measurements. Thus, the MLE is essentially identifying the 
measurement with the largest fault vector element, as normalized according to its sensor geometry.   

Note that two or more redundant measurements are required to perform fault identification.  Imagine an inertial 
navigation system that contains three x-axis gyros for redundancy.  If one of the gyros introduces a large error, the 
fault can be detected and identified because one of the three gyros will not be in agreement.  However, if there are 
only two valid x-axis gyros, there is only one redundant measurement.  If a fault is introduced, the two gyros 
measurements will not be in agreement.  Thus a fault can be detected, but the offending gyro cannot be identified.   

 
3. Sensor Status 

The previous two sections explained how to determine if a fault has occurred and then how to determine which 
sensor is responsible.  The COTS software contains several layers of fault monitoring.  The first layer is self-
monitoring by the sensor firmware, the second is the FDI routine, and the final layer is residual monitoring being 
performed by the navigation filter.  The FDI routine will not typically fail a sensor permanently using a single 
“snapshot” of data containing an anomalous measurement.  Instead a 'moving window” approach is used, which 
tracks the number of faults a sensor has accrued over a fixed interval.  As a result, a two redundant sensor could 
have any of the following statuses: 

1. Nominal 
2. Probation 
3. Failed 
4. No Solution (GPS FDI only) 

If a sensor has accrued more than nprbn faults within mprbn samples, then the sensor has been placed on probation.  If a 
sensor has been placed on probation but subsequently outputs clean data, it is returned to nominal status.  Likewise 
if a sensor has accrued more than nfail faults within mfail samples, the sensor is failed permanently.  Once a sensor has 
been failed, FDI invalidates the measurements, prompting the mission manager to select another valid sensor.  The 
only way for the sensor to return to nominal status is for the FDI algorithm to be reinitialized. If a single redundant 
measurement exists and D > T, the FDI routine will issue a secondary fault.  Similar to the earlier case, a secondary 
fault flag will invalidate the measurements sent to the navigation filter. No solution applies only to GPS 
measurements.  

In the following example there are three valid Gyro sensors, where mprbn = 3, nprbn = 4, mfail = 4, and nfail = 5.  An 
“X” denotes that a single fault has occurred. 
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In Figure 6, the X-Gyro in SIGI 1 is placed on probation after the fourth time step
faults.  After nominal output on time step 5, SIGI 1 is returned to nominal status
samples were faults.  After the ninth time step, SIGI 1 is placed on probation.  Due to a subsequent fault on time step 
10, SIGI 1 is placed on permanent failed status.  
a reset switch.  If a reset is commanded, all 
to nominal. 

C. Fault Management Validation
The fault management algorithms for the 

using a similar methodology.  This section
will describe the FDI application to individual
first subsection discusses the process for determining the fault threshold values.  The 
overview of the COTS simulation tool

 
1. Fault Threshold Analysis

The sensor fault thresholds are set
threshold, Tmin, for the each threshold is determined using Eq. 
the FDI routine is repeated for each measurement, threshold values lower than 
detections over the mission duration
measurement error permitted before critical safety requirements begin to fail.  
error that the FDI needs to detect and isolate from the system.  Threshold values larger than 
significant faults and will produce excessive missed detections.

The threshold upper bound, Tmax

sensor errors. The Monte-Carlo runs are performed using the COTS 6
section.  Using the simulation tool, the
maximum allowable measurement error. 
error level.  The measurement error is systematically increased on one of the 
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Figure 6  Moving Window Example 

 
Gyro in SIGI 1 is placed on probation after the fourth time step, as three of the four sampl

faults.  After nominal output on time step 5, SIGI 1 is returned to nominal status, as only two of the previous four 
samples were faults.  After the ninth time step, SIGI 1 is placed on probation.  Due to a subsequent fault on time step 

is placed on permanent failed status.  To accommodate off-nominal scenarios the 
a reset switch.  If a reset is commanded, all anomaly matrix values are reset and all the sensor statuses are returned

ation 
algorithms for the accelerometer, gyro, LIDAR and GPS sensor systems are

his section presents an overview of that validation process
on to individual sensor systems.  This section is divided 

first subsection discusses the process for determining the fault threshold values.  The second
tool.  The third subsection describes the validation methodology.

Fault Threshold Analysis 
set using both analytical and Monte-Carlo analysis techniques

for the each threshold is determined using Eq. 13, with a 10% probability of a false detection.  Since 
each measurement, threshold values lower than Tmin will produce excessive

over the mission duration.  The threshold upper bound Tmax, is defined by the maximum amount of 
measurement error permitted before critical safety requirements begin to fail.  Tmax establishes the minimum sensor 
error that the FDI needs to detect and isolate from the system.  Threshold values larger than 
significant faults and will produce excessive missed detections.  

max, is determined using sets of Monte-Carlo runs with increasing levels of IMU 
Carlo runs are performed using the COTS 6-DOF simulation tool described in the next 

section.  Using the simulation tool, the select sensor noise sources are systematically increased to determine the 
maximum allowable measurement error. First, a baseline set of Monte-Carlo runs is performed 

error is systematically increased on one of the sensors, and the Monte
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as three of the four samples were 
as only two of the previous four 

samples were faults.  After the ninth time step, SIGI 1 is placed on probation.  Due to a subsequent fault on time step 
nominal scenarios the FDI algorithm contains 

and all the sensor statuses are returned 

sensor systems are validated 
presents an overview of that validation process.  The following section 

 into three subsections: the 
second subsection provides an 

validation methodology. 

Carlo analysis techniques.  The lower bound 
, with a 10% probability of a false detection.  Since 

will produce excessive false 
, is defined by the maximum amount of 

establishes the minimum sensor 
error that the FDI needs to detect and isolate from the system.  Threshold values larger than Tmax may not detect 

Carlo runs with increasing levels of IMU 
DOF simulation tool described in the next 

sensor noise sources are systematically increased to determine the 
performed with the nominal 

, and the Monte-Carlo is then 
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repeated.  As shown in Figure 7, multiple Monte-Carlo sets are performed with increasing errors until the critical 
safety requirements begin to fail. 

 

Figure 7 Maximum Sensor Error Determination 

Once both Tmin and Tmax are determined, the sensor noise parameter in Eq. 13 and scan window size are tuned 
until an acceptable number of false detections and missed detections occur in a Monte-Carlo set in the presence of 
nominal GPS sensor noise.  Establishing the threshold level in this way minimizes the risk of false detections and 
avoids overly conservative constraints on sensor performance.   

 
2. Simulation and Monte-Carlo Analysis 

 The Monte-Carlo runs are performed using the COTS 6-DOF simulation tool and the Monte-Carlo framework.  
The simulation tool was developed using a Model Based Design process in Simulink and independently simulates 
the dynamics, sensors, and control of both the ISS and Cygnus vehicles.7  The simulated Cygnus vehicle flight 
software runs auto-generated C-code, created from the Simulink models that implement the flight algorithms for 
navigation, guidance, and targeting.  C-code for the whole simulation is automatically generated and run within the 
Monte-Carlo framework to do performance and validation analysis. Running the simulation inside this framework 
permits analysis to be done in the presence of high-fidelity disturbances and uncertainty models. Disturbances and 
uncertainty models are randomized for each simulation and run the prescribed number of times to conduct a Monte-
Carlo study. 

The IMU accelerometer error model is composed of a variety of error sources, including: scale factor errors, g-
squared, asymmetry, orthogonal and non-orthogonal alignment errors, long-term bias, short term bias, and velocity 
random walk. The short term bias is approximated using a discrete time Markov process characterized by the time 
scale and variance. The IMU gyro error model is also composed of several parts, including: scale factor errors, non-
orthogonality alignment, long-term bias, short-term bias, and angle random walk.  The LIDAR error model is 
composed of short-term bias and random noise for the azimuth, elevation and range measurements.  The short term 
bias is approximated using a discrete time Markov process characterized by the time scale and variance. 

The simulation tool models the GPS constellation’s geometry and contains a GPS error model composed of a 
variety of error sources.  Error sources include ionosphere signal delays, troposphere signal delays, receiver clock 
noise, channel clock noise, GPS satellite clock bias, multipath signal delays and GPS satellite ephemeris errors.  
Receiver clock noise and bias are unique to each receiver and are added equally to each channel.  Channel clock 
noise and multipath delays are modeled by a Markov process and are unique to each channel within a receiver.  A 
complete discussion of a GPS error model can be found in Ref. 8. 
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3. Fault Management Validation 
Fault management validation is done using a large set of Monte-Carlo runs where measurement errors 

corresponding to Tmax are injected in addition to the nominal measurement noise.  Each Monte-Carlo case has one 
injected error that is placed on a sensor starting from a random time. The injected error continues to be added to the 
measurements for the remainder of the simulation.  In addition, a second failure is placed on a different sensor at a 
second random time that occurs after the first time by some minimum amount. This is to avoid injecting the second 
error before the FDI has completed identification of the first error. For each Monte-Carlo run, the time that the FDI 
correctly detects and identifies the first injected failure is logged. Any false detection, missed detections or incorrect 
identifications are also logged. The FDI is determined to be successful if the first failure is correctly identified 
within a reasonable amount of time in a predetermined number of Monte-Carlo cases, as shown in Figure 8. Success 
of the FDI is also subject to correct detection of the second failure. 

 

Figure 8 Time to Detect Failure Histogram 

 

D. IMU and LIDAR Fault Detection and Isolation  
For the IMU, fault detection is applied independently to each axis (X, Y, and Z in the IMU frame) of the 

accelerometers and gyros.  Therefore, there are six independent applications of the FDI algorithm within the IMU 
FDI. The IMU sensor orientation within the body frame of the vehicle is known a priori and therefore the 
measurement matrix H in Eq. (7) is also known.  This allows the S matrix in Eq. (10) to be pre-computed and loaded 
into the FDI algorithm as a parameter.  To determine Tmax, two types of IMU errors are systematically increased: the 
short-term bias and random walk noise for both accelerometers and gyros.  Each error type on the two instruments is 
examined independently; axes are also examined independently. Therefore, there are 6 test runs total for 
accelerometers and 6 for gyros; one for each axis X, Y, Z and one for each error type.  During IMU FDI validation, 
each Monte-Carlo case has one injected error that is placed on a random axis (X, Y, or Z), a random instrument, 
accelerometer or gyro, and a random sensor (1, 2, or 3).  The second failure is placed on a different sensor, but on 
the same instrument. 

For the LIDAR, fault detection is applied independently to the azimuth, elevation, and range measurements; 
therefore, there are three independent applications of the FDI algorithm within the LIDAR FDI.  Similarly to the 
IMU FDI, the LIDAR sensor orientations are known a priori and therefore the S matrix can be pre-computed and 
stored as a parameter to the LIDAR FDI.  To determine Tmax, two types of LIDAR errors are systematically 
increased: the short-term bias and random noise for the azimuth, elevation and range measurements. Each error type 
is examined independently; measurement types are also examined independently.  Therefore, there are 6 test runs 
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total for the three measurement types and two for the error types.  During the LIDAR validation, each Monte-Carlo 
case has one injected error that is placed on a random measurement type (azimuth, elevation, or range), and a 
random sensor (1, 2, or 3).  The second failure is placed on a different sensor, but on the same measurement type. 

E. GPS Receiver Fault Detection and Isolation 
GPS measurements are screened by two separate levels of FDI: receiver level and channel level.  The receiver 

level FDI checks for GPS receiver hardware failures by analyzing discrepancies between the sensors.  However, 
receiver FDI alone does not ensure fault tolerance.  Individual GPS signals can be corrupted due to multipath or 
GPS satellite clock errors.  Since these errors are common to all GPS sensors, the receiver level FDI may not detect 
such faults.  These faults can be detected by the GPS channel level FDI, which analyzes discrepancies between the 
GPS signals on a single receiver.  This section describes the FDI algorithm application to the GPS receiver level 
analysis and validation methodology.  The next section will cover the channel level FDI. 

As described in the introduction, the Cygnus vehicle contains three separate SIGI units.   Each SIGI contains a 
12 channel GPS receiver, meaning that up to M ≤ 12 measurements can occur.  The FDI algorithm is applied to each 
of the 12 channels separately; if any GPS signal is not consistent across all valid receivers, receiver FDI detects an 
anomaly.  Since the FDI algorithm is applied to the same GPS signal, H in Eq. (7) is a unity vector.  This allows the 
S matrix in Eq. (10) to be pre-computed and loaded into the FDI algorithm as a parameter.  Unlike the IMU and 
LIDAR FDI, the GPS measurements cannot be directly compared by FDI because each receiver has a different clock 
bias.   

Before proceeding, it is necessary to briefly describe the GPS measurement process.  The receiver matches the 
code pulse sequence to determine the signal transmission time.  This is the time at which the signal was sent as 
measured by the GPS satellite’s atomic clock (GPS system time).  In addition, the receiver determinates the location 
of each satellite using the ephemeris information encoded on the signal.  By comparing the transmission time with 
its own clock, the receiver computes the transit time and, multiplying by the speed of light, determines the range to 
each satellite.  These measurements are termed pseudoranges because the actual range is corrupted by the receiver’s 
clock bias.  This is illustrated by the following equation: 

m) ... 1,2,3, (k         clock =+−= bkk srρ                                           (16) 

Thus, given the satellite positions and the pseudorange measurements (sk and ρk), the GPS problem is to 
determine the receiver’s position and clock bias (r and bclock).  The receiver clock bias contribution to the 
pseudorange measurement may be expressed as: 

)(clock τ−= tcb                                                  (17) 

where c is the speed of light, t the user clock time, and τ the GPS transition time.  

 Before the pseudoranges are sent to the FDI algorithm, the receiver level must perform two operations.  First the 
position and clock bias estimates (r̂  and 

clockb̂ ) are calculated for each valid receiver using Bancroft’s method,9 which 

is algebraic, computationally efficient, and numerically stable.  Once the clock bias has been successfully estimated, 
the corrected pseudorange, 

clockb̂k −ρ  , is calculated.  The corrected pseudorange defines the receiver level 

measurement vector, z, in Eq. (7) .The receiver level state vector, x, is defined as the true range, |r-sk|.  In addition, if 
the receiver signal time stamps are not identical, the corrected pseudoranges must be time synchronized.  This is 
done using a forward Euler method and the range rate measurement, 

kρ& , provided by the SIGI.  These two 

operations ensure that the FDI algorithm analyzes similar data across all valid receivers.  As mentioned previously, 
the FDI clock bias estimate is sent as an input to the navigation filter. 
  At least four separate GPS signals are required to estimate the receiver position vector and clock bias.  As a 
result, occasionally a GPS solution cannot be calculated due to too few satellites in the receiver’s field of view.  In 
addition, poor GPS satellite geometry may significantly reduce the numerical precision of the position-clock bias 
estimate.  As is widely known,5 the effect of satellite geometry on position-clock bias estimate accuracy can be 
calculated using the Geometric Dilution of Precision (GDOP).  Whenever the GDOP becomes larger than a 
predetermined threshold or the number of available satellites becomes less than four, no reliable solution is possible 
and the receiver level will issue an FDI status of no solution.  In this situation, no data is added to the anomaly 
matrix and the GPS data is withheld from the GPS filter.  Once the satellite geometry improves, the receiver FDI 
will resume screening receivers. 
 Both channel level and receiver level FDI determine the Tmax by systematically increasing channel level clock 
noise. The additional noise is added to a single valid channel on the selected receiver.  During channel level FDI 
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validation, each Monte-Carlo case injected one error on a random GPS satellite in the receiver’s field of view (1-12) 
on a random receiver (1, 2, or 3). The injected error is added to the GPS signal for as long as the selected GPS 
satellite is tracked by the receiver. The second failure is placed on a different GPS satellite and on a different 
receiver.  If either failed GPS satellite leaves the receiver field of view within 50 seconds of adding the error, the 
Monte-Carlo run is considered invalid and the results are not included in the analysis.  This ensures the receiver 
level FDI is permitted sufficient time to detect and ID the faulty receiver. 

F. GPS Channel Integrity Monitoring  
The previous section discussed the method through which the FDI algorithm is applied to the GPS receivers to 

ensure that the redundant SIGIs produce consistent measurements.  The following channel level discussion describes 
how the FDI algorithm is applied to a single GPS receiver to ensure that the channel level information is self-
consistent.  This analysis can be performed, because the GPS receiver has more than four satellites in the field of 
view during the vast majority of proximity operations, creating redundant GPS pseudorange measurements which 
can be used to perform FDI.  Unlike previous FDI applications discussed in this work, the GPS constellation 
geometry is constantly changing; therefore, the values of the H and S matrixes in equations 4.B.1.1 and 4.B.1-1 
must be recalculated by channel level FDI at the beginning of each iteration of the algorithm. 

As described by Sturza in Ref. 4, the GPS channel problem must be linearized before the FDI algorithms can be 
applied. The M x 1 channel level measurement vector, z, contains the pseudorange residuals: 
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where 
kŝ  is defined as the GPS satellite position as estimated by the ephemeris information encoded in the signal. 

The position estimate r̂ is provided by receiver level FDI.  The 4 x 1 state vector, x, consists of the Earth Centered 
Inertial (ECI) position errors and clock bias error: 
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The pseudorange measurement matrix, H, is composed of the line-of-sight vectors from the receiver to the satellites 
with values of unity in the 4th column.  In the channel level, there is a single application of the FDI algorithm which 
includes up to 12 pseudorange measurements.  The channel level anomaly matrix contains 12 rows, each of which 
records the faults of one GPS satellite in the field of view.  Whenever a new satellite enters the receiver’s field of 
view, the anomaly history is cleared by replacing the associated anomaly row with zeros.  
 As discussed in the previous section, the receiver position and clock bias cannot be calculated in an environment 
with poor satellite geometry.  If the receiver level was not able to calculate a position estimate or if there are only 
four GPS satellites the in the selected receiver field of view, the channel level FDI issues a status of no solution.  If 
there are five satellites in the field of view, there is only one redundant measurement.  In this instances, the FDI can 
detect, but not identify, a fault.  With five valid satellites, the channel level FDI will verify the measurements to the 
navigation filter, provided no fault is detected.  If six or more pseudorange measurements are available, the channel 
level FDI can detect and identify a fault.  With six or more valid satellites the FDI algorithm will operate as 
described in Section II.B.  Since the SIGI has a 12 channel receiver, eight (12 channel receivers minus 4 required 
pseudoranges) thresholds are set.   

Channel level threshold tuning is particularly sensitive, because not all measurements are equally redundant.  As 
discussed in Ref. 6, some GPS geometries are only partially observable in parity space.  If this situation occurs, the 
decision variable D is systematically decreased causing the FDI to become less responsive to channel level faults.  In 
order to maintain an acceptably low level of missed detections, the fault thresholds are tuned close to the 
measurement noise, resulting in more false detections.  Since there are multiple redundant channels, a false detection 
in any single channel does not significantly affect the navigation filter.   

During channel level FDI validation, each Monte-Carlo case has one injected error that is placed on a random 
valid channel (1-12) on the selected receiver, starting from a random time. The injected error continues to be added 
to the GPS signal for as long as the selected GPS satellite is tracked by the receiver. If the failed GPS satellite leaves 
the receiver field of view in less than 50 seconds, the Monte-Carlo run is considered invalid and the results are not 
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included in the analysis.  This ensures the channel level FDI is allowed sufficient time to detect and identify the 
faulty satellite. 

IV. Safe Abort Maneuver Design 
The Cygnus vehicle must be capable of safely performing an abort maneuver at any time during rendezvous. 

This requirement imposes design restrictions on both the design of the abort maneuver and on the design of the 
nominal trajectory. 

The key driving requirements during the Rbar Ascent phase in which the glideslope algorithm is used are: 
1. The GN&C subsystem shall perform abort maneuvers prior to Approach Initiation (AI) that place the 

vehicle on a trajectory that remains outside of the AE for a minimum of 24 hours. 
2. The GN&C subsystem shall perform abort maneuvers that exit the bounds of the Approach Ellipsoid (AE) 

within 90 minutes after the abort maneuver execution. 
3. The GN&C subsystem shall perform abort maneuvers outside the KOS that prevent the vehicle from 

entering the KOS. 
4. The GN&C subsystem shall perform abort maneuvers that establish and maintain a positive opening rate 

after an abort maneuver initiated within the Keep Out Sphere (KOS) while inside the AE. 
5. The GN&C subsystem shall perform abort maneuvers that exit the bounds of the Approach Ellipsoid (AE) 

and remain outside for at least 24 hours after the abort maneuver initiation. 
6. The GN&C subsystem shall maintain a trajectory that remains at least 1.829 m away from any ISS element, 

other than the SSRMS, during free-flight operations. 

A. Active and Passive Abort Overview  
Two types of aborts are used throughout the Cygnus proximity operations trajectory: Abort Below and Abort 

Above (shown in Figure 9). The Abort Below is a fixed delta-v command opposing the velocity of the Cygnus 
which will cause the Cygnus to follow a trajectory that drifts below and ahead of the ISS. This abort type is used 
anytime an abort is commanded before the Cygnus has reached the initial approach phase, including the 4 km and 
1.4 km coelliptics. The Abort above command is a fixed delta-v maneuver in the direction of the velocity with a 
sufficient radial component away from the ISS to guarantee an initially positive opening rate (see requirement 4). 
The Abort Above abort type will be used if an abort is required during final approach or during a retreat. The abort 
types were designed to minimize required delta-v while still satisfying the key driving requirements in the presence 
of substantial implementation error. 
 

 

Figure 9 Abort Below Delta-v (left) and Abort Above Delta-v (right) 

B. Safe Corridor Monitoring (SCM) for Abort 
Aborts can be triggered by direct operator intervention or by the automatic onboard system. The automatic 

onboard system will trigger an abort in order to prevent the Cygnus from entering a region in which it is no longer 
safe to perform an abort. Thus, a safe corridor is defined in which an abort can be safely triggered. Safe corridor 
monitoring takes place onboard Cygnus to determine that the vehicle is still within the safe corridor. The nominal 
proximity operations rendezvous and ascent profile has been divided into phases and each phase has been assigned a 
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set of thresholds within which an abort maneuver is guaranteed to meet the key driving requirements for abort 
maneuvers. These thresholds are defined as convex constraints on combinations of vehicle states. Testing if a 
vehicle lies within the safe corridor is performed by evaluating a matrix inequality representing the safe corridor 
constraint on the current state of the vehicle.  

C. Choosing Abort Parameters 
Designing safe corridors is accomplished by creating a wide margin around the anticipated trajectory dispersions. 

An example of a safe corridor is shown in Figure 10. In this figure, the blue lines show trajectories flown during a 
series of 1000 Monte Carlo Simulations. Safe corridors are chosen to constrain the following qualities: 

1. Position Constraints 
2. Velocity Constraints 
3. Differential Semi-major Axis Constraints 

Position and velocity constraints created independently would be insufficient to guarantee a safe corridor around 
anticipated dispersions. To couple position and velocity constraints, differential semi-major axis is also constrained. 
Because differential semi-major axis is directly related to free drift rate, this approach allows the dispersions to be 
encompassed with margin while still guaranteeing abort safety. After establishing safe corridors that surround the 
dispersions, those corridors are widened iteratively until they reach the limits of safety. This process is repeated 
independently for each constraint direction.  

The safe corridor thresholds are tested by evaluating high fidelity propagation of abort maneuvers conducted 
from the threshold boundaries and verifying the resulting trajectories satisfied the abort requirements. In addition, 
these corridors are propagated as polytopes using the CW equations (see Figure 11) through the MPT software 
package10 and those polytopes are tested for requirement violations.  

D. Abort Trajectory Verification 
A Linear Covariance (LinCov) tool was used to perform a preliminary design of the rendezvous, approach and 

departure. Subsequent detailed design of the trajectory was performed using both the LinCov tool and a high-fidelity 
6-Degree-Of-Freedom (6-DOF) simulation tool. Final trajectory design verification was performed with the 6-DOF 
simulation via Monte-Carlo analysis. 

 

 
Figure 10 Safe Abort Threshold for Trajectory between ADV3 and ADV4 
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Figure 11 Propagation of ADV3-to-ADV4 Threshold using CW Equations  

(Green represents 3 minute intervals, blue represents 10 minute intervals) 

 
1. Linear Covariance Analysis 

The Lincov tool was used to analyze the effect of navigation errors and control errors on the overall trajectory for 
the Cygnus vehicle. The trajectory design was evaluated in terms of the navigation dispersions and trajectory 
dispersions. The Lincov tool computes these dispersions using linear covariance analysis techniques and aims to 
reproduce the same statistical information that a non-linear closed-loop 6-DOF simulation would produce.  

Navigation errors or dispersions are the differences between the actual state and the estimated state of the 
Cygnus vehicle and the LinCov tool characterizes how well the navigation system, with the sensors being utilized, is 
able to determine the current state. Trajectory errors or dispersions are the differences between the actual state and 
the nominal or desired state of the Cygnus vehicle. LinCov provides for a variety of guidance and targeting 
capabilities in order to perform rendezvous maneuvers and a sequence of maneuvers can be determined and then 
appropriately analyzed. 

The trajectory dispersions are influenced by the proposed navigation system and the control system and vice 
versa. In other words a trajectory can be designed that will drive the requirements for the navigation system and 
control system. Alternatively, established navigation system and control system capabilities can drive the design of 
the trajectory. The LinCov tool provided a design and analysis environment where navigation system, control 
system and trajectory analysis trades could be performed quickly. The LinCov tool was used in this manner to 
support early system level trades for the selected Cygnus navigation sensors and thruster layout and sizing. 

The LinCov tool was also used to design and analyze abort maneuvers with respect to the Key Driving 
Requirements (KDRs), which were previously summarized. At the conclusion of the preliminary design phase, 
LinCov provided preliminary verification of the trajectory design against an assumed performance of the relative 
navigation system and control system. This assumed performance for the relative navigation system and control 
system became the performance requirements that the relative navigation system and control system was then 
designed to meet. The subsequent detailed design activity evaluated the designed relative navigation system and 
control system for the nominal and contingency Cygnus vehicle trajectories using the high-fidelity 6-DOF 
simulation environment. The simulation results were then converted into three sigma dispersions and compared to 
LinCov. 

The LinCov tool was used to perform the design of abort trajectories. As previously described, an abort strategy 
was developed that called for an ‘Abort Below’ prior to the Cygnus vehicle arriving at the 250 m Hold Point (HP) 
and receiving authorization to enter the KOS and an ‘Abort Above’ beyond this point.   

There were two stages to overall abort maneuver verification. The first stage was the verification of the abort 
strategy at various points along the designed reference trajectory. The second stage was the verification of the abort 
thresholds from which an abort is triggered. 
 

2. Abort Strategy Verification 
A simple ‘canned’ abort maneuver for both an ‘Abort Below’ and an ‘Abort Above’ was selected for simplicity. 

The ‘Abort Below’ strategy imparts a retrograde acceleration to the Cygnus vehicle that causes the vehicle to drop 
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below and drift in front of ISS. The ‘Abort Above’ strategy imparts a posigrade acceleration with a significant radial 
component to the Cygnus vehicle that causes the vehicle to initially move in front and above ISS and ultimately to 
drift behind ISS. 

The ‘Abort Below’ trajectories at key points along the nominal trajectory leading up to the 250 m HP are shown 
in Figure 12, Figure 13, and Figure 14. These figures illustrate how several of the KDRs were verified. In these 
examples, the Cygnus vehicle must be prevented from entering the KOS, must leave the AE within 90 minutes, and 
must remain outside the AE for 24 hours. ‘Zoomed’ out plots not illustrated here illustrate the trajectory behavior 
over 24 hours and the verification of this requirement. 

 

Figure 12 Abort Below Trajectory after ADV3 Maneuver Execution 

 

 

Figure 13 Abort Below Trajectory after ADV4 Maneuver Execution 
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Figure 14 Abort Below Trajectory Prior to 250 m Station-Keeping 

 
After analyzing the resultant free-drift trajectories and range-rate profiles associated with executing an ‘Abort 

Above’ at various locations along the trajectory, it was found that there were two abort scenarios that were 
especially critical. The first scenario is immediately following station-keeping at the 250 m HP and the second 
scenario is when the Cygnus vehicle is at or near the capture location in very close proximity to the ISS. 

The ‘Abort Above’ trajectories for these two scenarios are shown in Figure 15 and Figure 16.  Figure 17 
illustrates a ‘Zoomed’ out plot to illustrate the trajectory behavior over the long term. Figure 18 illustrates the range-
rate of the Cygnus vehicle as it executes the abort maneuver and exits the KOS and AE. These figures illustrate how 
several of the KDRs were verified. In these examples, the Cygnus vehicle must establish and maintain a positive 
opening rate, must leave the AE within 90 minutes, and must remain outside the AE for 24 hours  

 
Figure 15 Abort Above Trajectory Immediately Following 250 m Station-Keeping 
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Figure 16 Abort Above Trajectory from the Capture Location 

 

 

Figure 17 Abort Above Trajectory Immediately Following 250 m Station-Keeping (Zoom Out) 

 

 

Figure 18 Abort Above Range-Rate Immediately Following 250 m Station-Keeping 

E. Abort Trajectory Verification 
Abort thresholds are intended to define the regions in which it is safe to perform abort maneuver and, as a result, 

where the Cygnus vehicle must remain at all times. If an abort maneuver is executed within appropriately defined 
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abort regions, the resulting abort trajectory will meet the previously summarized KDRs.  Abort thresholds are 
described as constraints on the Cygnus state relative to the ISS. These constraints represent restrictions on the 
relative position, the relative velocity, and the relative semi-major axis of the two vehicles. The abort thresholds are 
defined for specific regions of the rendezvous and approach profile.  

Figure 10 illustrates abort thresholds for the trajectory region between ADV3 and ADV4. The green shapes that 
envelope the trajectory represents the abort thresholds on relative position, relative velocity and relative semi-major 
axis. The blue lines represent nominal trajectory dispersions for relative position, relative velocity and relative semi-
major axis. 

Verification of the abort threshold design was accomplished by initially sampling the initial conditions on the 
boundary of the threshold (in relative position, relative velocity, and relative semi-major axis), applying the abort 
maneuver according to the abort strategy, and then propagating the resulting trajectory in the presence of drag and 
other high-order effects. Clearly, this technique would require a significant amount of effort to verify all possible 
initial conditions and therefore a separate verification technique was developed.  

A more exhaustive verification technique was applied by considering the set of valid states to be a fixed polytope 
defined in a frame relative to the ISS and then propagating the polytope after applying the abort maneuver according 
to the abort strategy. The polytope propagation captures the execution of an abort maneuver from all possible initial 
conditions. This method of polytope propagation is comparable to the approach used by ATV to validate safety in 
the presence of an abort maneuver with process noise. 

Figure 19 shows the 24 hour propagation for a number of initial conditions sampled for the abort threshold 
boundaries for the trajectory region between ADV3 to ADV4. Figure 11 shows the short term propagation of the 
polytope region that represents the post-abort maneuver execution state at the abort threshold boundaries. The early 
portion of Figure 19 lies entirely within the polytope region establishing the validity of this approach. 

 

  

Figure 19 Day-long Propagation of Abort Maneuver Execution for ADV3 to ADV4 Threshold Boundary 

V. Conclusions 
The Cygnus vehicle employs several applications of fault management to meet the ISS visiting vehicle safety 

requirements for free-drift, safe abort, and minimum separation distances.  During the approach and rendezvous 
mission phases, the IMU, LIDAR and GPS sensor measurements are independently screened by integrity monitoring 
routines.  By comparing redundant measurements, these routines detect and isolate faulty sensor systems, thereby 
preventing corrupt measurements entering the navigation filter and ensuring sufficient navigation state accuracy to 
perform an abort.  The abort monitoring corridors utilizes the fault tolerant navigation state to autonomously trigger 
an abort before safety requirements are violated.  Together the sensor fault management routines and the abort 
monitoring corridors guarantee that the Cygnus is always capable of performing a safe abort. The abort corridors 
and the sensor fault management routines are verified using Monte-Carlo simulations with realistic disturbances. 
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The abort corridors performance is also validated using linear covariance analysis and a polytope propagation 
method. 
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